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ABSTRACT

Apparent exponential surface density profiles are nearly universal in galaxy discs across Hubble
types, over a wide mass range, and a diversity of gravitational potential forms. Several processes
have been found to produce exponential profiles, including the actions of bars and spirals, and
clump scattering, with star scattering a common theme in these. Based on reasonable physical
constraints, such as minimal entropy gradients, we propose steady-state distribution functions
for disc stars, applicable over a range of gravitational potentials. The resulting surface density
profiles are generally a power-law term times a Sérsic-type exponential. Over a modest range
of Sérsic index values, these profiles are often indistinguishable from Type I exponentials,
except at the innermost radii. However, in certain parameter ranges, these steady states can
appear as broken, Type II or III profiles. The corresponding velocity dispersion profiles are
low-order power laws. A chemical potential associated with scattering can help understand
the effects of long-range scattering. The steady profiles are found to persist through constant
velocity expansions or contractions in evolving discs. The proposed distributions and profiles
are simple and solve the stellar hydrodynamic equations. They may be especially relevant to
thick discs that have settled to a steady form via scattering.
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1 INTRODUCTION

Spiral galaxies have been known to have exponential radial pro-
files for a long time (Patterson 1940; de Vaucouleurs 1959;
Freeman 1970, 2007; van der Kruit 2002), with scalelengths that
are independent of Hubble type for early and intermediate types
(de Jong 1996). The early observations did not extend to very
faint surface brightnesses, or over many scalelengths. Recent ob-
servations have gone much deeper (e.g. Bland-Hawthorn et al.
2005; Erwin, Beckman & Pohlen 2005; Pohlen & Trujillo 2006;
Erwin, Pohlen & Beckman 2008; Gadotti 2009; Herrmann, Hunter
& Elmegreen 2013; Zheng et al. 2015), showing the continuation
of exponential form over about 10 scalelengths in some cases. As
originally noted by Freeman (1970), the radial profiles often have
a break, either turning downwards in the outer parts (Type II) or
upwards (Type III; also see Erwin et al. 2005, 2008; Pohlen &
Trujillo 2006; Herrmann et al. 2013). However, the slope changes
are often modest, and both inner and outer profiles are well fit by
exponential forms.

In addition to large disc galaxies, the surface density profiles of
dwarf irregular galaxies, which have little shear and generally no
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spiral waves, also follow exponential profiles out to six or more
scalelengths (e.g. to 31 magarcsec™2 in the V-band; Hunter et al.
2011). The dwarfs are easily harassed by encounters with other
galaxies, subject to continuing gas accretion (van Zee et al. 1998;
Wilcots & Miller 1998), or cycles of gas expulsion and reassertion.
Thus, the stars must continuously migrate to smooth out profile
disturbances, and generally do so without the aid of spirals, bars or
shear.

These observations suggest that exponentials are the generic sur-
face density forms for the full range of two-dimensional galaxy
components, and that these profiles extend over a huge range of
surface brightness. They must be able to reform promptly after ma-
jor disturbances, especially in dwarfs, and initially form promptly
as judged by their presence in high-redshift galaxies (Fathi et al.
2012). These more recent results greatly stress some older theories
for the origin of the exponentials.

This includes the model of Mestel (1963), based on the collapse of
a uniform density, uniformly rotating sphere, with no redistribution
of angular momentum. The resulting configuration has a distribution
of mass as a function of angular momentum that is nearly the same as
that of an exponential profile out to a radius of order six scalelengths.
The assumptions of this simple model are questionable in light of
modern disc formation models that include processes such as cold
accretion from large-scale structures (e.g. Robertson et al. 2004;
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Brook 2012; Minchev et al. 2012; Vera-Ciro et al. 2014), and the
exponential extent is not great enough.

The Mestel model was updated in subsequent decades, especially
to incorporate the effects of dark haloes, e.g. see Fall & Efstathiou
(1980), Mo, Mao & White (1998), and references therein. Like the
original, these works consider discs that form from generally self-
similar halo collapses, preserving specific angular momentum and
angular momentum distributions, though some viscous redistribu-
tion was also considered. They generally assume an exponential
surface density profile in the discs, and do not advance the Mestel
model significantly in this regard. However, the authors do note that
the model discs are close to or exceed global gravitational stability
thresholds, thus providing a basic theoretical understanding for the
development of massive clumps or strong waves observed in young
discs (Elmegreen et al. 2007; Guo et al. 2015), and seen in more
recent models (Bournaud, Elmegreen & Elmegreen 2007; Oklopcic
et al. 2016).

Another popular model suggests that viscous accretion is pro-
portional to star formation, and then the exponential profile results
from secular evolution (see Lin & Pringle 1987; Yoshii & Sommer-
Larsen 1989; Ferguson & Clarke 2001; Wang et al. 2009). This
type of model is discomfited by the recent observations in a couple
of ways. First, it requires substantial shear that is not found in the
dwarf irregulars and some regions of spirals. Secondly, it is not clear
that disturbed exponentials can be reformed sufficiently rapidly by
these processes, especially following a disturbance that does not
enhance star formation.

By redistributing angular momentum and driving radial migra-
tion, bars and spiral waves can also change the surface density
profile and produce exponentials. In particular, strong bars can gen-
erate double exponentials (Debattista et al. 2006; Foyle, Courteau
& Thacker 2008). Of course, not all exponential discs have bars,
including especially the dwartf irregulars. While these several pro-
cesses may play arole, they seem unable to form exponential profiles
in all cases and promptly enough to account for the observations.

On the other hand, simulations do show the resilience of the expo-
nential profile in model discs. For example, the models of Berrier &
Sellwood (2015) show how steady accretion is promptly smoothed
into the exponential form. Elmegreen, Struck & Hunter (2014) use
analytic models to demonstrate the preservation of the exponen-
tial form when external accretion is balanced by star formation. In
these models, the disc can expand or shrink and the exponential
scalelength evolves (also see Section 4.1).

These many observations and models urge the question of why the
exponential form is ubiquitous, and promptly generated? It appears
to result from a very basic and fundamental physical process. This,
despite the fact that, as we will see next, it is not among the simplest
possible equilibrium states. An important hint was provided by
the numerical models of Elmegreen & Struck (2013), in which
scattering clumps were introduced into simple test particle discs
with an initially flat profile. In that work, it was found that the
scattering off the clumps generally resulted in exponential profiles.
We note that this scattering is rather different than that originating
near the corotation radius of a spiral pattern discussed by Sellwood
& Binney (2002), Roskar et al. (2012) and the radial evolution
driven by accretion flows modelled in Berrier & Sellwood (2015).
This overall result did not depend on many details, such as the
number or mass of the clumps, or the form of the gravitational
potential, though other properties, such as the profile evolution time
can depend on such parameters.

Scattering is common to many, if not all, of the models above,
especially those involving bars, waves or clumps. If scattering
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is indeed the underlying process that generates the exponential
profiles, then the question remains of why that profile is the univer-
sal result? As does the question of the origin of the different kinds
of profile (e.g. broken)? And finally, the question of how much
can we learn from analytic models versus numerical simulations?
Near equilibrium hydrodynamical processes can often be approx-
imated analytically, but classical scattering problems are usually
treated statistically, though with less information obtainable by an-
alytic means. Nonetheless, biased scattering, like that proposed by
Elmegreen & Struck (2016), can be viewed as a kind of flow to a
steady state.

