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Periodicity makes galactic shocks unstable – I. Linear analysis
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ABSTRACT
We study the dynamical stability of stationary galactic spiral shocks. The steady-state equilib-
rium flow contains a shock of the type derived by Roberts in the tightly wound approximation.
We find that boundary conditions are critical in determining whether the solutions are stable
or not. Shocks are unstable if periodic boundary conditions are imposed. For intermediate
strengths of the spiral potential, the instability disappears if boundary conditions are imposed
such that the upstream flow is left unperturbed as in the classic analysis of D’yakov and
Kontorovich. This reconciles apparently contradictory findings of previous authors regarding
the stability of spiral shocks. This also shows that the instability is distinct from the Kelvin–
Helmholtz instability, confirming the findings of Kim et al. We suggest that instability is a
general characteristics of periodic shocks, regardless of the presence of shear, and provide
a physical picture as to why this is the case. For strong spiral potentials, high post-shock
shear makes the system unstable also to parasitic Kelvin–Helmholtz instability regardless
of the boundary conditions. Our analysis is performed in the context of a simplified prob-
lem that, while preserving all the important characteristics of the original problem, strips it
from unnecessary complications, and assumes that the gas is isothermal, non-self-gravitating,
non-magnetized.
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1 IN T RO D U C T I O N

In their pioneering study, Lin & Shu (1964) already noted that the
gaseous interstellar medium, given its relatively low velocity disper-
sion, could give rise to spiral patterns with density contrasts much
stronger than the stellar counterpart. It was then demonstrated by
Fujimoto (1968) and Roberts (1969) that the non-linear gas response
to a given externally imposed rigidly rotating spiral gravitational
potential can result in stationary shocks waves, provided that the
amplitude of the spiral potential exceeds some critical value. These
steady-state shock solutions were considered again in more detail
by Shu, Milione & Roberts (1973), who studied how they depend
on the underlying parameter space (see also Toomre 1977, for a
historical perspective).

A natural question arose concerning the stability of the steady-
state solution found by Roberts (1969) and Shu et al. (1973).
Several papers have addressed this question in the subsequent
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decades (e.g. Mishurov & Suchkov 1975; Nelson & Matsuda 1977;
Balbus & Cowie 1985; Balbus 1988; Dwarkadas & Balbus 1996;
Lee & Shu 2012; Kim, Kim & Kim 2014; Lee 2014; Kim, Kim &
Elmegreen 2015). The original calculations of Roberts (1969) and
Shu et al. (1973) assumed the gas to be isothermal and non-self-
gravitating, but it was argued that, if any instability is present, the
most likely cause would be related to the self-gravity of the gas
on the basis of the high degree of compression experienced at the
shocks. Hence, Balbus & Cowie (1985) and Balbus (1988) studied
a self-gravitating version of the Roberts (1969) problem, but found
that the system was stable. Another potential source of unstable
flow seemed to be related to the high shear in the post-shock region.
Dwarkadas & Balbus (1996) therefore studied the stability of the
problem assuming the gas to be isothermal and non-self-gravitating,
exactly as in the original work of Roberts (1969), but again they
found the system to be stable.

The question was revitalized by the simulations of Wada &
Koda (2004). These authors run simple two-dimensional non-self-
gravitating simulations of isothermal gas in an externally imposed
rigidly rotating spiral potential, and found that spiral shocks can be
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hydrodynamically unstable. They dubbed it wiggle instability as it
develops by forming ‘wiggles’ along the spiral arms. They argued
that it could be a manifestation of the Kelvin–Helmholtz instability
due to high shear behind the shock. The instability was then seen
in numerous other simulations (e.g. Dobbs & Bonnell 2006; Kim
et al. 2012; Renaud et al. 2013; Kim & Kim 2014; Khoperskov
& Bertin 2015; Sormani, Binney & Magorrian 2015), although
Hanawa & Kikuchi (2012) suggested that it may be a numerical
artefact caused by the discretization of the fluid equations. Finally,
Kim et al. (2014) reanalysed the problem, assuming the gas to be
isothermal and non-self-gravitating exactly as in Roberts (1969)
and Dwarkadas & Balbus (1996), and this time they found the sys-
tem to be unstable. They physically interpreted the instability as
originating from the generation of potential vorticity at corrugated
shock fronts. Other relatively recent analysis that include the effects
of self-gravity and/or magnetic fields also found the solutions to be
unstable (Lee & Shu 2012; Kim et al. 2015).

The picture that emerges is somewhat confusing, with authors
finding apparently contradictory results. Two works, in particular,
have studied what seems to be the same problem but obtained ap-
parently opposite results: Dwarkadas & Balbus (1996) found the
isothermal, non-self-gravitating and non-magnetized spiral shocks
to be stable, while Kim et al. (2014) found them to be unstable.
What is the cause of this discrepancy? Interestingly, the first au-
thors assumed the upstream (with respect to the shock) flow to be
unperturbed, while the second used periodic boundary conditions
in their analysis. Can this difference explain the discrepancy?

A related question is the physical origin of the instability. Wada
& Koda (2004) originally argued that the wiggle instability is essen-
tially a Kelvin–Helmholtz instability, while Kim et al. (2014) argued
that the instability is physically distinct from Kelvin–Helmholtz.
However, Khoperskov & Bertin (2015) and a recent review by Shu
(2016) again state that it is Kelvin–Helmholtz. Is the instability of
spiral shocks the same as the Kelvin–Helmholtz instability or not?

In this paper, we revisit the question of the stability in an attempt
to clarify these apparently contradictory results. We reformulate the
problem in a simplified context that, while preserving the important
characteristics of the original problem, strips it from unnecessary
complications that may obscure the analysis. Interpreting previous
results in a simpler context provides physical insight into the steady-
state solutions and the nature of instabilities and highlights aspects
of the problem that may be of a more general character.

This paper is structured as follows. In Section 2, we introduce
the basic equations. In Section 3, we discuss the steady-state back-
ground solutions. In Section 4, we linearize the equations around
the steady-state solutions and specify the boundary conditions. In
Section 5, we solve numerically the eigenvalue problem to find the
dispersion relation and under what conditions the system is unsta-
ble. We discuss the physical interpretation of our results in Section 6
and finally summarize our conclusions in Section 7.

2 BASIC EQUATIONS

Roberts (1969) studied the problem of finding the gas response to a
spiral stellar potential by introducing a spiral coordinate system and
approximating the fluid equations in a local patch around a spiral
arm under the following assumptions: (i) spirals are tightly wound,
(ii) the flow does not depend on the coordinate parallel to the spiral
arm and (iii) the velocities induced by the spiral perturbation of the
potential are small compared to the underlying circular motion of
the galaxy.

Our goal is to consider the problem in the simplest possible con-
text in order to gain physical insight into the nature of instabilities.
Therefore, rather than rederiving Roberts (1969) equations, we start
by studying an apparently unrelated ‘toy problem’ that preserves all
the important mathematical characteristics of the original problem.
In Appendix A, we present a derivation of Roberts (1969) equations
and spell out their connection with the problem considered here in
the main text.

