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ABSTRACT
We show that the angular momentum exchange mechanism governing the evolution of mass-
transferring binary stars does not apply to Roche lobe filling planets, because most of the
angular momentum of the mass-transferring stream is absorbed by the host star. Apart from
a correction for the difference in specific angular momentum of the stream and the centre of
mass of the planet, the orbit does not expand much on Roche lobe overflow. We explore the
conditions for dynamically unstable Roche lobe overflow as a function of planetary mass and
mass and radius (age) of host star and equation of state of planet. For a Sun-like host, gas
giant planets in a range of mass and entropy can undergo dynamical mass transfer. Examples
of the evolution of the mass transfer process are given. Dynamic mass transfer of rocky
planets depends somewhat sensitively on equation of state used. Silicate planets in the range
1 < Mp < 10 M⊕ typically go through a phase of dynamical mass transfer before settling to
slow overflow when their mass drops to less than 1 M⊕.

Key words: planets and satellites: general – planet–star interactions – stars: general –
planetary systems.

1 IN T RO D U C T I O N

Though constituting only a small fraction of the total exoplanet pop-
ulation, exoplanets orbiting close to their host stars pose interesting
challenges to theoretical models for the formation and evolution of
planetary systems. Since the hosts generally rotate more slowly than
the planet orbit, tidal interaction causes the planets to lose angular
momentum. Depending on the somewhat uncertain strength of tidal
friction (for a review see Ogilvie 2014) the planets on the closest
observed orbits, on the order of a few days, would spiral into their
host within a few billion years (e.g. Raymond, Barnes & Mandell
2008; Jackson, Barnes & Greenberg 2009; Levrard, Winisdoerffer
& Chabrier 2009). The loss of planets by spiral-in has been invoked
to explain the orbital distribution of close-in exoplanets (Jackson
et al. 2009) and the dearth of close-in exoplanets around fast rotat-
ing stars (Teitler & Königl 2014) from the observations (McQuillan,
Mazeh & Aigrain 2013).

The final fate of an angular momentum losing planet depends on
its mass, mean density, and composition. It also depends sensitively
on the details of the angular momentum balance during the Roche
overflow process, for which different assumptions have been made
in previous work. In several studies it is assumed that the planet is
rapidly disrupted once it fills its Roche lobe, and the material of
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planet is then accreted on to the host star (e.g. Jackson et al. 2009;
Rappaport et al. 2013; Teitler & Königl 2014). Metzger, Giannios
& Spiegel (2012), on the other hand, found that the mass transfer of
the planet–star (hot Jupiter) system will be stable, occurring on the
slow tidal evolution time-scale, if ρ̄p/ρ̄� � 1, where ρ̄p and ρ̄� are
mean density of the planet and that of the host star, respectively.

The possible outcomes of the spiral-in process of hot Jupiter are
conveniently classified into three cases (Metzger et al. 2012). With
decreasing orbital separation the planet can either reach its Roche
limit and disrupt before physically entering the star, or it can spiral
in ‘whole’. In the former case the planet loses mass either as a slow
process governed by the orbital evolution under tidal interaction, or
dynamically, evolving on an orbital time-scale.

Whether Roche lobe overflow takes place before reaching the
stellar surface depends on ratio of the mean density of the planet
ρ̄p to that of the star ρ̄�. If ρ̄p/ρ̄� � 5, the planet reaches its Roche
limit outside the host star. If the planet has a higher mean density,
ρ̄p/ρ̄� � 5, it would fill its Roche lobe only below the stellar surface.
In this case a direct merger occurs between the planet and the host
star (Metzger et al. 2012).

As in the case of mass transfer in binary stars (Paczyński 1971;
Frank, King & Raine 1992), the time-scale on which the Roche
lobe overflow takes place depends critically on the adiabatic mass–
radius relation of the planet. If loss of mass causes the radius of the
planet to decrease in size more slowly than the Roche radius, mass
transfer is unstable on a dynamical time-scale (‘dynamical mass
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transfer’; Paczyński 1965, Paczyński, Ziólkowski & Zytkow 1969).
The final disruption of the planet then takes place in a few orbits
(e.g. Rasio 1994). In the opposite case mass loss is dynamically
stable. The loss rate through inner Lagrangian point (L1) is then far
slower, governed by the time-scale of orbital decay through tidal
interaction with the host star.

In both cases, the material lost through the L1 either forms a disc,
or hits the stellar surface and is accreted on to host star directly (as
in the case of many Algol-type binaries). This case depends on the
mass ratio Mp/M∗ ≡ q of the planet’s mass Mp to the star’s mass
M∗, and on the radius R∗ of the host star.

2 A N G U L A R M O M E N T U M

The mass transfer between a hot Jupiter and its host has been treated
(Valsecchi, Rasio & Steffen 2014, and others) in analogy with the
mass transfer in binary systems like cataclysmic variables (CVs)
and X-ray binaries (as in Rappaport, Joss & Webbink 1982; Ritter
1988), using codes for binary evolution developed for these systems.
The angular momentum exchange during mass transfer is treated as
approximately ‘conservative’, in the sense that the orbital angular
momentum of the companion is conserved on mass loss. The angular
momentum transferred by the stream is returned to the orbit through
tidal interaction of the companion with the accretion disc.

This is appropriate for such systems since the angular momen-
tum accreted by the primary is usually negligible on account of its
small size, leading to the formation of a disc extending into the
gravitational potential of the companion. As we will argue below
in Section 2.2, it is not an appropriate model for mass angular mo-
mentum balance in the case of planets orbiting the main sequence
(MS) or larger host stars.

2.1 Evolution of the orbit

Mass transfer through Roche lobe overflow can result from a variety
of processes, including the expansion of the radius of the planet (or
a companion star) by internal evolution or external heating, and
shrinkage of the orbit due to angular momentum loss processes
such as a magnetically driven wind (‘magnetic braking’) or tidal
interaction with its host star.