In the following, we will demonstrate that at least in the cases
where certain, reasonable assumptions are satisfied, families of near
exponentials are steady states over the range of potentials relevant
to galaxy discs. Although these steady solutions are not unique,
they are the simplest forms that satisfy the physical constraints. In
Elmegreen & Struck (2016), it was shown with simple scattering
models (henceforth ‘hopping models’) that the nature of disc density
profiles depends on the type of bias in the scattering. This result
suggests that the details of the scattering kinetics determine which of
the hydrostatic solutions apply to given galaxy discs. Ultimately, the
detailed study of the specific scattering processes that generate near-
exponential profiles in different disc evolutionary histories requires
self-consistent numerical simulations.

In the next section, we describe general approximations to the
hydrodynamic (Jeans) equations used to reduce these to a radial
hydrostatic equation, and how scattering can be incorporated into
the stellar distribution function as a Gibbs chemical potential. This
formalism provides background and context, but may be skipped by
readers wanting to proceed directly to discussions of solutions of the
two-dimensional continuity equation (1) in the following sections.
Section 3 discusses additional physical constraints on the solutions
to the hydrostatic equation, and the nature of the constrained solu-
tions. This discussion is expanded with a presentation of variable
scalings and profile examples in Section 4. The hydrostatic forms
derived here are the result of that evolution in mature stellar discs
that are likely to be thick discs (due to vertical scattering) in most
cases. In the models of Elmegreen & Struck (2013, 2016), it was
shown that it takes some time for steady, near-exponential profiles
to develop via scattering. We do not study that evolution in any
detail here, but simple self-similar profile evolution is discussed in
Section 5. Section 4 described some steady broken, exponential pro-
files, and Section 6 reviews the more general causes of breaks, and
their evolution in simple scattering models. A summary is provided
by Section 7.

2 STATIC PROFILES

2.1 The hydrostatic equation

A steady-state profile satisfies the time-independent Jeans’ equa-
tions of stellar hydrodynamics. For simplicity, we will assume that
the problem is essentially two-dimensional, and that the dynamics
of the dimension perpendicular to the disc can be decoupled. We
will further neglect azimuthal variations, and consider the cylindri-
cally symmetric Jeans equation for radial variations. Finally, since
we are looking for steady states, we assume, for the present, that not
only time derivatives, but also the radial velocities are very small
across the disc. In this case, all terms of the mass continuity equation
are negligible. We are left with the radial hydrostatic equation,
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where ®(r) is the gravitational potential, X () is the stellar surface
density, vy is the local mean azimuthal velocity, and o (r) is the local
velocity dispersion.

In this hydrostatic equation, we have used the usual pressure term
for a gas. This is potentially problematic for several reasons. The
first is that the gas of stars is essentially collisionless, with signif-
icant Knudsen number (i.e. significant mean free paths), whereas
pressure is conventionally mediated by microscopic particle colli-
sions. A second difficulty is that stars scattered on to eccentric orbits
traverse a number of annular zones, while pressure is usually viewed
as a local interaction between adjacent gas elements. This second
difficulty does not seem to be a fundamental problem, e.g. eccen-
tric orbits could be apportioned into different annuli. Moreover, the
most eccentric orbits spend much time at their orbital apo-centre.

The particular environment of a clumpy disc provides a rather
special solution to the first difficulty, star—surrogate scattering. That
is, averaged over many scattering events, clump—star scattering can
have the same effects as star—star scattering, especially in driving
the system towards a steady state. For example, stars will be pushed
out of overdense regions more strongly than average regions, and
the opposite in underdense regions. This does assume that there
are always clumps available to mediate pressure-like effects, an
approximation that is aided by the fact that clumps can have long-
range effects. Although its limitations should be kept in mind, we
will adopt this approximation for the pressure.

Another simplification of equation (1) is the use of a single ve-
locity dispersion in the pressure term, rather than separate radial
and azimuthal dispersions. This is only valid if the dispersion is
isotropic, or if the two dispersions scale by a constant anisotropy fac-
tor throughout the disc. In the clump scattering models of Elmegreen
& Struck (2013), with the clumps placed in random locations across
the disc, the velocity dispersions generated by scattering are approx-
imately isotropic. On the contrary, there is little reason to expect
scattering by asymmetric structures like bars or spirals are isotropic,
except perhaps, averaged over long time-scales. However, accord-
ing to the recent GAIA-ESO survey results the radial and azimuthal
dispersions in the solar neighbourhood also do not differ greatly
(Guiglion et al. 2015, see their fig. 11). Of course, population kine-
matics can be studied in much more detail in the solar neighbour-
hood than in external galaxies, e.g. the phenomenon of asymmetric
drift (see Binney & Tremaine 2008). Such details are not the sub-
ject of the present paper that focuses on the general structure of
steady discs; so for simplicity, we will adopt the isotropy assump-
tion throughout. The equations could be readily generalized with
the inclusion of an anisotropy parameter.

If the azimuthal velocity profile, and the gravitational potential
in the equation above are known, then the Jeans equation can be
viewed as one equation for two unknowns, ¥ and o. Conventionally,
we might assume a polytropic equation of state, or specifically, an
isothermal condition. However, the exponential profile is not a two-
dimensional polytrope. Alternately, we can adopt the exponential
profile, and see what velocity dispersion may support it. However,
for a wide range of power-law potentials, this yields an expression
for the velocity dispersion squared that is an infinite power-series,
which does not always converge.

2.2 Maxwell-Boltzmann distributions

We expect that an equilibrium profile consistent with the physical
constraints will have a Maxwell-Boltzmann type distribution func-
tion. This seems reasonable since the stellar disc is unlikely to be
degenerate in phase space, and we are supposing it is in a relatively
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relaxed state (not a Lynden-Bell 1967 violent relaxation distribu-
tion). Specifically, we assume that the (planar) distribution function
is of the general form,

f = foeiﬂ(éﬂn’ € = %Uz + %vez + o, ﬁ = 0727 (2)
where € is the specific energy, vy is the local mean azimuthal ve-
locity, v is the velocity variable in the local corotating frame and
®(r) is the gravitational potential. The square of the velocity, v is
the sum of the squares of the radial velocity and the difference be-
tween the azimuthal velocity and the local mean azimuthal velocity.
This is analogous to the derivation of the Schwarzschild distribution
function (Binney & Tremaine 2008, section 4.4.3).

That derivation, however, assumes the conservation of disc an-
gular momentum. In the present problem, angular momentum is
generally exchanged with the scattering centres, and the net amount
in the stellar ensemble changes. This angular momentum transfer
process has been well studied in the case of spiral waves, see e.g.
Zhang (1998), Binney & Tremaine (2008). In the clump scattering
models of Elmegreen & Struck (2013), following a prompt initial
drop in global angular momentum of the stars, there follows a steady,
linear decrease. Thus, we cannot simply adopt the Schwarzschild
function, and instead include the « term in equation (2).