Consider a fluid in the Cartesian plane (x, y) subject to the fol-
lowing forces:1

(i) The pressure force, −∇P/ρ.
(ii) The force from an external potential, −∇�.
(iii) The Coriolis force, −2� × v. The angular velocity � is

taken constant and directed towards the positive z direction.
(iv) A constant force, F.

The equations of motion are:

∂tv + (v · ∇) v = −∇P

ρ
− ∇� − 2� × v + F, (1)

∂t ρ + ∇ · (ρv) = 0 . (2)

Now, assume a simple externally imposed potential,

�(x) = �0 cos

(
2πx

L

)
, (3)

where �0 is a constant and that the gas is isothermal,

P = c2
s ρ. (4)

In connection with the Roberts (1969) problem, these equations
are meant to represent the local conditions in a patch surround-
ing a spiral arm, where x is the coordinate perpendicular to the
arm and y is the coordinate parallel to the arm. The potential �

represents the spiral perturbation to the potential (i.e. after subtrac-
tion of an underlying axisymmetric potential that is the origin of
galactic circular rotation, see equations A19 and A53), and L is the
separation between two consecutive spiral arms. � represents the
local circular speed of the galaxy (not the pattern speed of the spi-
ral arms, see equation A40 and subsequent comments). The force
F = Fxêx + Fyêy represents the Coriolis force associated with the
background circular motion, see equation (A52). This is assumed
to be constant that amounts to considering the circular speed con-
stant in the local patch considered. Its components in terms of the
underlying circular velocity of the galaxy are Fx = −2�vcy and
Fy = 2�vcx. Since we use the convention that Fx, Fy > 0, the back-
ground circular flow is in the positive x-direction and in the negative
y-direction in our problem. The ratio of these components is related
to the pitch angle of the spiral arms by tan i = Fy/Fx.

Roberts (1969) (see also Shu et al. 1973) showed that these
equations admit steady-state solutions that are periodic in the x-
coordinate which, if �0 exceeds a critical value, must contain
shocks. Here, we study the linear stability of these steady-state
solutions.

2.1 Parameters counts

The problem posed by equations (1)–(4) is completely specified by
six parameters:

cs, �0, L, Fx, Fy, �. (5)

1 Strictly speaking these are forces per unit mass, i.e. accelerations.
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From these, we can define four dimensionless parameters:

c̃s = cs

(Fy/�)
, �̃0 = �0

(Fy/�)2
, L̃ = L

(Fy/�2)
, Fx/Fy (6)

and two ‘scaling constants’

Fy, �. (7)

In what follows, without loss of generality, we assume Fy = � = 1
unless otherwise specified. We will see later that Fx plays a triv-
ial role, so the effective number of non-trivial parameters of our
problem is three.

2.2 Parameters corresponding to galactic spirals problem

Let us discuss what values of the parameters roughly correspond
to the galactic spiral shocks problem. We are only interested in
the orders of magnitudes rather than in precise numbers. Plausible
values for the parameters are as follows. The sound speed2 of the
interstellar medium is cs � 10 km s−1 (e.g. Roberts 1969). The
rotation speed of the Sun around the Galactic Centre is ∼200 km s−1,
and the velocity perturbation due to the spiral arm potential is of
the order of a few per cent of the circular velocity, so we take
�0 � (10)2 km2 s−2. The separation between two spiral arms is L �
1 kpc. The angular rotation velocity of material around the Galactic
Centre is of order � � 20 km s−1 kpc−1. The constant force is about
the same as the Coriolis force experienced by an object that goes
at approximately the speed of the Sun, |F| � 20 km s−1 kpc−1 ×
200 km s−1. Finally, the ratio between the two components of the
constant force is roughly the pitch angle of the spiral arms, which
we take Fy/Fx � 0.1 for tightly wound spirals.

This yields the following values for the dimensionless parame-
ters:

cs = 0.5, �0 = 0.25, L = 1, Fx = 10. (8)

It is interesting to note that cs = 0.5 is the limiting value that
separates the two possible regimes (sub- or supersonic) for the
�0 = 0 solution (see Section 3.1). Therefore, both regimes are
within plausible values of the parameters for galactic spiral shocks.

In most of the remainder of the paper, we focus on and study in
detail the solutions for the following values of the parameters:

L = 1, cs = 0.7 and L = 1, cs = 0.3. (9)

We start considering the case �0 = 0, and then study what happens
as we increase its value.

3 STEADY STATE

In this section, we study steady-state solutions of equations (1) and
(2), and in the next section, we linearize the equations around these

2 This is meant to be a phenomenological sound speed that takes into account
in a simple way the turbulent pressure of the interstellar medium, and it is
much higher than the sound speed one would obtain from the microscopic
temperature of cold gas in a disc galaxy (e.g. Roberts 1969; Cowie 1980).
The ‘temperature’ of the isothermal assumption is therefore related to the
velocity dispersion of clouds rather than a microscopic temperature. The
observed velocity dispersion of the interstellar medium seems to support
this hypothesis (e.g. Dickey & Lockman 1990). In this approximation, any
heating due to compression, for example at a shock, is instantaneously
radiated away to restore the initial temperature.

steady states. We consider steady-state solutions that:

(i) are periodic in the coordinate x with the same period of �,
(ii) do not depend on the coordinate y.

We obtain the following system:

v′
0y = −2 + 1

v0x

, (10)

v′
0x = 2v0y − �′ + Fx

v0x − c2
s

v0x

, (11)

where the symbol ′ denotes derivative with respect to x, and we
used the subscript 0 to denote the steady-state solutions. Fx can be
absorbed into v0y by means of the following transformation:

v0y = u0y − Fx

2
, v0x = u0x . (12)

The equations then become

u′
0y = −2 + 1

u0x

, (13)

u′
0x = 2u0y − �′

u0x − c2
s

u0x

. (14)

Note that while the original problem depends on four dimensionless
parameters, the system of equations (13) and (14) depends only on
three, cs, �0 and L. Therefore, u0x and u0y do not depend on the
fourth dimensionless parameters, Fx, and v0x and v0y depend on
it in a trivial way. Later, we will also find that the stability of the
system does not depend on Fx. Thus, the problem has effectively
three non-trivial dimensionless parameters.

3.1 Case �0 = 0

For �0 = 0, the solution to equations (13) and (14) is

u0x = 1

2
, u0y = 0, (15)

or, restoring the original parameters and dimensions:

v0x = Fy

2�
, v0y = − Fx

2�
, ρ0 = constant. (16)

There is a simple interpretation for this result. When �0 = 0,
each fluid element is subject to three different forces: the Coriolis
force, the constant force F and pressure. If the fluid element has
the ‘right’ velocity, the Coriolis force and the constant force F
exactly balance, and if the fluid density is uniform, the pressure
force is zero. Thus, if the fluid is moving at this equilibrium velocity
and has uniform density it is in a steady state. Note also that this
is essentially the geostrophic approximation for a steady imposed
force (e.g. Pedlosky 1982).