The total angular momentum of the planet–star system can be
written as

J = Jorb + Js∗ + Jsp, (1)

where Jorb is the orbital angular momentum of the system, Js∗ and Jsp

are the spin angular momentum of host star and planet, respectively.
In the following, we will ignore the spin angular momentum of
planet in the angular momentum balance, since for mass ratios less
than 10−2 it accounts for only a fraction of a per cent of the total.
Tidal exchange between the host star’s spin and the orbit takes place
on the tidal interaction time-scale, which is slow compared with the
processes we are interested in. Contrary to the case of accretion on
to compact objects, the moment of inertia of the star is so large that
the star can just be treated as a sink of angular momentum.

The orbital angular momentum of the system (the total angular
momentum if star and planet can be treated as point masses) is (cf.
Paczyński 1971)

Jorb = � a2μ, (2)

where � = (GM/a3)1/2 is the orbital angular frequency, M = M∗ +
Mp = M∗(1 + q) is the total mass, q = Mp/M∗ is the mass ratio,
a is the separation between the centres of mass of star and planet,

and μ = M∗Mp/M is the reduced mass. With the planet’s spin
neglected, and denoting the time derivative by an overdot (˙), the
angular momentum balance is

J̇orb + J̇s∗ + J̇ext = 0, (3)

where J̇ext stands for any external toques on the system, such as the
tidal torque or a stellar wind. We will ignore such torques for the
moment, since they act on time-scales longer than the dynamical
mass transfer instability that is the subject here (see Sections 2.2
and 2.3 below). Angular momentum taken up by the spin of the star
during the mass transfer process must be included, however.

With mass conservation, (Ṁ∗ = −Ṁp), equation (2) yields

J̇orb

Jorb
= ȧ

2a
+ Ṁp

Mp
(1 − q), (4)

(where Ṁp < 0). The orbital change J̇orb is determined by the mass
transfer rate and the specific angular momentum js that is carried
with it to the host star, or is transferred back to the orbit. Write js

as a fraction f of the specific angular momentum jp of the planet’s
centre of mass, which lies at a distance xp = a/(1 + q) from the
centre of mass of the system, so that

js = f � a2/(1 + q)2. (5)

Equation (4) can then be written as

ȧ

a
= 2

1 + q

Ṁp

Mp
(f + q2 − 1). (6)

A popular assumption has been that all the angular momentum
transferred by the stream is returned to the orbit (sometimes called
‘angular momentum conservation’). In terms of the above, this as-
sumption is equivalent to setting f = 0. This is a good approximation
in the case of mass transfer in CVs and X-ray binaries. In these cases
the moment of inertia of the accreter can be neglected. Instead, the
mass transferred forms an accretion disc around the compact object,
and the angular momentum is transferred back to the orbit by tidal
interaction of the donor star with the outer parts of the disc (cf.
Frank et al. 1992). As a result, the orbit increases, approximately
as a ∼ M−2

p . Since this also increases the size of the Roche lobe, it
has a strongly stabilizing effect on the mass transfer.

Loss of orbital angular momentum by transfer of mass to the host
is not to be confused with what is called ‘non-conservative’ mass
transfer, since it does not involve any loss of angular momentum
from the system as a whole. In this sense it can be compared with
orbital evolution by tidal interaction between planet and host. Dur-
ing dynamical instability it takes place on the much faster orbital
time-scale, however. Classical non-conservative processes such as
angular momentum loss in a stellar wind or to a circumbinary disc
take place on time-scales that are more important for the secular
evolution of the orbit (see Valsecchi et al. 2015).

2.2 Angular momentum transfer from orbit to host star

The moment of inertia of a MS host is so large that it can accommo-
date the orbital angular momentum of a Roche lobe filling planet
with only a negligible increase in spin, compared with its maximum
rotation rate.

One might consider a stream transferring mass to the host star
with the specific angular momentum of the centre of mass of the
planet, and absorbed by the star as an increase in rotation rate. In
equation (6) this would mean f = 1. The orbital separation would not
change in this case, apart from a small effect of order q2 attributable
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Figure 1. Specific angular momentum of the L1, measured with respect
to the centre of mass of the system and normalized to the specific angular
momentum of the planet’s centre of mass, as a function of the mass ratio q.

to the effect the exchange of mass has on the position of the centre of
mass of the system relative to star and planet. Under this assumption
Roche lobe overflow would be much more likely to be dynamically
unstable.

The specific angular momentum of the centre of mass of the
planet, jp = �a2/(1 + q)2, is not the same as that of the mass lost
by the planet, however, since it takes place from the L1, which has
a lower specific angular momentum. If the distance of L1 from the
centre of mass of system is xL1a, the specific angular momentum
at L1 is jL1 = �x2

L1a
2. The factor f in equation (5) is then x2

L1/x
2
p .

Including a factor 1 − ε to parametrize anything that happens to
the angular momentum after the stream leaves L1, equation (6)
becomes

ȧ

a
= 2

1 + q

Ṁp

Mp

[
x2

L1

x2
p

(1 − ε) + q2 − 1

]
. (7)

Including the gravitational attraction of the planet on the stream
leads to a small positive value of ε (next subsection). Equation (7)
with ε = 0 is our baseline for comparison with other parametriza-
tions of the angular momentum exchange. We refer to it in the
following as our ‘minimal assumption’.

The lower angular momentum of L1 compared with the planet’s
centre of mass has a significant effect, even for small mass ratios,
see Fig. 1. This can be understood from the size of the planet’s
Roche lobe, which scales approximately as q1/3. At a mass ratio
q = 10−3, for example, the distance of the L1 (in unit of the orbital
separation) from the planet’s centre of mass is 100 times larger than
the value of q itself. As a result, the orbit tends to expand on mass
loss, though not as much as under the conventional assumption
of conservation of orbital angular momentum. This is illustrated
further in Section 4.3 (see Fig. 15 and accompanying text).