The function « is a form of the Gibbs chemical potential or Fermi
energy used in many areas of physics. The chemical potential is
most often associated with the free energy in systems with reacting
particle species. The present use is more similar to the chemical
potential of free electrons in solid state systems, i.e. the energy
change associated with the addition or subtraction of particles. Here,
the change in particle number would be due to scattering in or out
of a local annulus. The free energy is important because it is the
quantity available to change the state (e.g. density profile) of the
system. In a disc with a large quantity of ordered motion and little
thermal energy, the free energy is large.

In the usual derivation of a distribution function like that given
in equation (2), via the minimization of a Boltzmann H or entropy
function, the velocity dispersion (or temperature) and the chemical
potential are equivalent to Lagrange multipliers, and are constants
(e.g. Binney & Tremaine 2008). If we consider the disc to be a
collection of radial annuli, each of small radial thickness, then each
annulus can be viewed as approximately a local system, with its
equilibrium distribution function described by specific values of «
and S.

The stellar surface density is obtained by integrating over the dis-
tribution of the two-dimensional velocity space (assuming isotropy
in the local corotating frame),

E:Z/ f 2mvdv
0

[e's] 2 2 —
- 471ﬁ,/ exp (— {” +up +29 2"‘(”]) v, (3)

0 20 2

The last three terms in the exponential above depend only on radius,
and so can be pulled out of the integral, and the remaining function
can then be integrated,
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which shows the dependence of X on the Gibbs scattering potential.
Using this last form we obtain
1d¥ 1 do? d® @ do? 1dv]

N v} do? da
S dr o2 | dr dr o2 dr 2 dr

202 dr ' dr |’

&)
which can then be substituted into the hydrostatic equation (1), to
yield,

do? @ do? 1dvl v do? da v}

T B )

This is still one equation for at least two unknowns, « and o. Hav-
ing rejected (globally) isothermal and simple polytropic approxi-
mations, we turn instead to symmetry and scaling arguments, and
minimization of the entropy gradient.

3 CONSTRAINED STEADY SOLUTIONS

3.1 Physical constraints

In the most general circumstances, there are five variables in the
problem (X, o, ®, vy and «), the possible solutions are not very
constrained by the radial, hydrostatic, Jeans equation alone. How-
ever, we are primarily interested in solutions generated by scattering
processes. These will generally smooth inhomogeneities in phase
space, so we can limit consideration to solutions that are smooth
across the disc. Similarly, we do not expect the solutions to be char-
acterized by any fixed scalelengths or wavelengths, though there will
be evolving scale factors in power-law or exponential solutions. In
this context, it is useful to approximate the gravitational potential
as a power law. Rotation curves and other observations suggest
that over substantial ranges of radius single power-law forms are
quite reasonable, and sums of power laws can be made arbitrarily
accurate. We adopt the form

& = (1) wr. @)

Jj=0or 1, if m is positive or negative, respectively. Although this
restriction on the potential will prove convenient later, equation (1)
or (6) still have too many unknowns for a unique solution. The
monotonic character and smoothness of this potential suggest that
the forms of the other variables will be monotonic. We focus on
such solutions.

In the hydrostatic equilibrium equation (1), gravity is balanced
by both centrifugal acceleration and pressure gradient. We will call
the pressure-balanced fraction of the gravity yx (), so the centrifugal
acceleration is
v3 do y
— =A==~ x(r)=xi@r/a), ®)

dr
The second equation assumes that the function x (r) can be approx-
imated as a power law, with a normalization constant a and mag-
nitude x;. This seems a reasonable approximation, at least over
limited radial ranges, especially since we are interested in smooth,
large-scale structures, rather than local (e.g. wave) structures.

There are also qualitative reasons to expect the exponent g to be
of small magnitude in many cases, so x is slowly varying or nearly
constant. For example, suppose that scattering centres are spread
uniformly across a disc, and that their masses are distributed over a
small range with a mean value such that they scatter stars that are
relatively nearby, and the scattering amplitude is moderate. With
these approximations we would expect the effects to be primarily
local, and not extend over a large range of radius. If the scattering
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centres do not evolve or spiral inwards too rapidly, we would expect
a steady conversion of nearly circular orbital energy (centrifugal
term) into the random component (pressure term). With the assumed
uniform distribution of homogeneous scattering centres, a constant
fraction of orbital energy should be converted into thermal energy
in a given time in annuli at all radii. Thus, in this idealized case,
x would be constant across the disc, and the pressure term will scale
with the centrifugal and gravitational accelerations.

This example may be quite realistic in many cases, though nu-
merical simulations that isolate the assumed effects are needed for
confirmation. In other cases, e.g. those with a few massive scatter-
ing clumps that scatter stars through large angles, we could expect
more smoothing. In such cases, the pressure term would be flatter
than the gravity, and the exponent ¢ would have a positive value. If
the scattering centres decreased in number or efficiency with radius,
q could have a negative value.

While we seek steady profile solutions, these are not true ther-
modynamic equilibrium states, which would be globally isother-
mal. Rather, we assume that fast relaxation processes have been
completed, and only slow changes due to slow scattering remain.
This is analogous to the case of glasses, which as a result of fast
quenching do not reach their crystalline equilibrium states. Under
these circumstances basic thermodynamic relations should be ap-
proximately satisfied, and gradients should be minimized by the
rapid relaxation processes. For example, the fundamental relation
of thermodynamics can be written in a gradient form as (see e.g.
section 7.3 of Hansen & Kawaler 1994),

dS dE d (1) do
T —

i p— = -,
dr dr+ dr +dr

> ®

where S is the entropy, E the internal energy, P the pressure, and
we have included the free energy term. We have not included a
gravitational potential gradient term on the assumption that the
gradients above are determined primarily by local scattering, rather
than long-range scattering that would sample significant changes in
the fixed halo potential.

In this expression we can substitute the following, kT = 0%, P =
o2, and E = co?, with appropriate constant c. Given the assumed
cold state of the disc at the onset of scattering, the entropy gradient
should be small compared to the free energy gradient. If we assume
that the entropy gradient is negligible, then the previous equation
reduces to

do ,dinZ do?
— =0 —c—.
dr dr dr
This equation can be used in equation (5), where the £ terms would
cancel, yielding an equation for ¢ in terms of ® and vy or x.If x is
a power law as assumed, then the general solution of equation (5)
for o will also be a power law. Equation (10) shows that «(r) will
be a power law as well if the surface density profile is a power law,
exponential or combination.

10)

3.2 Density profiles

With the constraints of equations (7) and (8) and the assumed
smoothness and monotonicity, we can consider several types of
solution to the radial hydrostatic equation for ¥. The first type
is when the velocity dispersion o2 scales as the gravitational po-
tential ®. In this case, 0/n(X)/0r = —1/r, and £ ~ 1/r. This
is not the surface density profile observed in stellar discs, and
the dispersion gradient seems relatively steep compared to the
observations.
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If the gravitational potential gradient minus the centrifugal term
is not balanced by the dispersion gradient term (in equation 1),
then both must be balanced by the surface density gradient term,
which leads to a couple of more types of solution. To begin, we
note that if the centrifugally unbalanced gravity is zero, then, ¥ ~
1/0?. Thus, a general solution can be written ¥ ~ f(r)/o>. With
this form, the unbalanced gravitational term equals —o >din(f)/dr.
The gravitational term and x are both power laws, so we might
expect that f(r) is as well. However, the logarithmic derivative would
then yield a 1/r factor, reducing this to the previous case. This
objection carries over to any finite series of power-law terms for
f(r), and many familiar transcendental functions would not satisty
the equation.