Note also that in our dimensionless variables u0x = 1/2, regardless
of the values of the other parameters, L and cs. Therefore,

(i) if cs > 1/2, the �0 = 0 solution is subsonic,
(ii) if cs < 1/2, the �0 = 0 solution is supersonic.

As we have discussed above in Section 2.2, both these regimes
are within plausible physical values for the problem of gas flowing
in a spiral potential of a galaxy. Using different notation, this was
already noted by Shu et al. (1973): in their notation the two regimes
correspond to whether the Doppler-shifted phase velocity of the
stellar density wave is greater than the sound speed.
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Figure 1. Steady-state solutions obtained by solving equations (13)–(14) for the case L = 1, cs = 0.7. The top row shows cases in which �0 < �0c, when the
solution does not contain a shock. Different lines correspond to �0 = 0.00, 0.02, 0.05, 0.07297, leading to increasing amplitudes in u0x and u0y. The bottom
row shows the case �0 > �0c, when the solution does contain a shock. Different lines correspond to �0 = 0.1, 0.15, 0.25, 0.4. Panels on the right show
trajectories in the (x, y) plane followed by fluid elements. The red dashed line is the value of the sound speed.

3.2 Case �0 �= 0

3.2.1 L = 1, cs = 0.7

Fig. 1 shows steady-state solutions for the case L = 1, cs = 0.7 and
various values of �0. We have verified numerically that for each
triplet (L, cs, �0), only one steady-state solution exists. We also
show the corresponding trajectories in the (x, y) plane.

The top row shows solutions for small values of �0, when a
solution without a shock exists. The horizontal black full lines
at u0x = 0.5 and u0y = 0 in the top-left and top-centre panels,
respectively, represent the solution for the case � = 0 discussed in
Section 3.1. This solution is subsonic in this case. The sound speed
is represented by the red dashed line.

When �0 is increased by a small amount the solutions are small
amplitude librations around the �0 = 0 solution. These are the
other solutions in the top row panels. When �0 �= 0, the potential
causes fluid elements to experience a varying force in the direction
of motion; hence u0x cannot remain constant, which ‘unbalances’
the Coriolis and the constant force F (see the discussion in Sec-
tion 3.1). In these steady-state solutions, a compromise is found,
and u0x varies so that the Coriolis and F force are balanced only on
average. Indeed, we see from the top right-hand panel that the net
displacement of a fluid element in the y-direction over one period
is zero for small �0. This also means that the net energy gain of a
fluid element over one period is zero.

As we increase �0, the amplitude of these librations grows until
at some critical value, �c = 0.07297, the steady solution for u0x

touches the sound speed line cs = 0.7. For values of �0 greater
than this, the solution must pass from subsonic to supersonic at
some point (see also the analogy with the De Laval Nozzle and
Parker solar wind problem in Appendix D). Since we want periodic
solutions, the solution needs to go back from supersonic to subsonic
at some other point. This is only possible if a shock is present:
therefore, for �0 > �c, the solution must contain a shock.

The bottom row in Fig. 1 shows steady-state solutions that contain
a shock. We see from the bottom right-hand panel that in this case
a fluid element has a net displacement in the y-direction over one
period. Thus, the fluid element drifts towards positive y. In the spiral
arm interpretation of the problem, this corresponds to a shift along
the spiral arm in the opposite direction of the background flow.
In a galaxy with trailing spiral arms, the direction of net transport
of material to greater or smaller radii, therefore, depends on the
relative strength of the drift (which is related to the strength of �0)
and of the component of background circular flow parallel to the
shock (which is related to Fx), see equation (12).

For values of �0 just above �c, the shock appears at x = 0, at
the maximum of �, and moves forwards for increasing values of
�0. This means that the shock is found after the maximum of the
potential, which in the spiral arm interpretation corresponds to the
middle of the inter-arm region. The sonic point instead starts at
x = 0 (which is equivalent to x = L) and moves backwards.

It is interesting to discuss the energy balance of the system. The
only force that can do a net work on the fluid over one period is F.3

In solutions without a shock, there is no net gain of energy since
the net displacement in the vertical direction is zero.4 In solutions
with a shock, the fluid has a net gain of energy (proportional to
Fy�y, where �y is the displacement) over one period, which is
then radiated away at the shock. Ultimately, this is a transfer of
energy from the stellar potential that is eventually lost. The stronger
�0, the stronger the shock, the more the energy that is radiated
away at the shock, the greater must be the net y-displacement over

3 The Coriolis force cannot do work since it is always directed perpendicular
to the velocity of fluid elements, and the external potential returns to its initial
value over one period that means there is no net gain/loss of energy due to
it.
4 Recall that we have assumed Fx = 0, so there is no work associated with
displacement in the x-direction.
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Figure 2. Same as Fig. 1 for the case L = 1, cs = 0.3. Lines in the top panels correspond to �0 = 0.00, 0.01, 0.0148, while in the bottom panels to �0 = 0.025,
0.25.

one period in order to gain enough energy to compensate the higher
dissipation at the shock. Stronger y-displacements are associated
with stronger shear in the post-shock region. Thus, this explains
why increasing �0 inevitably leads to an increase of shear in the
post-shock region.

The fact that the extra energy gained from the force F is radiated
away is a consequence of the isothermal assumption. If we had
assumed the gas to be adiabatic, so that the equations of motion
satisfy conservation of energy, periodic steady states such as those
considered here would not be possible. Gas would heat up steadily
at each shock and the energy would be retained in the system rather
than being radiated away. To prevent the gas temperature to increase
indefinitely without limit, an external source able to subtract the ex-
cess energy from the system would be needed. Seen in a different
way, this puts a limit on the cooling time of the ISM for our isother-
mal assumption to be valid, i.e. it must be much shorter than one
period.

3.2.2 L = 1, cs = 0.3

Fig. 2 is the analogue of Fig. 1 for the case L = 1, cs = 0.3. The
main differences from the case discussed in Section 3.2.1 are as
follows:

(i) The �0 solution and the small amplitude solutions for small
�0 now are supersonic rather than subsonic. Therefore, as we in-
crease the value of �0 the solution touches the line uy = cs from
above rather than from below.

(ii) Now the shock appears at x = 0 (equivalent to x = L) and
moves backwards rather than forwards and is found before the
maximum of the potential (x = 0), which corresponds to middle of
the inter-arm region in the spiral arm interpretation.

We also note that �c is significantly smaller in this case.