2.3 Stream–planet interaction

Metzger et al. (2012) include direct transfer of angular momentum
from the orbit to the host, under the assumption that the accreted

mass has the specific angular momentum of a Kepler orbit around
the surface of the host, which is less than that of the orbit. The
assumption is that the angular momentum still to be accounted for
is transferred back to the orbit, through the formation of an accretion
disc. Tidal interaction of the planet truncates the disc by removing
angular momentum from its outer parts, returning it to the orbit.

A comparison with CV disc is informative. Paczyński (1977)
derived an upper limit to the truncation radius as the last non-
intersection orbit, and finds that observed disc sizes in CVs are ac-
tually somewhat smaller. An extensively studied example is WZ Sge
(mass ratio q = M2/M1 = 0.08). Spruit & Rutten (1998) find a disc
radius rd/a ≈ 0.37, compared with a Paczyński’s maximum of about
0.57. For lower mass ratios a maximum to the disc radius is the 2:1
resonance radius (Lin & Papaloizou 1979), which gives a limit of
r/a = 2−2/3 = 0.63. In the case of a Roche lobe filling planet of
1 MJ with 1 RJ orbiting a host star of 1 M� with 1 R�, the surface
of the star is at R∗ = 0.45a (cf. Fig. 10).

Given that the observed truncation radii in low-mass ratio systems
are rather smaller than the theoretical limit, there may not be much
room for a disc in the case of Roche lobe filling planets orbiting
MS or larger host stars. In this case the accreting material should be
expected to mix into the surface of the host star by shear instabilities,
thereby transferring its angular momentum into the slowly rotating
envelope instead of returning it to the orbit. In this case the only
angular momentum returned to the orbit is related to the lower
specific angular momentum of the stream leaving L1.

Though most of the mass will be accreted on to the host star
fairly soon, some of the stream may find itself kicked, or viscously
spread, to a specific angular momentum outside that of the planet
orbit. Much like in Type II migration of planets in discs, tidal
interaction with the planet can keep such circumbinary material
from accreting. In the course of the mass transfer process it will
instead accumulate outside the planet orbit, spreading outward and
extracting orbital momentum from the planet. As in the case of
circumbinary discs in CVs (Spruit & Taam 2001), the fraction of
mass that spills across the orbit instead of accreting does not have
to be very large to cause substantial angular momentum loss in
the long run [in the CV cases studied by Taam, Sandquist & Dubus
(2003): a fraction ∼10−4]. In this scenario mass loss from the planet
will cause angular momentum to be lost from the orbit instead of
being added to it. Though possibly important for secular evolution
of the orbit, it is too slow to be relevant for the dynamical stability
of mass transfer, however.

2.4 Stream–magnetosphere interaction

Much of the orbital evolution of close-in planets is likely to take
place in late stages of the star’s formation, when observed sur-
face field strengths are a kilo-Gauss or more (e.g. Basri, Marcy &
Valenti 1992; Johns-Krull, Valenti & Koresko 1999; Johns-Krull
2007; Yang & Johns-Krull 2011). The radius of the magnetosphere,
the boundary between the accretion disc and the stellar magnetic
field, would then be a few stellar radii. The distance where Roche
lobe overflow becomes relevant is well inside this distance. The
mass-transferring stream is then strongly affected by the stellar
magnetic field, certainly in the early phases of mass transfer, when
the stream is still weak. In older systems the magnetospheric fields
are much weaker, on the order of a few tens of G for ages >1 Gyr,
the magnetic stresses factors >103 smaller and probably negligible
in this context.

As observed in the case of magnetic CVs (‘polars’; Krzeminski
& Serkowski 1977), the interaction of the magnetic field with the
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Figure 2. Specific angular momentum of the stream, measured with respect
to the centre of mass of the system and normalized to the specific angular
momentum at the L1, as a function of orbital phase. Variation is due to the
gravitational pull of the planet.

stream shreds it into an ‘accretion curtain’. The angular momentum
of the stream is transferred to the star through magnetic stress in
this curtain. The stream’s angular momentum does not return to the
planet: it is added to the spin angular momentum of the star. In terms
of angular momentum transfer, the magnetosphere increases the
effective radius of the star. The torque exerted in this way saturates
when it reaches the maximum the magnetic field can sustain. This
complication should be kept in mind, but is not included in the
calculations below.

2.5 Effect of the evolutionary state of the host star

Much of the planet formation process, including its migration to an
orbit close enough for mass transfer to become relevant, is believed
to take place when the star itself is still in the process of contracting
to the MS, and larger than its nominal MS radius. The larger radius
increases the probability that a stream transferring mass from the L1
is intercepted by the host star, in which case all the stream’s angular
momentum is lost to the star instead of returning to the planet orbit
(see Section 3.2).

2.6 Gravitational interaction

After leaving L1, the stream moves ahead of the planet. The pull of
gravity of the planet reduces the angular momentum of the stream,
returning some of it to the planet. Fig. 2 shows how this causes the
stream to lose angular momentum to the planet as it starts moving
ahead of the planet. The calculations were done by straightforward
integration of the equation of motion of a test particle in a two-point-
mass binary, at a relative numerical accuracy of 10-3 or better (the
code is described in Spruit 1998). For mass ratios of order 0.001,
this effect is on the order of a few per cent. Continued interaction
with planet and host star during its somewhat non-circular orbit
causes additional smaller variations in its angular momentum with
respect to the centre of mass of the system.