In fact, the general solution in this case is that f{r) is an exponen-
tial function. Specifically, f(r) = E(,a()zexp(—h(r)), where X, is a
constant surface density. Then the pressure term equals —o2dh/dr.
This allows a range of power-law forms for the dispersion and the
h function, as long as the product scales correctly. Specifically, the
following general form is consistent with a power-law gravitational
potential, and the stability constraints assumed above,

1
X~ (;) exp (—(r/a)”), an
with,
2 (TP AP rymas]
(5) ~re Q) a2

The surface density profile in equation (11) is essentially a Sérsic
profile with index p that has a simple exponential term whenp = 1,
and for example, a Gaussian term when p = 2. The value of p is
not constrained by any of the assumptions above. This key factor
is evidently determined by the dynamical processes that drive discs
to equilibrium states, e.g. scattering processes. An understanding
of these particular processes is needed to determine p (and ¢), and
specifically, why a value of about 1 is realized in different types
of galaxy discs. In the next two sections, we will consider some
special cases of the general solution above.

To summarize the various considerations of this section, we be-
gan with five radially dependent variables (¥, o, @, vy and o).
In the context of galaxy discs, we assumed a power-law form for
the (halo) gravitational potential ®, and for x or vy. We used the
thermodynamic relation to eliminate . Physical and smoothness
criteria suggest that 3(r) is a power-law times an exponential (or
Sérsic) function. Then, the radial hydrostatic equation is solved
with o and « as power-law functions, like ® and y. These profile
solutions are not unique in all cases, but appear to be the gen-
eral form of monotonic solutions in a power-law potential with
a slowly varying (power-law) centrifugal imbalance y. This sur-
face density profile is clearly more general than a simple expo-
nential; in the next section, we consider when these profiles might
look like observed profiles, and elaborate on the scalings of the
other variables.

4 SIMPLE NEAR-EXPONENTIAL SURFACE
DENSITIES

In the previous section we showed that under certain smoothing
approximations, the general surface density profile in a static disc
in a power-law potential is a power-law times the exponential of a
power law in radius. In this section, we will examine such profiles
in more detail. We will emphasize cases where the centrifugal im-
balance yx is constant or nearly so. In such cases the general form for
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the surface density is a power-law (i.e. ~o ~2) times the simple (or
nearly simple) exponential. Observations favour such solutions, so
we begin this section with some thoughts on why this might be the
case. As in the discussion of yx (r) above, these considerations centre
around the kinetics of scattering processes that may be responsible
for the steady disc profiles.

First, consider the case of a small value of p <« 1, which im-
plies a relatively flat surface density profile. Numerical scatter-
ing models show that the latter can be achieved on long time-
scales after many (moderate) scatterings of a typical disc star.
To achieve it on a shorter time-scale requires relatively frequent
long-range scattering events. Moreover, if a non-negligible sur-
face density is to be retained despite such events, then either a
barrier or a potential well sufficient to limit expansion is needed.
Low values of p correspond to Sérsic models of classical bulges
and elliptical galaxies (like the famous r'/* law), rather than discs.
Long-range scattering was likely associated with their formation
in relatively deep halo potential wells. Strong scattering envi-
ronments will also produce three-dimensional structures, rather
than discs.

Next, consider large values of p >> 1, which imply rapid surface
density falloffs. Kormendy & Freeman (2016) propose a Gaussian,
p = 2, profile form for diffuse dwarf galaxies. These objects may
be cases of weak scattering with steep initial conditions, and also
a massive confining potential. Thus, it appears that a reason that
p = 1 in discs is that the clumps and density waves formed within
them provide the right level of moderately strong scattering to pro-
duce that form.

Moreover, the biased hopping models of Elmegreen & Struck
(2016) produce exponential forms (p ~ 1). It was suggested in
that work that the necessary bias would occur naturally via clump
scattering of stars formed in nearly circular orbits to more ec-
centric orbits. The idea is that whether scattered to elliptical or-
bits with larger or smaller semimajor axes, there would gener-
ally be a decrease in orbital angular momentum. Then, some
part of the orbit would lie at radii smaller than the initial, while
only a fraction of the orbits would explore larger radii, yielding
the bias. Thus, we reiterate the point that kinetic scattering pro-
cesses likely determine the exact form of the near-exponential den-
sity profiles, and select specific members of families of possible
hydrostatic solutions.

These arguments are qualitative, and do not constrain p to be
exactly unity. We will see in the following that this exponent can
vary some ways from unity without destroying the exponential ap-
pearance of the profile, especially in the case of broken profiles.
Indeed, we will show that such profiles can be the result of p values
greater or less than unity.

4.1 Scalings

In this section, we will examine further the structural variables,
and find some interesting scaling relations for comparison to ob-
servation. To begin, we can adopt the following specific form for
the velocity dispersion described in more general terms in equa-
tion (12),

r

o? = (~Danx (-)

a

q+1-p dP

dr’
where a, n are a normalization factor (as above) and a disper-
sion scale factor. We again assume y (r) = x(r/a)?, and that j is
defined as in equation (7). By combining equations (7), (8), and
(13), we can derive and tabulate a number of relations between

13)
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variables, some of which will help simplify the hydrostatic equa-
tion (6). To begin, we have

r\m—1+q’
o =a"nuxi (5) ,

do?

dr

1 , r\m—2+q
a"quim —1+q)x (5)

2
=(m—1 +q’)07. (14)

where, ¢’ = ¢ + 1 — p. Then substitution into equation (8) yields,

== 1 ) ()

(a2 ()

where o = a™un(r/a)"~"'. And then,

dv?
dr

r )mflth]

2 m—1 rym-l m—1
m-ua — — um(m + q)x1a —
a a

m* , m(m+q) ;r\r-' ,
e mn k) (ry
an an a

The expressions above can be used in the hydrostatic equation to

get an expression for the surface density, we find

16)

dinz 1 do? x do
dr ~ o2dr o?dr
1 (=Dm srypr-!
=—m—1+q) - 22 (), (17
r an a

which can be readily integrated,
b)) r —(m+q—p)
s (7)
—(=1)/ P
ce | 2 (1) (L) <)), (18)
pPn a r

This result both agrees with and gives specific form to the scaling
results of equations (11) and (12). Its derivation emphasizes that
it is not an assumed form; it is derived from the assumed power-
law form of the potential and the centrifugal imbalance, x. Note
that the centrifugal imbalance factor yx; cancels out of this profile
expression. These forms are quite general and could fit a wide
variety of smooth distributions over reasonable radial ranges. Next,
we consider examples with various specific forms of the potential
and dispersion profile, relevant to important classes of galaxy discs.