4 LI NEAR STA BI LI TY ANALYSI S

In this section, we linearize the fluid equations around the steady-
state solutions derived in the previous section. The goal is to perform
a linear stability analysis and to find the dispersion relation of the
system. Since the background solution does not depend on y, we
can write

ρ = ρ0 (x)
[
1 + s1 (x) exp

(
ikyy − iωt

)]
, (17)

vx = u0x (x) + u1x (x) exp
(
ikyy − iωt

)
, (18)

vy = −Fx

2
+ u0y (x) + u1y (x) exp

(
ikyy − iωt

)
, (19)

where u1x, u1y, s1, ω are complex-valued quantities, while u0x, u0y,
ρ0, ky are real-valued quantities. Note that all quantities here are
dimensionless since we have assumed Fy = � = 1 as discussed
in Section 2.1. Plugging equations (17)–(19) into equations (1)–(2)
and expanding to first order in the perturbed quantities (i.e. those
with subscript 1), we find

u0x

(
u1y

)′ = −ikyc
2
s s1 + i

(
ω̃ − kyu0y

)
u1y − 1

u0x

u1x (20)

(
u2

0x − c2
s

)
(u1x)′ = −ic2

s

(
ω̃ − kyu0y

)
s1 + (

2u0x + ikyc
2
s

)
u1y

+
(

i
(
ω̃ − kyu0y

)
u0x + c2

s + u2
0x

c2
s − u2

0x

(
2u0y − �′)) u1x (21)

(
u2

0x − c2
s

)
(s1)′ = i

(
ω̃ − kyu0y

)
u0xs1 − (

ikyu0x + 2
)
u1y

+
(

−i
(
ω̃ − kyu0y

) + 2u0x

u2
0x − c2

s

(
2u0y − �′)) u1x, (22)

where we have defined ω̃ = ω + kyFx/2 and the symbol ′ denotes
derivative with respect to x. We have also used the relations (13)
and (14) to eliminate u′

0x and u′
0y .
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The systems (20)–(22) together with appropriate boundary con-
ditions (discussed below) constitutes an eigenvalue problem. For a
given ky, non-trivial solutions for u1x, u1y and s1 (i.e. distinct from
the null solution) only exist for certain discrete (but infinite in num-
ber) values of ω̃. This is easy to see, for example, in the case �0 = 0,
in which the system can be solved analytically (see Section 5.1).

Solutions with Im(ω) > 0 grow exponentially in time. Thus, if
at least one such solution is present, the system is unstable. So-
lutions with Im(ω) = 0 or Im(ω) < 0 are, respectively, oscillating
and damped solutions. If only solutions of these types are present,
the system is stable.

Note the stability of the system does not depend on Fx. Indeed,
Fx does not appear directly in equations (20)–(22), and u0x and u0y

are also independent of Fx. We will see below that the boundary
conditions, when written in terms of ω̃, are also independent of Fx.
Hence, the eigenvalue problem for ω̃ and its spectrum do not depend
on Fx. The spectrum of ω does depend on Fx, but in a trivial way:
changing the value of Fx merely amounts to changing the real part of
ω, which does not affect the stability of the system. Therefore, both
the steady-state solutions and the spectrum of ω depend in a trivial
way on Fx, confirming that the number of non-trivial parameters of
our problem is 3 as anticipated in Section 2.1. Hereafter, we assume
Fx = 0.

4.1 Shock jump conditions

The surface of the shock must also be perturbed. We assume that the
shock front is displaced in the x-direction from its original location
by

ξ1 = z1 exp
(
ikyy − iωt

)
, (23)

where z1 is a complex number and |z1| � 1. Equations (20)–(22)
are valid everywhere except at the shock surface, where we have
to ensure that conservation laws5 are not violated. If we reach the
shock while integrating the perturbed quantities, we have to stop
using these differential equations just before the shock and perform
the appropriate jump, and then use again the differential equations
after the jump.

In the reference frame of the shock, the following quantities
are conserved across the shock: ρv⊥,

(
c2

s + v2
⊥
)
ρ, v‖. Expanding

to first order, the values of these quantities at the position of the
perturbed shock front are as follows:

ρ = ρ0 + ρ1 exp
(
ikyy − iωt

) + ξ1
dρ0

dx
, (24)

v⊥ = u0x + u1x exp
(
ikyy − iωt

) + du0x

dx
ξ1 + i

(
ω̃ − kyu0y

)
ξ1,

(25)

v‖ = −Fx

2
+ u0y + u1y exp

(
ikyy − iωt

) + du0y

dx
ξ1 + ikyu0xξ1.

(26)

At the zeroth order, the conservation laws require that ρ0u0x,(
c2

s + u2
0x

)
ρ0, u0y are conserved across the shock; these relations

are satisfied in the steady-state background solutions. At first order,
we find that

ρ0u0xs1 + ρ0u1x + i
(
ω̃ − kyu0y

)
ρ0z1, (27)

5 That is, the Rankine–Hugoniot conditions.

c2
s + u2

0x

2u0x

s1 + u1x +
(

u2
0x − c2

s

2u2
0x

du0x

dx
+ i

(
ω̃ − kyu0y

))
z1, (28)

u1y +
(

du0y

dx
+ ikyu0x

)
z1, (29)

are conserved across the shock. Thus, equations (27)–(29) are the
jump conditions that the perturbed quantities u1x, u1y, s1 must satisfy
at the point x = xsh, where xsh is the position of the shock in the
background steady-state solution.

4.2 Sonic point condition

Equations (20)–(22) are singular at the sonic point. In other words,
when the background solution satisfies u0x = cs, some coefficients
of the differential equations diverge. To avoid divergences, the fol-
lowing relation must be satisfied at the sonic point:

i
(
ω̃ − kyu0y

)
css1 − (

ikycs + 2
)
u1y

+ [
2u′

0x − i
(
ω̃ − kyu0y

)]
u1x = 0 . (30)

This condition is obtained by plugging u0x = cs in equation (21) (or
equivalently in equation 22) and requiring that u′

1x remains finite.
Only if this condition is satisfied can the solution pass continuously
through the sonic point. All solutions whose domain of integration
contains the sonic point must satisfy this requirement.

4.3 Boundary conditions

Our steady state contains a shock. What boundary conditions should
we impose? In their classic analysis of the corrugation instability of
shock waves, D’yakov (1954) and Kontorovich (1958a) leave the
pre-shock flow unperturbed, on the basis of its supersonic velocity
(see §90 in Landau & Lifshitz 1987). This is the correct bound-
ary condition when we consider only a single shock. However, for
sequential, or periodic, shocks this might not be appropriate, as ma-
terial leaving one shock can later enter the next. Periodic boundary
conditions seem better suited for the case of galactic spiral shocks.

In this paper, we consider both types of boundary conditions,
which are described in more detail below. In the next section, we
explain how we implement them in our numerical code.

4.3.1 Periodic boundary conditions

Under periodic conditions, the perturbed quantities must satisfy

u1x(x) = u1x(x + L) (31)

u1y(x) = u1y(x + L) (32)

s1(x) = s1(x + L). (33)

4.3.2 DK boundary conditions

When we use D’yakov–Kontorovich (DK) boundary conditions,
we solve the problem only in the interval [xsh, xs], where xsh and xs

indicate the position of the shock and of the sonic point, respectively,
in the background steady-state solution. At x = xsh, we assume that
all pre-shock quantities are unperturbed (u1x = u1y = s1 = 0 just
before the shock), and all post-shock quantities are such that jump
conditions are satisfied accordingly. At the sonic point, we simply
ask that condition (30) is satisfied. When DK boundary conditions
are imposed in this way, the flow reaches the sonic point and is able
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2938 M. C. Sormani et al.

to traverse it. Since information cannot travel back after this point,
it does not matter what happens after this point and we can just
think of it as a sort of free-outflowing boundary.