3 STA BI LI TY OF MASS TRANSFER

The balance of the planet’s angular momentum, whether positive
or negative, depends on a number of factors. In the following we
explore their effect on the fate of the planet: whether it survives
intact before plunging into its host, or instead loses mass gradually
by stable mass loss though L1 driven by tidal torques, or goes
through unstable mass transfer, disrupting on a short, eventually
dynamical time-scale.

Some factors can be included with sufficient accuracy: the spe-
cific angular momentum of L1 (as opposed to the planet’s centre of
mass), the gravitational torque of the planet on the mass-transferring
stream, the conditions for direct impact of the stream or that of the
planet itself on the host star, and the role of the mass–radius rela-
tion of the planet. Disc spreading and its possible hydrodynamic
interaction with the planet can only be included with additional
assumptions.

3.1 Dynamical mass transfer

Secular angular momentum loss by tidal interaction (in the case
of close binaries: by magnetic braking) shrinks the Roche lobe of
the planet until it touches the surface of the planet. The mass loss
through L1 is then dynamically unstable if the radius of the planet
Rp decreases less than the radius RL of the Roche lobe. If ζ p = d
ln Rp/d ln Mp is the planet’s adiabatic mass–radius exponent (cf.
Ritter 1988), and if ζ L = d ln RL/d ln Mp is the corresponding ex-
ponent of the Roche lobe radius RL (Eggleton 1983), mass transfer
is dynamically unstable when ζ p − ζ L < 0. The planet’s exponent
depends on its internal structure. As in the case of low-mass MS
stars, the radius of a gas giant planet increases when losing mass
adiabatically: ζ p < 0. The Roche exponent ζ L, on the other hand,
depends on what happens with the angular momentum carried by
the mass-transferring stream, as discussed above. The consequences
for different assumptions are shown in Fig. 3, for the example of hy-
pothetical planets of Jupiter composition with entropy 9kB baryon−1

(Spiegel & Burrows 2012) orbiting a 1 M� star with 1 R�. (The
prominent discontinuity at 2 MJ results from the use of different
fitting formulas on either side.)

If all angular momentum of the mass lost is returned to the orbit
[black curve, f = 0 in equation (6)] the mass transfer is dynamically
stable, the orbit widens due to ‘angular momentum conservation’.

As a second example, assuming that the mass transferred is ac-
creted by the host star with the specific angular momentum of a
Kepler orbit around its surface as is done in Metzger et al. (2012).
This yields the cyan curve. An assumption made in this case is that
the specific angular momentum js carried by the stream is that of (the
centre of mass of) the planet, jp. Mass transfer is then dynamically
unstable when the planet’s mass is higher than 6.6MJ.

Mass loss is from L1, however, which has a lower specific angu-
lar momentum than the planet’s centre of mass (Fig. 1). Mass loss
from L1 therefore increases the mean specific angular momentum
of the mass remaining in the planet. Taking this into account, but
assuming that no further angular momentum feedback takes place
yields our ‘minimal assumption’ (the blue curve). This case applies
if the stream hits the surface of the star directly instead of evolving
into a disc (cf. Section 3.2), or if interaction between planet and
disc is ignorable (see discussion in Section 2.3). Mass loss is now
dynamically unstable for giant planetary masses up to about 1.6MJ

and stable above, up to the mass where direct merger occurs (Sec-
tion 3.3). The results are somewhat sensitive to the assumed internal
structure of the planet, evident also from the break in the curves at
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Figure 3. Dynamical instability of mass transfer under different assump-
tions for the return of angular momentum from the stream to the planet
orbit. The Roche lobe filling gas giant planets orbit a Sun-like star (1.0 M�,
1.0 R�). The planetary model (entropy 9 kB baryon−1, from Spiegel & Bur-
rows 2012) has different fits for the regions of Mp/MJ ≤ 2 and Mp/MJ > 2.
The black dashed line shows ζ p = ζL. Mass transfer is dynamically unsta-
ble below the dashed line. Black: all stream angular momentum assumed
to be returned to the orbit. Cyan: same, except taking into account angular
momentum lost by mass settling on the host star. Blue: stream carries the
angular momentum of its own orbit rather than that of the centre of mass
of the planet, but otherwise does not transfer angular momentum back to
the planet orbit. Magenta: assuming mass transfer does not change specific
angular momentum of the orbit.

2 MJ due to a discontinuity in the fits used in Spiegel & Burrows
(2012).

For comparison, the magenta curve shows the result of arbitrarily
assuming that angular momentum exchange is such that the specific
angular momentum of the planet does not change, i.e. ignoring that
mass loss is from L1 instead of the planet’s average [f = 1 in equa-
tion (6)]. Mass transfer is now unstable whenever the planet’s adi-
abatic mass–radius exponent is negative, somewhat more unstable
than the cyan and blue curves.

Whether mass transfer is dynamically stable or not depends on
the mass–radius relation of planet. Fig. 4 shows the same as Fig. 3
for planets of pure silicate composition, for two assumed equations
of state (Fortney, Marley & Barnes 2007; Seager et al. 2007). Except
for the blue curve, the trends with planetary mass are the same as for
gas giant planets. The blue curves (mass transferred has the angular
momentum of the stream) are very close to the stability boundary
(ζ p = ζ L). This reflects the fact that rocks are much less compress-
ible than a gas, so their mass–radius exponent (Rp ∝ Mp

1/3) is similar
to that of the Roche lobe, especially in the lower mass range, in con-
trast with the negative exponent of isentropic gas spheres. Models
with pure water or pure iron compositions (not shown) have mass–
radius exponents qualitatively similar to those of silicate models.
Fig. 4, shows that, for the ‘minimal assumption’, the results are
very sensitive to the planetary model. For the planetary model of
Fortney et al. (2007) mass transfer is unstable for initial masses in
the range 1 < Mp < 10 M⊕; for the planetary model of Seager et al.
(2007) mass transfer is marginally stable in this mass range. In the
following, the planetary models of Fortney et al. (2007) are used.