4.2 Examples in various potentials

As the potential exponent m ranges between values of —1 and 0,
the corresponding rotation curves go from Keplerian to flat, and are
generally declining, so we will call them DRC cases. The rising
rotation curve cases (RRC) consist of potentials with exponents
ranging from O to 2 or slightly greater. In the examples in this
section, we specialize (with little loss of generality) to the case
where r; = a, so equation (18) simplifies somewhat to,

)y —(m+q—p) —(=1/ P

(5 e [T () 1)) )
2 a pn a
Note also that we set j = 0 in the RRC case and j = 1 in the DRC
case, as needed to obtain declining density profiles.
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Figure 1. Dimensionless surface density profiles, X'(r) = Z(r)/Z(r1),
in three rising rotation curve cases, as given equation (19) with potential
exponents m as labelled. Straight guide lines highlight the deviations of the
profiles from pure exponential forms, and show the pure exponential form
of the m = 1.0 case. See text for details.
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Figure 2. Surface density profiles, as in Fig. 1, but for falling rotation
curve solutions of equation (19), with gravitational potential index values
m as indicated. The upper two curves are of nearly single exponential form
into an apparent core radius, which is nearly 10 times the value of a. The
lower curve is clearly of Type II form.

4.2.1 Examples with a simple exponential term

Fig. 1 shows sample RRC surface density profiles given by equa-
tion (19), and Fig. 2 shows DRC cases. In these first examples, we
also specialize to cases withn = 1, p = 1 and ¢ = 0, i.e. constant
centrifugal balance. Also shown in Figs 1 and 2 are line segments
illustrating local slopes and slope changes. The first obvious feature
of Figs 1 and 2 is that despite the power-law term in equation (19),
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all of the profiles are well fit by a single or double exponential
outside the core region. In particular, the RRC examples in Fig. 1
are generally very close to single exponentials, though the lowest
(m = 1.8) case, does have a slight Type III form. In Fig. 2, the
profiles could all be described as Type I or II outside the core. The
guidelines on the m = —0.6 curve show the Type II form explicitly.
Thus, regardless of the value of the potential index m, equation (19)
gives exponential forms like those observed.

The steepness of the profiles outside the core is determined by the
value of m/a” (see equations 17, 18). The exponent of the power-
law term in equation (19), —(m 4 g — p), or in these examples
—(m — p) determines the profile form within the core, and to a
lesser degree immediately outside the core. Observational profile
decompositions have often assumed a pure exponential continuation
of the disc profile into the galaxy centre, and that deviations are due
to other components, though more general Sérsic forms are coming
into use. Various approaches can be seen in e.g. Gadotti (2009),
Simard et al. (2011), Kelvin et al. (2012), Lackner & Gunn (2012),
Muioz-Mateos et al. (2015), Savorgnan & Graham (2004). The
upturns and downturns of the profile in the core generated by the
power-law term suggest that using pure exponential profiles is not
always correct. There may be greater or lesser disc contribution in
the centre depending on the gravitational potential, and the indices
Ds g, that depend on the dynamical and scattering history. The form
and strength of the power-law term also affect the apparent size
of the disc core. For example in Fig. 2 the core size appears to be
about 5-10 times the value of a (or r; = a here). These factors
complicate the definition of galaxy cores, and for that matter, of
bulges in late-type galaxies.

The second point, that the power law has some effect on the profile
at intermediate radii is most evident in Fig. 2, where the profile
that has the clearest Type II form is the one where the exponent
—(m — p) is largest, so the power law is the most non-linear. Since
p = 1 in these examples, any change in exponential slope is not due
to the exponential term in equation (19).

4.2.2 Examples with more complex (Sérsic-type)
exponential terms

Fig. 3 shows example profiles that are like those in Fig. 1 (RRC
cases), but now with some different values of the exponent p (but
still with n = 1, ¢ = 0). These profiles are still well fit by dou-
ble exponential functions over a significant range of values of p,
despite the non-linearity introduced into the exponential term of
equation (19). However, the bottom curve in Fig. 3 pushes a bit
beyond this range; the profile curvature is sufficiently strong that
it takes at least three exponential segments to fit it. Note, however,
that the third segment at large radii would correspond to very low
brightnesses, which would be very difficult to observe. Some recent
observational studies have gone to very faint surface brightness
levels, and find Sérsic-type profiles, but there is difficulty in distin-
guishing disc from halo stars at such low levels (e.g. Cooper et al.
2013; D’Souza et al. 2014).

It is clear from the lower two curves that values of p > 1 generate
stronger downward curving profiles, including Type II profiles if
the curvature is not too great. The top curve, on the other hand,
shows that Type III profiles can be generated from small values
of p. It would be harder to generate Type III profiles in FRC (flat
rotation curves) cases because the more non-linear power-law term
would resist the upward turn of the profile. This is in accord with
the observation that Type II profiles are more common in late-type
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Figure 3. Surface density profiles, as in Fig. 1, but for rising rotation curve
solutions of equation (19), with gravitational potential index values m as
indicated and various values of the exponent p. The upper two curves are of
nearly single exponential form into an apparent core radius, which is nearly
10 times the value of a. The lower curve is clearly of Type II. See text for
details.

discs. The index p is the inverse of the usual Sérsic index, and the
implication of Fig. 3 is that rather being pure exponentials, discs
could have Sérsic-like profiles with Sérsic indices ranging from
about 2/3 up to 2 or more. This is very much in accord with the
observation that secular or pseudo bulges, believed be formed from
disc instabilities, have Sérsic indices near or slightly less than 2.
Evidently, it would take only some vertical scattering to convert the
low p profiles considered here into secular bulges. We We might
further conjecture that the sequence of Sérsic profiles from late-type
discs through bulges to the Vaucouleurs-like forms in ellipticals,
is primarily a sequence in mean scattering length and magnitude
integrated over the life of the galaxy.

Velocity dispersion profiles are very modest power laws in these
models, i.e. o ~ 03" +2-P) In the cases of the nearly simple
exponential profiles in the upper two curves of Fig. 1, this exponent
equals —0.2 and 0.0. In cases like those shown in Fig. 2 it is between
—1.0and —0.5.

Of course, with the power-law term equation (19) is not exactly
a Sérsic form. It is more like the ‘core Sérsic’ profiles considered
recently for some elliptical and bulge profiles (Graham et al. 2003;
Savorgnan & Graham 2004; Trujillo et al. 2004), although the core
function adopted in those works is not quite the same as the power
law in equation (19). None the less, we again see the unity of form
across various galaxy components.

Although Figs 1-3 show a variety of forms, an even greater
variety can be obtained by allowing variations in the parameters
g, n or ry in equation (18). The sizes and shapes of cores can be
changed with ¢ and ry, as can the intermediate profile, and the slope
of the outer exponential changed with 1. Some of these adjustments
overlap those that can be made with m and p.