4.4 Numerical procedure

We use the shooting method to solve our eigenvalue problem (e.g.
Press et al. 2007). Naively, one might think of shooting from an
arbitrary point x0. However, equations (20)–(22) are singular at the
sonic point. Thus, if we start integrating equations (20)–(22) from
a generic point x0 with some random guesses as initial values, the
solution will almost invariably crash at the sonic point and will not
be able to traverse the entire domain of integration. Following Lee
& Shu (2012) and Kim et al. (2014), we solve this problem by using
a variation of the ‘shooting to a fitting point method’ (e.g. Press
et al. 2007): we start integrating from the sonic point, choosing ini-
tial conditions such that equation (30) is already satisfied, and then
integrate forwards and backwards from there. We now describe in
more detail our numerical procedure for our two types of boundary
conditions.

4.4.1 Numerical procedure for periodic boundary conditions

In this case, given a value of ky, we perform the following steps:

(i) We start integrating from the sonic point x = xs by guessing
initial values for u1y and ω. Since both are complex numbers, this
amounts to guessing four real numbers.

(ii) Without loss of generality, we set s1 = 1 + i at the sonic
point (since the equations are linear, we can always perform such
rescaling) and calculate u1x from the sonic condition (30).

(iii) We integrate backwards from x = xs to x = xsh and forwards
to x = xsh + L.

(iv) We now have the values of u1x, u1y and s1 just before and
just after the shock. We must check whether these values satisfy the
jump conditions. However, we do not have a value of z1 yet, as it
was not necessary to start the integration from the sonic point. We
use one of the jump conditions (27)-(29) to calculate z1, and then we
check whether the other two equations are satisfied. These are two
complex-valued equations, so both the real and imaginary parts must
be equal. This means that we have a total of four constraints, the
same as the number of our unknowns (the four initial guesses). Thus,
the number of unknowns (initial guesses) matches the number of
constraints, and we have a well-defined problem. If the constraints
are satisfied, we have found a good solution, if not, we have to
go back and change our initial guesses (this is the essence of the
shooting method).

Thus, our numerical scheme requires essentially to find zeros
of a function R4 → R4. To solve this problem, we have used the
function root in the root finding package contained in SciPy (Jones
et al. 2001). Different solutions are found by starting from different
initial guesses. We have found that usually the solution converges
to the closest available value of ω.

4.4.2 Numerical procedure for DK boundary conditions

The procedure followed in this case is similar to the case with
periodic boundary conditions. Points (i) and (ii) are the same. At
point (iii), we only integrate backwards from x = xs to x = xsh

and not forwards, since in the case of DK boundary conditions
we only solve the problem in the interval [xsh, xs]. We then obtain

the values of u1x, u1y and s1 just after the shock. Now we assume
u1x = u1y = s1 = 0 just before the shock, and using these values
we calculate z1 using one jump conditions and then check the other
two complex-valued jump conditions. Thus, we again have four
constraints and four unknowns, and our scheme requires finding the
zeros of a function R4 → R4, which we solve as before.

5 R ESULTS

5.1 Case �0 = 0

Let us first consider the problem with �0 = 0. When the potential
vanishes, the background solution does not depend on x:

u0x = 1

2
, u0y = 0, ρ0 = constant. (34)

Substituting s1(x) ∝ u1x(x) ∝ u1y(x) ∝ exp (ikxx) into equations (20)–
(22) yields a linear algebraic system. Requiring this system to have
non-null solutions and restoring the original dimensions gives the
following dispersion relation for sound (acoustic) waves modes:

(−ω + kxu0x)2 = (2�)2 + c2
s

(
k2

x + k2
y

)
, (35)

In addition, there are also entropy-vortex modes (see e.g. Ap-
pendix C and Landau & Lifshitz 1987) that have the following
dispersion relation:

kxu0x − ω = 0. (36)

For both these types of modes, ω is always real (the imaginary part
is zero); therefore, the system is stable.

If we consider solutions that have period L, then we must have

kx = 2πn

L
, n = {...,−1, 0, 1, ...}. (37)

The top panel in Fig. 3 shows the dispersion relation in the plane
(ω, ky) for the case L = 1, cs = 0.7. Green horizontal lines are the
entropy-vortex modes, which do not depend on ky. Red and blue
lines show sound waves modes obtained by taking the positive and
negative square root in equation (35).

5.2 Case �0 �= 0

In this case, we proceed as follows to find the dispersion relation
in the (ω, ky) plane. First, we find modes for ky = 0 in the region
Re(ω) = (0, 20). Then we follow these modes until ky = ±20.
We give tables with the spectrum for ky = 0 in Appendix E. In a
few cases, we were not able to follow this modes after a certain
ky due to numerical difficulties. However, we have also manually
explored the parameter space up to |ky| = 100 and |Re(ω)| = 100
to check whether any conclusion that we have drawn was changed
by exploring a larger region, and we found that our conclusions are
unaffected.

Fig. 3 shows the dispersion relation for four different cases with
L = 1, cs = 0.7:

(i) The first row is the case �0 = 0, already discussed in the
previous section.

(ii) The second row shows the case �0 = 0.05 with periodic
boundary conditions, for which the background solution does not
contain a shock.6 As one would expect, in this case, the dispersion

6 The numerical procedure followed in this case is similar to the case with
shocks but more straightforward, since the background solution does not
contain a shock nor a sonic point the equations are not singular anymore.
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Periodicity makes shocks unstable 2939

Figure 3. Dispersion relations for four different cases with L = 1, cs = 0.7. The first row shows the dispersion relation for �0 = 0 calculated analytically
from equations (35) and (36). The other rows show the dispersion relation calculated numerically for the cases �0 = 0.05 and periodic boundary conditions
(which does not contain a shock), �0 = 0.25 with periodic boundary conditions and �0 = 0.25 with DK boundary conditions. The corresponding steady-state
background solutions are shown in Fig 1. Only the case �0 = 0.25 with periodic boundary conditions has unstable modes. The colour coding in the left and
right panels corresponds for the same modes.
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relation is very similar to that for �0 = 0 and the system is stable.
Some entropy-vortex modes seem to stop beyond a certain ky in
the figure, but this is likely a numerical artefact of our code as
these modes were sometimes difficult to follow numerically without
jumping on to some other mode.

(iii) The third row shows the more interesting case �0 = 0.25
with periodic boundary conditions. Here, the dispersion relation is
more complicated. There are unstable modes, with Im(ω) > 0, and
damped modes, with Re(ω) < 0. The system is unstable.

(iv) The fourth row shows the case �0 = 0.25 with DK boundary
conditions. The only difference between this and the previous case
are the boundary conditions. Here, only damped modes exist and
the system is stable. Changing the boundary conditions has made
the instability disappear.