Figure 4. Same as Fig. 3, but for planetary models with pure silicate com-
position from Fortney, Marley & Barnes (2007) (solid curves), and Seager
et al. (2007) (dot–dashed curves). The black curves are not shown here.

Figure 5. Regimes of mass transfer for gas giant planets orbiting ZAMS
stars. The ‘minimal assumption’ is used as the angular momentum transfer
model (see text). Yellow: the planet enters the star before overflowing its
Roche lobe (direct merger). Orange (grey): dynamically stable (unstable)
Roche lobe overflow. Above the black solid line the stream impacts the
surface of the star. Above the black dashed line the star touches L1 before
the planet does (see discussion in text). ZAMS mass–radius relation is from
A. Weiss (cf. Weiss & Schlattl 2008). Planetary model is the same as in
Fig. 3.

In addition to the planet’s mass and its adiabatic mass–radius
relation, the boundary between dynamically stable and unstable
mass transfer depends on the stellar mass–radius relation. Fig. 5
shows this dependence for a gas giant planet as a function of mass
of zero-age main-sequence (ZAMS) star. The angular momentum
feedback model is the ‘minimal assumption’. The orange region
and grey region of Fig. 5 denote the dynamically stable and unstable
mass transfer, respectively.
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Figure 6. Same as Fig. 5, but for planetary model with pure silicate com-
position from Fortney et al. (2007).

Figure 7. Regimes shown in Fig. 5 as a function of age, for a host star of
1 M�. Violet line: radius of the star (scale on the right).

Fig. 6 is the same as Fig. 5, but for planets of pure silicate
composition. The change from a horizontal to vertical boundary
between Figs 5 and 6 reflects the different signs of the mass–radius
exponent between giant planet and rocky planet. Fig. 7 shows the
dependence for gas giant planet as a function of stellar age (1 M�)
during the pre-main-sequence (PMS) stage and the MS stage. Note
that the entropy of the gas giant planets is kept constant in our
calculations, on the argument that the cooling time is much longer
than the mass transfer instability time-scale. There is a tiny grey area
(around 106.2 yr and 2 MJ) nearly invisible in the Fig. 7 resulting
from the discontinuity in the fits used in Spiegel & Burrows (2012).
The parts of the dashed and the solid lines in Figs 5–9 at around
107.5 yr are not smooth due to the variation of star’s radius during
the deuterium burning. Fig. 8 shows the same as Fig. 7 for planets

Figure 8. Same as Fig. 7, but for planetary model with pure silicate com-
position from Fortney et al. (2007). Violet line: radius of the star (scale on
the right).

of pure silicate composition. The stellar models used here were
provided by A. Weiss (cf. Weiss & Schlattl 2008).

Below the yellow direct merger region is a narrow zone where
the host star fills its Roche lobe before the planet does (above the
dotted line in Figs 5–9). This does not mean that the star actually
transfers mass to the planet, however, since the star does not corotate
with the orbit. The effective potential of which L1 is a saddle point
applies only for uniform rotation of the whole system. If the star is
not corotating, its surface does not sense the centrifugal force that
is assumed in the calculation of its Roche lobe. The dotted line in
the figures is therefore shown mostly for curiosity.

The dependence of the results on the thermal initial condition of
the planet is illustrated in Figs 7 and 9. It shows how the region of
unstable mass transfer increases in size between entropy values of
7 and 11 kB baryon−1. Direct merger of the planet with the star (see
Section 3.3) occurs more easily for planet with low entropy than
that with high entropy (larger yellow region), because a planet with
low entropy is denser than with high entropy. The unstable grey
area has a narrow upward extension around 106 yr. This is related to
the inclusion of the gravitational torque of the planet on the stream
path (cf. Fig. 2).

3.2 Stream impact

Depending on mass ratio and size of the host star, the stream leaving
L1 can hit the surface of the star instead of forming a disc. When
the accretor is an MS star, as in the case of Algol-type binaries, this
happens in a wide range of mass ratios. It can happen also at the
low mass ratios of mass-transferring planets. This is illustrated in
Figs 5–11. The region between the yellow area and the black solid
lines of Figs 5–9 equivalently shows that stream impact will occur
in terms of the planet’s mass needed for its stream to intersect the
stellar surface. Fig. 10 shows the orbit of the stream leaving the L1
of a 1 MJ gas giant with 1 RJ around a 1 M� star of two different
ages. Fig. 11 shows the minimum distance of the stream orbits to the
centre of the star, as a function of the mass ratio q. The calculations
of Figs 10 and 11 were done with the code in Spruit (1998) as in
Fig. 2.
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Figure 9. Same as Fig. 7, but for gas giant planetary models with entropy
7 kB baryon−1 (top panel) and 11 kB baryon−1 (bottom panel). Violet line:
radius of the star (scale on the right). The kinks at 2 MJ reflect the disconti-
nuity in the fitting formulas of Spiegel & Burrows (2012).

At the size of the current Sun the stream does not intersect the
stellar surface (Fig. 10). At an age of 3.94 Myr, when the host star
was 50 per cent larger, the stream from a mass-transferring planet
(1 MJ) would have intersected the stellar surface, and the stream’s
angular momentum would have been transferred to the star. The
‘minimal assumption’ for angular momentum return would then
apply (cf. Fig. 3 and associated text in Section 3.1).

The dashed lines of Fig. 12 (gas giant planet) and Fig. 13 (planet
with pure silicate composition) show what this means for a PMS star,
as a function of planet mass. The time tin since the star’s birth during
which its radius is large enough to intercept the stream increases
with increasing mass ratio. The stream from a hypothetical planet
of 1 MJ filling its Roche lobe, for example, would be intercepted
for the first 6.2 Myr of the PMS life of a star with 1.3 M�, or about
85 per cent of its contraction time to the MS.