Conversely, constraining all these parameters with limited obser-
vation sets will be nearly impossible. Constraining the gravitational
potential and m independently of stellar disc kinematics should
be possible in some cases. Surface photometry to very faint lev-
els might constrain a and p (via profile curvature) to some degree.
However, comparisons to observation are complicated by the fact
that observed profiles can be different in different wavebands, e.g.
due to stellar population gradients (e.g. Bakos, Trujillo & Pohlen
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2008; Herrmann et al. 2013; Zheng et al. 2015). Also there may be
radial variations in mass-to-light ratios, so mass and light profiles
may differ (Zheng et al. 2015). Azimuthal velocity and velocity dis-
persion profiles will help constrain combinations of the exponents
and the factor x,. Quantities related to scattering, including 7, x 1,
¢ and p, may be functionally related, at least for specific scattering
processes. If so, numerical simulations might be used to discover
these relations. Additionally, self-gravitating discs may be further
constrained, i.e. via the Poisson equation. Thus, the results above
provide more of a framework, rather than a fully predictive theory,
of the steady outcomes of the many dynamical processes in galaxy
discs.

5 EVOLVING PROFILES AND BENDS

5.1 Expanding or contracting exponentials

In the previous section, we examined the hydrostatic force balance
of stellar discs consisting of annuli in local equilibria, and with
zero mean radial velocities. Models, like those of Elmegreen &
Struck (2013) and Bournaud et al. (2007), show that the evolution
driven by massive clumps in the disc works to form an exponential
profile regardless of the initial density distribution. In discs with
declining rotation curves, stars are scattered to large radii relative
to the initial disc size, and the exponential profile is eventually
extended as well. This expansion is characterized by a linear mean
radial velocity profile, which quickly develops and then relaxes
with a gradually decreasing slope. In rising rotation curve discs
there is a slow inward diffusion of stars, though the mean radial
velocity is generally negligible at all radii. However, Elmegreen
etal. (2014) found that in accreting discs with rising rotation curves
there is a steady-state inflow solution to the hydrodynamic equations
with a linear radial velocity profile. In these cases and the outflow
cases, the flow generally preserves the exponential form (but not
the scalelength) of the surface density profile.

This fact suggests that a disc may evolve through a series of lo-
cal, near equilibrium, hydrostatic states like those described above
while experiencing slow expansions or contractions. Specifically,
equation (1) may be approximately satisfied throughout this pro-
cess, with the time-dependent part of the velocity equation satisfied
separately. That is, the time evolution of the velocity profile and the
advection term approximately cancel each other, such that,
ov, v, 0

+ ——(rv,) =0. (20)
ot r or

We consider a separable solution of the form

v, = b(t)r, 2n

where b(?) is the time-dependent slope of the velocity profile. This
equation can be integrated to obtain the (Lagrangian) motion of a
star moving with the mean flow,

r@t) !
20— exp ( / | bdt) , 22)

where ?, is an arbitrary initial time. With this expansion law, there
will be no crossing of annuli within the disc and the continuity
equation will be satisfied, though annular widths will increase with
the expansion. The mean mass within each disc annulus will be
conserved, so the product Xr(Ar) equals a constant, and,

Ar(t)y =ro —r; = Ar(t)el " = (£> ~r, (23)
fo

r
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where r; and ro are the inner and outer radius of an annulus. This
implies that the quantity %77 is constant in time within the expand-
ing annulus, a result that is unique to the linear expansion law (equa-
tion 21). Clearly, for this result to be consistent with maintaining
an exponential surface density profile, the exponential scalelength
must evolve simultaneously. Conversely, for a slow expansion to
maintain the near equilibrium profiles, it must also maintain the
linear expansion velocity profile.

To complete this expansion solution we substitute equation (21)
into equation (20) and solve for the function b(¢). The result is,

b(t) 1
bo 14 2b,, (é _ 1)'

(24)

This shows the steady decline of the slope of the velocity
profile, expected from the scattering simulations. Substituting this
into equation (22) gives the radius—time relation for an expanding

annulus,
1
t Zhoto
In (1 + 2b,t, (t— — 1)) }
1
t 2boto
_ (1 b, (7 - 1)) . 25)

As long as b,t, > 1/2 this yields a moderate annulus expansion
rate, and differentiation shows that this rate decreases with time.
Note that the scales a, 7| must also evolve in accordance with equa-
tion (25) to preserve the steady profiles of equations (18) and (19).
Simple scattering models (Elmegreen & Struck 2013; Elmegreen
& Struck 2016 and additional unpublished models) show that flat
or declining rotation curve discs tend to scatter stars outwards and
expand, while solid body models do the opposite. Thus, the pro-
file expands and flattens in the former case, and vice versa in the
solid-body case.

-
—— = exp

r(t)

5.2 Angular momentum evolution

We have noted above how the stellar ensemble generally loses
angular momentum as orbits become more elliptical. However,
there are other processes that change angular momentum. Scat-
tering centres such as clumps or bars will experience dynamical
friction, so their orbits will change, and angular momentum may
be transferred to the ensemble of stars or the halo (see review of
Sellwood 2014). Accreted material will also evolve as it settles into
the disc, and exchange angular momentum with the stars. Thus,
even if the stellar ensemble settles to a near steady state, it is
unlikely to remain in exactly the same state in a changing disc
environment.

There are a couple of circumstances where the steady profiles
described above could coexist with the processes of continuing
evolution. The first is when this evolution is slow or secular, i.e.
characterized by a time-scale that is longer than the profile adjust-
ment time-scale of a few scattering times.

The second circumstance is when the angular momentum ex-
changes drive a radial flow where the radial velocity scales with
radius r. This is the case considered in the previous subsection, and
also in Elmegreen et al. (2014), and which preserves the exponential
profile form. The case considered in Elmegreen et al. (2014) with
accretion balanced by star formation is a nice example of where the
near-exponential profiles may exist as a quasi-equilibrium state that
slowly changes because of external forces.

MNRAS 464, 1482-1492 (2017)
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Figure 4. Surface density profiles at three times showing the evolution in
simple scattering models like those described in EImegreen & Struck (2013).
The dimensionless units are also the same as those in that reference, e.g.
the orbital period of a particle on a circular orbit of radius 1.0 is 27t. The
gravitational potential is that of a flat rotation curve. The line segments are
least-squares fit to the scattering over the range of their extension. They
show that at the earliest times the profiles are approximately broken, Type II
form. At the last time, the profile approaches Type I form, thereafter grows
flatter as it continues to expand.

6 BREAKS AND BENDS

If some classes of expansions, contractions and regulated accretion
preserve exponential surface density profiles, other less symmetric
ones might generate breaks. In fact, anumber of processes have been
proposed to generate profile breaks. First of all, the results of the
Section 5.1 showed that these forms are the equilibrium profiles in
certain parameter ranges. Secondly, in many cases, Type II profiles
may be the result of a gravitational potential whose form varies with
radius, e.g. due to the presence of a bar in the inner disc. Laine et al.
(2014) find a large fraction of Type II profile breaks associated with
rings in barred galaxies. Even in unbarred galaxies, they could be
the result of a connection between the disc and the specific angular
momentum of the halo according to Herpich et al. (2015a). Mergers
(Pefiarrubia, McConnachie & Babul 2006) or stellar population
gradients may also be responsible for some bent profiles, including
Type IlIs (Younger et al. 2007). Type III profiles might also be
generated by scattering off bars (Herpich et al. 2015b).