Fig. 4 shows the dispersion relation for four different cases with
L = 1, cs = 0.3:

(i) The first row is the case �0 = 0.025 with periodic boundary
conditions. This case is unstable, similarly to the case �0 = 0.25
with periodic boundary conditions in Fig. 3.

(ii) The second row is the same case with DK boundary condi-
tion. There are only damped modes. Again, changing the boundary
condition makes the instability disappear.

(iii) The third row shows the more interesting case �0 = 0.25
with periodic boundary conditions. Now the system is extremely
unstable. Im(ω) reaches values much higher than in the previous
cases (which means the instability develops much faster) and peaks
at higher values of ky. Also note that the most unstable mode has
two ‘bumps’.

(iv) The fourth row shows the case �0 = 0.25 with DK boundary
conditions. This time the instability does not disappear changing
the boundary conditions. The system is again extremely unstable.
The most unstable mode is similar to the previous case, but this time
has only one ‘bump’.

6 D ISCUSSION

6.1 Physical interpretation

Table 1 summarizes our results. We have found that for moderate
values of �0 (i.e. when �0 is not too far from �c) changing the
boundary conditions makes the instability disappear. Only with pe-
riodic boundary conditions the system is unstable, while it is stable
for DK boundary conditions. For stronger values of �0 instead, the
system is unstable regardless of the boundary conditions. What is
the physical reason behind this behaviour?

In the D’yakov–Kontorovich classic analysis, isothermal shocks
are always found to be stable (see Appendix C and §90 in Landau
& Lifshitz 1987). In their analysis, the upstream flow is assumed to
be unperturbed because of its supersonic velocity (any perturbation
is advected with the flow and eventually disappears if it is not
maintained by an external forcing), and only the shock surface and
the downstream flows are perturbed. Stable modes exist with some
characteristic frequencies, and the shock surface can oscillate with
these frequencies (see our equation C38). However, if one modifies
their problem to send incident waves from upstream towards the
shock, these can resonate with the natural frequencies of the shock,
which are the stable oscillating modes found by DK. Thus, if one
sends incident waves from upstream with the right frequencies, it is
possible to make the shock resonate and blow up (see Appendix C).

Crucially, and unlike in the DK case where they disappear for-
ever, in the periodic case waves coming out from one shock can

enter into the next. This suggests that these waves can excite res-
onant modes, eventually leading to instability. Hence, while single
shocks are generally stable as shown by DK and subsequent authors,
periodic shocks are generally unstable because they ‘resonate with
themselves’. This scenario is realized in a disc galaxy, where mate-
rial coming out from a spiral arm can enter the next spiral arm. We
note that this behaviour might have applications to other contexts in
which periodic shocks are present, such as tidally induced shocks
in accretion discs in close binary systems.

This interpretation is complementary to that of Kim et al. (2014).
These authors argued that potential vorticity is generated at each
passage at a deformed shock front, while it is conserved between
two shocks. The continuous amplification of the potential vorticity
by subsequent shocks leads to instability.

Our results also explain why Dwarkadas & Balbus (1996) found
the system to be stable, while Kim et al. (2014) using what is
seemingly the same set-up found it to be unstable. The former used
DK boundary conditions, leading to a stable system, while the latter
used periodic boundary conditions, leading to an unstable system.
Kim et al. (2014) have noted this discrepancy but have attributed it
to poor numerical resolution and an insufficiently long integration
time in the work of Dwarkadas & Balbus (1996). We suggest instead
that the discrepancy is caused by the different boundary conditions.
More generally, a careful examination of the literature shows that all
works finding a stable system (Balbus & Cowie 1985; Balbus 1988)
use boundary conditions akin to DK, in the sense they do not allow
material that leaves one shock to enter into the next shock, while
works that find the system to be unstable (Lee & Shu 2012; Kim
et al. 2014, 2015) use periodic boundary conditions. Although some
of these studies included self-gravity and magnetic field, it may
be that the key effect leading to instability is whether shocks are
considered to be periodic or not. We argue that shocks are essentially
periodic in a real disc galaxy, so the instability must appear there
(see Section 6.3). The morphology of the resulting ‘feathering’ may
depend on the details of the physics included, but the presence of
such ‘feathering’ may ultimately be attributable to material passing
through a succession of shocks.

The fact that the instability disappears by switching from periodic
to DK boundary conditions also confirms that the instability is
distinct from a Kelvin–Helmholtz instability (KHI) as argued by
Kim et al. (2014). Indeed, if the instability was caused by a KHI
due to shear in the post-shock region, it would depend on the local
conditions after the shock only and would not be affected by a
change in the boundary conditions.

When �0 is increased, we have noted that the instability no longer
disappears by changing the boundary conditions. In this case, a par-
asitic KHI due to high shear in the post-shock region appears along
the periodic shock instability discussed above. This is not surprising
given how the shear in the post-shock region increases as we in-
crease �0: a glance at the bottom-middle panel of Fig. 2 shows that
when �0 is increased from 0.025 to 0.25 the background solution
for u0y is much steeper in the post-shock region, triggering a true
KHI. We have checked that eventually the same happens if we in-
crease �0 in the case cs = 0.7. The time-scale for the parasitic KHI
to develop is usually much shorter than the periodic shock instabil-
ity: the latter cannot be too fast because it requires fluid elements
to complete at least a one period to become effective. Also note
that the most unstable mode in the third row of Fig. 4 has a double
bump, while it has a single bump in the fourth row. This suggests
that the first bump is due to the periodic shock instability, while the
second bump is the parasitic KHI. The time-scales associated with
the two bumps seem to confirm this.
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Periodicity makes shocks unstable 2941

Figure 4. Dispersion relations for four different cases with L = 1, cs = 0.3. The first and second rows show the cases �0 = 0.025 with periodic and DK
boundary conditions, respectively. In this case, changing the boundary conditions makes the unstable modes disappear. The third and fourth rows show the
cases �0 = 0.25 with periodic and DK boundary conditions respectively. This time, changing the boundary conditions does not make the instability disappear.
The corresponding steady-state background solutions are shown in Fig. 2. The colour coding in the left-hand and right-hand panels correspond for the same
modes.

MNRAS 471, 2932–2951 (2017)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/471/3/2932/3926041 by guest on 25 April 2024



2942 M. C. Sormani et al.

To further test that our overall interpretation is correct, we have
done two things. First, we have been investigated the problem also
using hydrodynamical simulations. These have confirmed our re-
sults and will be the subject of a companion paper. Preliminary re-
sults suggest that the linear stability analysis can predict accurately
the time-scales and wavelengths of the instability. Second, we have
considered an even simpler toy problem than the one discussed so
far. In this toy problem, the steady-state solution contains periodic
shocks similar to the previous case, but u0y = 0 for all values of
�0. If our picture is correct, we should find that this system is al-
ways unstable with periodic boundary conditions while it is always
stable with DK boundary conditions, regardless of the strength of
�0. It should not be possible to trigger the parasitic KHI in this toy
problem as post-shock shear is never present. This is indeed what
we found. This simpler toy problem is described in Appendix D.