Figure 10. Trajectory of the stream (thin black line) from a Roche lobe
filling 1 MJ planet with 1 RJ around a 1 M� star. Inner solid circle: radius
of the present Sun. In this case, the stream travels around the host star in
one orbital period without touching the surface of host star. Outer dashed
circle: the radius of the host star at 3.94 Myr. With the larger stellar radius,
1.5 R�, the stream impacts the stellar surface soon after leaving L1.

Figure 11. Distances from the centre of the host star, as a function of mass
ratio. Solid line: location of L1; dashed line: minimum distance of a stream
leaving L1.

3.3 Direct merger

Under more extreme conditions the planet itself (or rather its L1)
can reach the surface of its host before it fills its Roche lobe. In
MS stars the density increases so quickly with depth below the
photosphere that aerodynamic drag will cause spiral-in into the
star almost immediately when this point in its orbital evolution
is reached. Since the mean density of the star increases during its
PMS evolution, it is more likely to happen to planets that already
migrated close enough to their hosts during PMS contraction. The
region in the Mp–M∗ space where direct merger of the planet with
the star occurs is shown by the yellow regions in Figs 5–9. Figs 7–9
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Figure 12. Minimum planetary mass Mp, min needed for stream impact
(dashed lines) and direct merger of the planet (solid) as a functions of
planetary mass and age of host stars of 0.7 M� (magenta), 1.0 M� (black),
1.3 M� (blue). The ends of the lines are not smooth because of the variation
of the star’s radius during deuterium burning. Planetary model is same as in
Fig. 3.

Figure 13. Same as Fig. 12, but for planetary model with pure silicate
composition from Fortney et al. (2007).

show how direct merger of the system is more likely to happen dur-
ing PMS contraction than during of MS. The solid lines of Figs 12
and 13 show the minimum planetary mass for direct merger to hap-
pen, as a function of planetary mass and age of the host star. On the
whole, direct merger is more likely to occur to planet–star systems
containing a compact planet, a younger or a more massive host star.

4 TI M E EVO L U T I O N O F U N S TA B L E M A S S
TRANSFER

In the following we investigate the time evolution of the planet’s
orbit and mass in the case of dynamically unstable transfer (cf.
Fig. 3). As discussed in the previous section, whether mass transfer

is dynamically stable or not depends strongly about the assump-
tions made about the fate of the angular momentum carried by the
stream. This has led to contrasting estimates in the literature for the
occurrence of dynamical mass transfer.

The presence of a surface (the host star) close to the stream
increases the likelihood of angular momentum being lost from the
orbit directly to the star (Section 3.1). Instead of angular momentum
returning to the orbit through tidal interaction with a disc, as in the
process governing the orbital evolution in compact-object binaries,
mass transfer from the companion need not lead to widening of the
orbit. The large moment of inertia and low rotation speed of the star
make it a very effective sink of angular momentum. The small mass
ratio of the planet–star system also causes the stream to stay much
closer to the planet orbit than is the case in CVs and X-ray binaries,
increasing the likelihood that some of the stream spreads beyond
the planet orbit into a circumbinary disc (see Spruit & Taam 2001
for cases where this may also play a role in CVs). Like in the case
of Type-II migration of planets, the resulting torque on the orbit
would cause it to shrink instead of expanding.

In the calculations following below the smaller specific angular
momentum of the L1 and the gravitational pull of the planet on the
stream are taken into account, but no further angular momentum
exchange with the orbit is included [our ‘minimal assumption’, the
blue curve in Fig. 3, equation (7) with ε as explained in Section 2.6].
We consider this a representative case, possibly also the most likely.

4.1 Calculations

The locations of L1 and outer Lagrangian point (L2) follow from
the Roche geometry, for which the expansions in Kopal (1959)
were found accurate enough. These formulae and those by Eggleton
(1983) are not quite correct especially for rocky or incompressible
fluid planets, since these have their mass concentrated more towards
the surface than gaseous planets, for which a point mass approxi-
mation is adequate for the Roche potential. We have not attempted
to correct for this, since it will just shift the orbital separation where
the planet fills its Roche lobe less than 20 per cent in orbital sep-
aration compared with the approximation of Roche radius for an
incompressible fluid from Rappaport et al. (2013). We expect that
this does not have a qualitative effect on the instability boundary in
the M∗–Mp plane.

Fig. 2 shows the trajectory of the stream in a corotating frame and
the variation of js over one orbital period for mass ratios q of 0.001
and 0.002. The wiggles in the curves show that at these low mass
ratios, the gravity of planet and the displacement of the host star
relative to the centre of mass of the system still affect the angular
momentum of the stream to some degree. The maximum difference
between js and jp is about 16 per cent for q = 0.001. This difference
between specific angular momentum of the stream and that of the
planet’s centre of mass is taken into account in the calculations that
follow.

4.2 Mass loss model

During mass transfer, the planet’s radius exceeds the Roche lobe
by an (initially small) amount. Calculation of the evolution of the
planet’s mass needs two elements: a model for the mass transfer
rate as a function of this radius excess, and a model for the reaction
of the planet’s radius upon mass loss. The mass transfer rate is
very sensitive to the difference between the radius of planet and
the Roche Lobe radius, (Rp − RRoche)/Rp ≡ η. The planet does not
expand instantaneously, it takes the planet’s dynamical time-scale,
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Figure 14. Example of the evolution under dynamically unstable mass transfer of a planet of initial mass 1.0 MJ and radius 1.5 RJ, orbiting a Sun-like star
(1.0 M�, 1.0 R�). Horizontal axis is the time left before final dissolution of the planet. Panel (a): the planetary mass. Panel (b): mass transfer rate from L1
(solid cyan line), L2 (solid blue line), and the total (L1+L2, black dotted line). Panel (c): the orbital separation a. Panel (d): overfill fractions η at L1 (solid
cyan line) and L2 (solid blue line).

of order of the sound crossing time through its interior (Paczyński
1965; Paczyński et al. 1969). For most of the time, this time-scale is
short compared with the time-scale on which mass transfer evolves,
so the resulting delay in the planet’s response can be ignored. The
calculation is stopped when the evolution time-scale has become
comparable to the planet’s dynamical time-scale.