Scattering models (Elmegreen & Struck 2013) suggest additional
possible causes relevant to unbarred galaxies. For example, FRC
discs beginning with arbitrary (e.g. flat) surface density profiles of-
ten evolve through an intermediate stage characterized by a double
exponential; Fig. 4 shows an example. The outer, steeper part of
the profile extends beyond the initial disc and consists of scattered
particles. Later the profile form usually settles to a single expo-
nential, which evolves to ever flatter slopes in flat rotation curve
cases. In strongly scattering models, this stage is brief, enough stars
are soon scattered outwards to fill in a single exponential profile.
In moderately scattering cases it can be persistent. In the strongly
scattering cases, the scattering centres are likely to disappear quite
rapidly, via frictional infall (Bournaud et al. 2007) or dissolution.
Then the intermediate, double exponential phase may get ‘frozen
in’ following their disappearance.

The outer exponential in a Type 1I profile can be interpreted with
equations (13) and (18). Most of the scattered particles in that region
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will be on quite eccentric orbits. Their velocity dispersion relative to
the local circular velocity will be larger than in the inner exponential.
Note that these circular velocities cannot be equated to the local
mean azimuthal velocities; they must be measured independently
or determined by extrapolating the inner rotation curve. We would
predict that when the outer disc has been scattered, and the orbits
have been elongated, then the stellar rotation speed will be less
than the gas speed. This is subject to the caveat that secondary
scattering may put stars back into more circular orbits with rotation
speeds comparable to the gas. The phase space volume for circular
orbits is relatively small, however, so complete re-circularization
is unlikely to equalize the azimuthal velocity of stars and gas in
the outer disc.

There is an analogous effect producing Type III profiles in solid-
body (e.g. dwarf) discs with scatterers. Profiles in these discs tend to
evolve inwards (Elmegreen & Struck 2013). If the initial profile was
not exponential, then the exponential tends to develop first in the
inner regions, and to steepen there with time. This naturally gives
something like a Type III profile, though it may take a long time to
develop, unless scattering is strong. This is different than the Type
III scenario proposed by Minchev et al. (2012). They suggested that
the outer part of Type III profiles was produced by accretion, and
an accompanying increase in velocity dispersion.

In Elmegreen & Struck (2016), we described numerical scatter-
ing models with two stellar generations each initialized with flat
surface density profiles. Profile evolution slows with time, but con-
tinues nonetheless, so the second generation was not able to catch
up and match the profile of the first, though both had evolved to ex-
ponential forms. The second generation was assumed to form from
a larger gas disc, and dominated at large radii. This also generated a
broken surface profile, and is another natural way to produce broken
profiles.

Finally, we note that the calculation of the previous section applies
to bent profiles as well as pure exponentials; they too could be
stretched or compressed in a self-similar manner. The evolution of
bends and breaks in surface density profiles can be quite dynamic,
while still tending to settle to equilibrium exponential forms.

7 SUMMARY AND CONCLUSIONS

The goal of this paper has been to better understand the exponential
surface brightness or surface density profiles in galaxy discs, whose
phenomenology was briefly reviewed in Introduction. Part of the
mystery of exponential discs is that while they appear to be equi-
librium states, they are not fit by simple, polytropic solutions of the
stellar hydrodynamics equations. This paradox has been sharpened
by recent observations showing that the exponential profiles can
extend over many scalelengths, as shown by previous studies refer-
enced in Section 1. Although the simplest solutions do not suffice,
the stellar hydrodynamics or Jeans equations still provide strong
constraints on the surface density and velocity dispersion profiles.
In Section 3, we used physical constraints to narrow the range
of possible solutions, and proposed specific forms. These resulted
in an exponential or Sérsic-type radial dependence in the surface
densities, but with an additional power-law term. This form also
describes the disc hopping model of Elmegreen & Struck (2016).
This power-law term has several effects. The first is slightly chang-
ing the exponential slope in some cases. These power-law modi-
fied profiles can be well fit by two distinct exponential segments
in some parameter ranges. These fits usually resemble observed
Type II and III disc profiles. The second effect is an upturn, or
downturn, of the profile at the smallest radii, which is also seen
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in observed profiles, but may be difficult to separate in the obser-
vations from a bulge contribution. Additionally, in-plane velocity
dispersions are predicted to follow moderate power-law functions
with radius.

The adoption of equation (8; with power-law yx) reduces the
range of steady solutions. Consider the consequences of relax-
ing it. With these assumptions the effective pressure, o2, is an
exponential in all cases, since power-law terms cancel. The pres-
sure gradient term in equation (1; pressure gradient divided by
¥), is a pure power law in radius with the same power as the
other terms in that equation. However, if the pressure was not
purely exponential, then generally there would be two or more
pressure terms with different radial scalings. The scaling of the
centrifugal term must be altered to balance them. Observations,
e.g. comparisons between gas and stellar kinematics, where the
former are assumed to represent near circular orbits in centrifu-
gal balance, tend to suggest that the gravitational and centrifugal
terms do scale similarly, so such extra terms are usually small. Mea-
surements of the in-plane velocity dispersion scalings in discs are
difficult, but would be very helpful for further testing the scalings
predicted above.

In sum, while stellar discs in galaxies are not simple, cylindrically
symmetric, isothermal, exponential (or polytropic) atmospheres,
they come rather close. First the observations showing velocity dis-
persions do not vary by large factors across discs. Secondly, the
distribution functions and surface density profiles of Section 2—
4 above are locally, but not globally, isothermal. This despite the
fact that galaxy discs are very cold, and nearly in centrifugal bal-
ance, so we might not expect even local thermal relaxation. An-
other difference is that, because stars can be scattered over large
distances, and not confined to a local annulus, the distribution
functions contain a chemical potential term. The surface density
solutions generally contain a power-law dependence on radius as
well as the exponential, in each case appropriate to the specific
gravitational potential.

This cored Sérsic-type profile, extending over a range of Sérsic
index values from about 3/4 to 2 provides a unification with the
equilibrium structure of bulges and ellipticals. Pseudo-bulges, in
particular, are believed to have indices a bit lower than 2. The
overlap with some disc profiles makes sense if the they are indeed
secularly formed from discs.

Another perspective is obtained by eliminating r between equa-
tions (14) and (18). This yields a density—pressure (X — o) relation
that differs from a polytropic one in several ways. First, it is more
complicated. Secondly, it contains the centrifugal imbalance term
x . It appears that the solutions here are generalizations of the poly-
tropes to cases with the additional effects of biased scattering over
a broad range.

Hopping models (Elmegreen & Struck 2016) and numerical scat-
tering models (Elmegreen & Struck 2013; Struck & Elmegreen
2016) also show that the stellar disc structure is not described by
a constant entropy (polytropic) equilibrium state. A true equilib-
rium would be a globally isothermal structure, which could only be
achieved on a long, two-body relaxation time-scale. Even early-type
galaxy discs retain a large kinetic energy in near circular rotation,
which can be viewed as free energy that will ultimately be converted
into thermal energy. This exponential structure is a flow, driven by
biased scattering, with an entropy gradient. It is a slow and slow-
ing flow, with a nearly hydrostatic structure, in which scattering
minimizes the entropy gradient. Such non-equilibrium, hydrostatic
structures may be useful models in a variety of other applications
where scattering is important.