6.2 Dependence on the parameters

We have found that the stability of the system does not depend on
Fx. Since Fy/Fx = tan i (see Section 2), this means that, fixed the
values of all other parameters, the stability is independent of the
pitch angle. This seems at odd with the results of Wada & Koda
(2004), who find that the stability is sensitive to the pitch angle
(see their fig. 7). This apparent contradiction is explained if we
consider that varying only the pitch angle in the models of Wada
& Koda (2004) actually corresponds to varying many parameters
simultaneously in our models. In particular, varying only the pitch
angle in Wada & Koda (2004) amounts to varying both Fx and Fy

in our models while keeping |F| constant. Since our dimensionless
variables are scaled according to Fy (equation 6), this amounts
to varying all our dimensionless parameters, which should be all
varied simultaneously for a fair comparison with the simulations of
Wada & Koda (2004). Moreover, varying the pitch angle in Wada &
Koda (2004) also corresponds to significantly changing the interarm
distance L in our models. Finally, our equations are strictly valid
in the tightly wound approximation, which is not valid in the right-
hand panel in fig. 7 of Wada & Koda (2004), and this may lead to
further differences.

Our point is that, at least in the tightly wound approximation,
larger pitch angles do not necessarily correspond to more unsta-
ble systems, but one must also be careful to specify which other
parameters are kept constant in the analysis.

Our results also indicate that the instability is stronger at lower
sounds speed. This is expected because lower velocity dispersions
lead to stronger density contrasts and greater Mach numbers in
response to a given spiral potential and is in agreement with the
findings of Wada & Koda (2004) and Kim et al. (2014). Note that
changing the value of the sound speed while keeping constant all
the other parameters in our or in the cited references yields a fair
comparison, so the interpretation is easier than in the case of the
pitch angle.

According to Table 1, greater Mach numbers correlate with sys-
tems that are more unstable to KHI. Note however that this is a
case of ‘correlation does not mean causation’, and there is only
an indirect causal connection between the Mach number and the
occurrence of KHI. The latter is caused by shear. As discussed in
Section 3, in our models the amount of shear is connected to the
shock strength, because stronger shocks dissipate more energy that
must be compensated with greater displacements in the vertical di-
rections, which amounts to more shear. Hence, the shear and the
Mach number are correlated because they have a common origin
in these models; i.e., they both depend on the strength of the spiral

Table 1. Summary of the stability results. M = u0x/cs is the
Mach number calculated just before the shock.

boundary conditions �0 cs M Stability

Periodic 0.25 0.7 2.1 Unstable
DK 0.25 0.7 2.1 Stable
Periodic 0.025 0.3 1.9 Unstable
DK 0.025 0.3 1.9 Stable
Periodic 0.25 0.3 5.0 Unstable
DK 0.25 0.3 5.0 Unstable

potential. But this is only because the Coriolis term mixes the x- and
y-direction. When shear is absent, as in the toy problem considered
in Appendix D, arbitrarily high Mach number do not lead to KHI.
In this sense, there is no direct connection between a higher Mach
number and the occurrence of a KHI.

It would be interesting to understand how the wavelength of the
most unstable mode and the threshold that marks the occurrence of
the KHI depend on the parameters (L, �0, cs). However, a systematic
exploration of parameter space is cumbersome to do with the linear
analysis, while simple hydro simulations are more suited to this
task. Therefore, we plan to carry out a wider exploration of the
parameter space in the previously mentioned companion paper.

6.3 Are galactic shocks really periodic?

In our models, as in real galaxies, streamlines are not strictly closed
(see the right-bottom panels of Figs 1 and 2 and the discussion
of ‘drifts’ in Section 3). However, our models are translationally
invariant in the y-direction (i.e. the direction parallel to a spiral
arm), while in a real galaxy (and also in the simulations of Wada &
Koda 2004), the flow smoothly changes as we move along a spiral
arm. Thus, one may ask whether our results apply to a real galaxy
and/or to global hydrodynamical simulations.

We argue on the basis of the physical interpretation discussed
in Section 6.1 that although not exactly periodic, the underlying
physical picture based on amplification of small disturbances is still
valid and should lead to instability. Small disturbances coming out
from one particular shock will subsequently hit a slightly different
shock at a different radius, but they will nevertheless be amplified
because the transmission coefficients are usually very high (see also
Appendix C). Work of Kim & Kim (2014) (see their figs 2 and 5)
seems to confirm this. In these figures, one sees that the instability
developing from the centre outwards. Our results suggest that this
is because it is in the centre that the time separation between two
shock passages is shortest; hence, the disturbances are amplified
earliest there. The same figures also seem to indicate that ‘wiggle’
and ‘ripples’ form where perturbations are coming into the shock.
Indeed, large amplification of inhomogeneities was noted by Dobbs
& Bonnell (2006) in their simulations as gas goes through a spiral
shock. The typical time-scales derived from the linear analysis show
that a small number of passages are enough to get into the non-linear
regime. With hindsight, this is not surprising given the analysis in
Appendix C, which shows that in principle a wave sent with exactly
the right frequency, regardless of how it originated, can resonate
and result in an infinite amplification factor. Therefore, it is likely
to be unimportant where the original disturbances are coming from,
or whether from an identical shock or a slightly different one.

A more subtle question is how to separate, in a real galaxy or in
a simulation like those of Wada & Koda (2004), the contributions
from the periodic shock instability and the parasitic KHI. While
in our idealized problem it is possible to turn off the former by
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changing the boundary conditions, this is not possible in a real
galaxy and in global simulations. This is why the idealized studies
are useful, because they allow study of physical mechanisms from
a privileged point of view, in this case by isolating two effects
that are otherwise difficult to separate. However, the KHI time-
scale is usually much shorter than the periodic instability time-
scale. Therefore, if in a simulation like those of Wada & Koda
(2004), an instability develops before the gas had time to cover the
distance between two spiral arms, then it must be a KHI, while if
it develops over times longer than this, it is likely to be a periodic
shock instability. Note however that even in the case a parasitic KHI
is present, once the disturbances it creates reach the next shock they
will be greatly amplified (see also Dobbs & Bonnell 2006). It is
ultimately possible that in real galaxies both processes, the periodic
shock instability and the KHI, are simultaneously operating and that
what has been called ‘wiggle instability’ is a combination of both
processes.

7 C O N C L U S I O N

We used a linear stability analysis to study the stability of stationary
galactic spiral shocks. The steady-state equilibrium flow contains
a shock of the type first derived by Roberts in the tightly wound
approximation. We have found that the occurrence of an instability
depends crucially on the boundary conditions imposed. Our analysis
is performed in the context of a simplified problem in order to make
the physical interpretation of the results as clear as possible. We
have also assumed that gas is isothermal, non-self-gravitating, non-
magnetized. We have found that:

(i) Galactic shocks are always unstable when periodic boundary
conditions are imposed.

(ii) For moderate strengths of the spiral potential, the instability
disappears if boundary conditions are switched to those used in the
classic works of D’yakov (1954) and Kontorovich (1958a) in which
the upstream flow is left unperturbed.