The mass flux depends on the temperature and density at L1: a
model for the stratification of the planet’s outer layers is needed
for this. Since the duration of the dynamical mass transfer process
is still short compared to the thermal evolution time of the planet
interior, the expansion of the planet can be assumed to take place
adiabatically. The mass evolution of the planet during mass transfer
is obtained as the model of Savonije (1978, appendix I), with the
mass transfer rate computed as a function of the radius excess as
in his equation (A10). In this model the stratification of the outer
layers of planet is parametrized approximately with a polytropic re-
lation P = Kρ(1 + 1/n), with index n and constant K, where n = 1.73,
K = 1.34 × 1012, determined by fitting to the corresponding equa-
tion of state (with entropy 9 kB baryon−1) from Saumon, Chabrier
& van Horn (1995). We assume that the parameters (n and K) of
the polytropic relation are constant during the planet’s adiabatic ex-
pansion. The locations of L1 and L2 are taken from Kopal’s (1959)
approximation to the Roche geometry. For the density and temper-
ature at these points the planet and Roche lobe are approximated as
spheres centred on the centre of mass of the planet.

Mass transfer starts at L1. Mass loss through L2 is also included.
At very low mass ratio q, mass loss starts simultaneously through
both (e.g. simulation in Leinhardt et al. 2012). For the mass ratios
considered here, q ∼ 10−3, mass loss through L2 is small at first
but contributes significantly towards the end. The volume radius of

Roche lobe of L1 (RL1) is taken from the approximate expression of
Eggleton (1983). For mass loss through L2, an expression is needed
for the planet’s radius relative to the location of L2. In the spirit of
the approximations used, we assume that the planet’s radius RL2 at
this point is given by

RL2 = RL1
rL2

rL1
, (8)

where rL1 is the distance of L1 from the planet’s centre of mass, rL2

is the distance of L2 from the planet’s centre of mass.

4.3 Results

The orbital evolution model is as discussed in Section 4 and the
equations are solved by a straightforward fourth-order Runge–Kutta
scheme. As an example, we consider a gas giant planet and a Sun-
like star (1 M�, 1 R�), and the ‘minimal assumption’ case for
the angular momentum exchange. The mass–radius relation of the
planet is as shown in Fig. 3. The initial mass and radius of the
planet are 1.0 MJ and 1.5 RJ, respectively. The calculation starts
when the planet just fills Roche lobe with an initial η � 0.0003. The
evolution of this specific planet–star system is shown in Fig. 14. As
expected, the mass transfer initially develops quite slowly, while the
mass of planet Mp and the orbital separation a stay almost constant
(panels a and c of Fig. 14). The mass transfer rate increases roughly
a (tend − t)−1.5 (panel b of Fig. 14), where tend is the duration
of mass transfer process for this specific planet–star system. At
(tend − t) ≈ 106 s the planet has lost 10 per cent of its mass, all
of it through L1, while at (tend − t) ≈ 105 s mass loss through
L2 also becomes significant. The last 50 per cent of the planet’s
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Figure 15. The orbital evolution and angular momentum evolution of the
planet shown in Fig. 14. Horizontal axis is the remaining mass of the planet
(Mp-rest). Top panel: the orbital separation a as a function of Mp-rest. Bottom
panel, solid: orbital angular momentum of the planet (Jp) as a function of
Mp-rest, dashed: specific orbital angular momentum of the planet (jp) as a
function of Mp-rest.

mass is lost on a time-scale of the order of several orbital periods
(∼104 s). Although the mass transfer rates through L2 is significant
in the final stage, mass loss from L1 still dominates. Mass loss
through L2 is more likely to feed into a circumbinary disc than loss
through L1, and tidal interaction with this disc will be a source of
angular momentum loss. This interaction would cause mass transfer
to increase more dramatically when transfer through L2 sets in, but
by the assumptions made this is not included in the model.

The lower left-hand panel in Fig. 14 shows how the orbit of (the
remnant of) the planet expands during mass transfer. This happens
even though in our ‘minimal assumption’ there are no torques act-
ing on the planet. It results from the fact that the specific angular
momentum of the mass lost through L1 is less than average. As a
result, the specific angular momentum of the remaining mass of the
planet increases, moving the centre of mass outward. To illustrate
this, Fig. 15 shows the evolution of the orbit, the planet’s angular
momentum (lower panel, solid) and its specific angular momen-
tum (dotted). Angular momentum decreases as the orbit expands
while specific angular momentum increases (somewhat). One can
visualize this conceptually by imagining the mass transfer as a two-
step process: in the first, mass residing near L1 is lost. This moves
the centre of mass of the remainder out a bit, equivalent to the
increase of the mean specific angular momentum. In the second
step the mass redistributes itself in the Roche lobe under conser-
vation of mass and angular momentum. This process takes place
continuously. The fact that it works even for low mass ratios is a
consequence of the weak dependence of Roche lobe size on mass
ratio (∼q1/3, cf. Section 2.2). With this dependence on q, the ex-
pansion factor converges to a finite value for Mp → 0, in contrast

Figure 16. Duration td of the transfer of the last 50 per cent (solid line) and
90 per cent (dashed line) of the mass of a gas giant planet, as a function of
initial planetary mass. Host star is a Sun-like star (1.0 M�, 1.0 R�).

with the assumption of conservation of orbital angular momentum,
by which the orbit would expand as M−2

p .
Fig. 16 shows the time spent for the last 90 per cent and the last

50 per cent of a gas giant planet’s mass to be lost as a function
of the initial mass. Somewhat independent of initial mass, the last
90 per cent of planetary mass is lost on a time-scale of the order of
106 s (∼month), while the last 50 per cent is lost on a time-scale of
the order of orbital period (∼104 s).