Near-exponential discs 1491

ACKNOWLEDGEMENTS

We are grateful to an anonymous referee for very helpful sugges-
tions. We acknowledge use of NASA’s Astrophysics Data System,
and the NASA Extragalactic Data System.

REFERENCES

Bakos J., Trujillo I., Pohlen M., 2008, ApJ, 683, L103

Berrier J. C., Sellwood J. A., 2015, ApJ, 799, 213

Binney J., Tremaine S., 2008, Galactic Dynamics. Princeton Univ. Press,
Princeton, NJ

Bland-Hawthorn J., Vlaji¢ M., Freeman K. C., Draine B. T., 2005, ApJ, 629,
239

Bournaud F,, Elmegreen B. G., Elmegreen D. M., 2007, ApJ, 670, 237

Brook C. B., 2012, MNRAS, 426, 690

Cooper A. P,, D’Souza R. D., Kauffmann G., Wang J., Boylan-Kolchin M.,
Guo Q., Frenk C. S., White S. D. M., 2013, MNRAS, 434, 3348

D’Souza R. D., Kauffmann G., Wang J., Vegetti S., 2014, MNRAS, 443,
1433

de Jong R. S., 1996, A&A, 313, 45

de Vaucouleurs G., 1959, Handbuch Phys., 53, 311

Debattista V. P., Mayer L., Carollo C. M., Moore B., Wadsley J., Quinn T.,
2006, ApJ, 645, 209

Elmegreen B. G., Struck C., 2013, ApJ, 775, L35

Elmegreen B. G., Struck C., 2016, ApJ, 830, 115

Elmegreen D. M., Elmegreen B. G., Ravindranath S., Coe D. A., 2007, ApJ,
658,763

Elmegreen B. G., Struck C., Hunter D. A., 2014, ApJ, 796, 110

Erwin P., Beckman J. E., Pohlen M., 2005, ApJ, 626, L81

Erwin P., Pohlen M., Beckman J. E., 2008, AJ, 135, 20

Fall S. M., Efstathiou G., 1980, MNRAS, 193, 189

Fathi K., Gatchell M., Hatziminaoglou E., Epinat B., 2012, MNRAS, 423,
L112

Ferguson A. M. N., Clarke C. J., 2001, MNRAS, 325, 781

Foyle K., Courteau S., Thacker R. J., 2008, MNRAS, 386, 1821

Freeman K. C., 1970, ApJ, 160, 811

Freeman K. C., 2007, in De Jong R. S., ed., Island Universes. Springer,
New York, p. 3

Gadotti D. A., 2009, MNRAS, 393, 1531

Graham A. W., Erwin P., Trujillo I., Asenio Ramos A., 2003, AJ, 125, 2951

Guiglion G. et al., 2015, A&A, 583, A91

Guo Y. et al., 2015, ApJ, 800, 39

Hansen C. J., Kawaler S. D., 1994, Stellar Interiors Physical Principles,
Structure and Evolution, 1st edn. Springer, New York

Herpich J. et al., 2015a, MNRAS, 448, .99

Herpich J., Stinson G. S., Rix H.-W., Martig M. J., Dutton A. A., 2015b,
preprint (arXiv:1511.04442)

Herrmann K. A., Hunter D. A., Elmegreen B. G., 2013, AJ, 146, 104

Hunter D. A., Elmegreen B. G., Oh S.-H., Anderson E., Nordgren T. E.,
Massey P., Wilsey N., Riabokin M., 2011, AJ, 142, 121

Kelvin L. S. et al., 2012, MNRAS, 421, 1007

Kormendy J., Freeman K. C., 2016, ApJ, 817, 84

Lackner C. N., Gunn J. E., 2012, MNRAS, 421, 2277

Laine J. et al., 2014, MNRAS, 441, 1992

Lin D. N. C,, Pringle J. E., 1987, ApJ, 320, L87

Lynden-Bell D., 1967, MNRAS, 136, 101

Mestel L., 1963, MNRAS, 126, 553

Minchev I., Famaey B., Quillen A. C., Di Matteo P., Combes F., Vlajic M.,
Erwin P., Bland-Hawthorn J., 2012, A&A, 548, 126

Mo H. J., Mao S., White S. D. M., 1998, MNRAS, 267, 129

Muiioz-Mateos J. C. et al., 2015, ApJS, 219, 3

Oklopcic A., Hopkins P. E.,, Feldmann R., Keres D., Faucher-Giguere C-A.,
Murray N., 2016, MNRAS, preprint (arXiv:1603.03778)

Patterson F. S., 1940, Bull. Harv. Obs., 914, 9

Pefiarrubia J., McConnachie A., Babul A., 2006, ApJ, 650, L33

Pohlen M., Trujillo L., 2006, A&A, 454, 759

MNRAS 464, 1482-1492 (2017)

20z 11dy 0} U 1s9NB Aq $G8Z8ZZ/28Y L/2/YIY/aI0IE/SeIuw/Wwod"dno-olWapeo.//:sdiy o) papeojumod


http://arxiv.org/abs/1511.04442
http://arxiv.org/abs/1603.03778

1492  C. Struck and B. G. Elmegreen

Robertson B., Yoshida N., Springel V., Hernquist L., 2004, ApJ, 606, 32

Roskar R., Debattista V. P., Quinn T. R., Wadsley J., 2012, MNRAS, 426,
2089

Savrognan G. A. D., Graham A. W., 2004, ApJS, 222, 10

Sellwood J. A., 2014, Rev. Mod. Phys., 86, 1

Sellwood J. A., Binney J. J., 2002, MNRAS, 336, 785

Simard L., Trevor Mendel J., Patton D. R., Ellison S. L., McConnachie A.
W., 2011, ApJS, 196, 11

Struck C., Elmegreen B. G., 2016, MNRAS, in press

Trujillo I., Erwin P., Asenio Ramos A., Graham A. W., 2004, AJ, 127,
1917

van der Kruit P. C., 2002, in Da Costa G. S., Jerjen H., eds, ASP Conf. Ser.
Vol. 273, The Dynamics, Structure & History of Galaxies: A Workshop

MNRAS 464, 1482-1492 (2017)

in Honour of Professor Ken Freeman. Astron. Soc. Pac., San Francisco,
p-7
van Zee L., Westpfahl D., Haynes M. P., Salzer J. J., 1998, AJ, 115, 1000
Vera-Ciro C., D’Onghia E., Navarro J., Abadi M., 2014, ApJ, 794, 173
Wang J.-M. et al., 2009, ApJ, 701, L7
Wilcots E. M., Miller B. W., 1998, AJ, 116, 2363
Yoshii Y., Sommer-Larsen J., 1989, MNRAS, 236, 779
Younger J. D., Cox T. J., Seth A. C., Hernquist L., 2007, ApJ, 670, 269
Zhang X., 1998, ApJ, 499, 93
Zheng Z. et al., 2015, ApJ, 800, 120

This paper has been typeset from a TEX/IATEX file prepared by the author.

202 udy 01 uo 1sanb Aq ¥582822/Z8Y L/2/y9v/eI0iHe/seluw/wod dno-dlwapese//:sdyy woly papeojumod