Because of their different mass–radius relation, the evolution of
silicate planets differs from the gas giant planets, especially for
the ‘minimal assumption’ case for angular momentum exchange.
Fig. 17 shows results for the example of a pure silicate planet (5 M⊕,
1.7 R⊕, mass–radius relation from Fortney et al. 2007) orbiting a
Sun-like star (1 M�, 1 R�). This mass–radius relation is based on
the ANEOS equation of state (Thompson 1990). For the mass loss pre-
scription needed (Section 4.2) a polytropic fit P = K(ρ − ρ0)(1 + 1/n)

is made to this equation of state, yielding n = 1.19, K = 2.98 × 1011,
and ρ0 = 3.2 g cm−3 is the density of rock (olivine) at low pressure.
The mass transfer rate is high because of the high surface density of
a rocky planet. The transfer process starts unstable, but the transfer
rate starts to decrease when the planet’s mass has been reduced to
about 1 M⊕ (panel b). The remaining mass is almost uncompressed;
its mean density stays constant, so that the mass–radius exponent
of the planet catches up with that of the Roche lobe, ζ p � ζ L. With
the decreasing planet’s mass, at the stage Mp < 1.0 M⊕, η and mass
transfer rate start to decrease (see panels b and d of Fig. 17). The
orbit does not change much any more (panel c). The evolution does
not reach the stage where mass loss through L2 becomes significant.
Further evolution would be determined by tidal dissipation only. We
stopped the calculation at Mp � 0.5 M⊕.

The polytropic equation of state in Savonije’s (1978) description
of Roche lobe overflow is not a good approximation for ‘rocky’
planets (even in their molten state close to the host star). The high
surface density of such a planet should cause the onset of mass
transfer to be much sharper than with the polytropic assumption used
here. This will be a smaller effect in the later stages, in particular
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Figure 17. Same as Fig. 14, but for a pure silicate planet. The initial mass and the radius of the planet are 5 M⊕ and 1.7 R⊕.

the transition to stable transfer will still be present. The dashed part
of the lines in Fig. 17 is meant to indicate the uncertainty involved.

5 D I S C U S S I O N A N D C O N C L U S I O N S

We have investigated the mass transfer from a planet to its host star,
with emphasis on the conditions under which Roche lobe overflow
becomes dynamically unstable. The main factors are the adiabatic
mass–radius relation of the planet and the processes redistributing
angular momentum. Previous analyses of mass transfer were based
on the analogy with mass-transferring binary systems (CVs and
X-ray binaries) where the moment of inertia of the host star can
be neglected, and the angular momentum of the transferred mass
is returned to the orbit by tidal interaction with an accretion disc.1

We have argued that this is not an appropriate assumption in the
case of Roche lobe overflow of a planet on a MS (or larger) star.
The orbital angular momentum of a planet is far too small to affect
the rotation of such stars, which can effectively act as an arbitrary
sink of angular momentum. The consequence is that planets are
much more likely to go through dynamically unstable Roche lobe
overflow than predicted by the standard description that applies to
interacting binaries.

The more massive planets touch the host star surface before
overflowing their Roche lobes. These planets consequently spiral
into their host on a short time-scale (we call this the ‘direct merger’
case). This is especially likely to happen to planets (if any) that
formed close to their host during their PMS life (see Figs 7–9, 12,
and 13).

1 In the MESA code, the default value ‘Ritter’ for the parameter
‘mdot_scheme’ assumes this, as in Ritter (1988).

At somewhat lower planetary masses or larger radius of host
stars, the mass-transferring stream intersects the surface of the star
before completing an orbit. In this simple case (which we call the
‘stream impact’ case), the specific angular momentum of the mass
lost by the planet through the L1 is a bit less than that of the planet’s
centre of mass. This would cause a slight expansion of the orbit.
In Section 2.3 we have argued that even if the stream does not
impact directly, the truncation radius of the prospective accretion
disc is probably only marginally outside the stellar surface of an
MS host star. Instead of forming a disc, we find it more likely
that the hydrodynamic interaction with the slowly rotating stellar
envelope is effective enough to absorb most of the accreting angular
momentum instead of leading to a spreading disc. We have called
this the ‘minimal assumption’, but have compared its consequences
with different assumptions.

Whether Roche lobe overflow of a planet is dynamically sta-
ble and unstable depends on its (adiabatic) mass–radius relation,
which differs strongly for gas giant planets and rocky planets (see
Figs 5 and 6). The areas in the Mp–M∗ plane differ correspondingly.
For low-mass rocky planets, the mass–radius index is close to the
value 1/3 for a nearly constant mean density. Since this is also the
approximate mass–radius index of the Roche lobe of a low-mass
companion, Roche lobe overflow is near marginal stability for the
‘minimal assumption’ (see Fig. 4). The more massive rocks are
slightly compressible. As a result, their mass transfer is initially
unstable, but settles to stable overflow when the mass has decreased
to less than 1 M⊕ (Fig. 17).

The higher likelihood of dynamically unstable Roche lobe over-
flow in our ‘minimal assumption’ increases the chance of observing
a planet in the process of rapid mass transfer. The low transfer rates
driven only by tidal interaction in stable overflow may be hard to
recognize observationally.
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Paczyński B., 1971, ARA&A, 9, 183
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