(iii) The key physical motivation that leads to instability in the pe-
riodic case is that small amplitude sound waves and entropy-vortex
waves leaving one shock can enter into the next shock, be amplified
and resonate with it, leading to instability. This periodic shock insta-
bility is what has been previously called ‘wiggle instability’. Based
on this physical interpretation, we have argued that instability is a
general characteristic of periodic shocks, even outside the galactic
shocks context.

(iv) The periodic shock instability is not a shear (Kelvin-
Helmholtz) instability, otherwise, it would not disappear by chang-
ing the boundary conditions. This explains apparently contradictory
findings in the literature and suggests that periodic shocks might be
the key to understand the feathering of spiral arms. Self-gravity
and/or magnetic fields are certainly important in determining the
morphology of feathers, but they may not be the primary driver.

(v) For higher strengths of the spiral potential, the shear in the
post-shock region must increase as an inevitable consequence of
shocks getting stronger: stronger shocks dissipate more energy that
must be compensated by a larger drift in the vertical direction, i.e.
more shear (see Section 3.2.1). Parasitic Kelvin–Helmholtz insta-
bilities can develop in this case on the top of the periodic shock
instability.

Our analysis is strictly valid only in the tightly wound approxima-
tion, but we have argued on the basis of our physical interpretation
that mechanism that leads to the instability should be applicable
whenever disturbances can be amplified by a sequence of shocks.

The results obtained by a linear stability analysis in this paper have
been confirmed by hydrodynamical simulations that will be the
subject of a companion paper which is currently in preparation.
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APPENDIX A : D ERIVATION O F BASIC
E QUAT I O N S

A1 Equations of motion in a rotating frame

The Euler and continuity equations in a frame rotating with pattern
speed �p are as follows:

∂t ρ + ∇ · (ρv) = 0, (A1)

∂tv + (v · ∇) v = −∇P

ρ
− ∇� − 2�p × v − �p × (

�p × r
)
,

(A2)

where v is the velocity in the rotating frame, −2�p × v is the
Coriolis force, −�p × (

�p × r
)

is the centrifugal force.

A2 Spiral coordinates

Following Roberts (1969), we define the following spiral coordi-
nates:

η = log (R/R0) cos(i) + θ sin(i), (A3)

ξ = − log (R/R0) sin(i) + θ cos(i). (A4)

The inverse relations are

log (R/R0) = η cos(i) − ξ sin(i), (A5)

θ = η sin(i) + ξ cos(i), (A6)

where R, θ are usual polar coordinates and R0 and i are constants.
Fig. A1 shows lines of constant η and ξ . The unit vectors in the
directions η and ξ are

êη = cos(i)êR + sin(i)êθ , (A7)

êξ = − sin(i)êR + cos(i)êθ . (A8)

Figure A1. Definition of the spiral coordinate system.

Straightforward calculations show that the gradient in spiral coor-
dinates is

∇ = 1

R

(
êη

∂

∂η
+ êξ

∂

∂ξ

)
(A9)

and the derivatives of the unit vectors are

∂êη

∂η
= sin(i)êξ ,

∂êη

∂ξ
= cos(i)êξ , (A10)

∂êξ

∂η
= − sin(i)êη,

∂êξ

∂ξ
= − cos(i)êη. (A11)

A3 Equations of motion in spiral coordinates

Using the relations of the previous subsection it is straightforward
to rewrite the fluid equations (A1) and (A2) in spiral coordinates.
The continuity equation becomes

∂t ρ + 1

R

[
∂η

(
ρvη

)
+ ∂ξ

(
ρvξ

) + ρ
(
vη cos(i) − vξ sin(i)

)] = 0, (A12)

and the Euler equation become

∂t vη + 1

R

[
vη

(
∂ηvη

) + vξ

(
∂ξ vη

) − vξvη sin(i) − v2
ξ cos(i)

]
= − 1

R

∂ηP

ρ
− 1

R
∂η� + 2�pvξ + cos(i)�2

p, (A13)

∂t vξ + 1

R

[
vη

(
∂ηvξ

) + vξ

(
∂ξ vξ

) + vηvξ cos(i) + v2
η sin(i)

]
= − 1

R

∂ξP

ρ
− 1

R
∂ξ� − 2�pvη − sin(i)�2

p. (A14)

A4 Split into circular and spiral components

Consider an axisymmetric steady-state solution of the fluid equa-
tions such that:

(i) A completely axisymmetric background potential �0 is
present.

(ii) The gas is in purely circular motion with velocity

vc = (
�(R) − �p

) × r. (A15)

(iii) The density ρc is uniform.

Such a solution satisfies the following equations:

∂t ρc + ∇ · (ρcvc) = 0, (A16)

∂tvc + (vc · ∇) vc = −∇Pc

ρc
− ∇�0 − 2�p × vc

− �p × (
�p × r

)
, (A17)

∂t ρc = ∂tvc = ∇Pc = 0. (A18)

Now add a spiral component �s to the external potential. We write
all fluid quantities as the sum of the axisymmetric solution plus a
‘spiral’ departure from the axisymmetric solution. Hence, we write

v = vc + vs

ρ = ρc + ρs

P = Pc + Ps

� = �0 + �s. (A19)
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Substituting (A19) into (A1)–(A2) and using (A16)–(A18) to elim-
inate some terms, we find

∂t ρs + ∇ · (ρv) = 0, (A20)

∂tvs + (v · ∇) vs + (vs · ∇) vc = −∇Ps

ρ
− ∇�s − 2�p × vs.

(A21)

Note that so far we have not performed any approximation.

A5 Approximation

Following Roberts (1969) (see also Balbus 1988), we now approxi-
mate the equations of motion in a local patch centred at a radius R0

under the following assumptions:

(i) The pitch angle is small,

tan i � 1. (A22)

(ii) The circular speed R� is of the same order of vξ and is much
greater than vη, vsξ , vsη. The latter are all comparable in size. Thus,

vη ∼ vsη ∼ vsξ � R� ∼ vξ . (A23)

(iii) The radial spacing between the spiral arms L is much smaller
than R0.

L � R. (A24)

(iv) Quantities vary much faster in the direction êη (with a length-
scale L), while they vary more slowly (with a length-scale R) in the
direction êξ . Thus,

∂η ∼ (R/L), ∂ξ ∼ 1. (A25)

A5.1 The continuity equation

Consider equation (A12). Using the approximations listed in the
previous subsection, we see that

∂η

(
ρvη

) ∼ (R/L)ρvη, (A26)

∂ξ

(
ρvξ

) ∼ ρvξ , (A27)

ρvη cos(i) ∼ ρvη, (A28)

ρvξ sin(i) ∼ ρvξ sin(i). (A29)

The last two quantities are negligible compared to the first two.
Hence, we can approximate the continuity equation as

∂t ρ + 1

R

[
∂η

(
ρvη

) + ∂ξ

(
ρvξ

)] = 0. (A30)

If we now focus on the neighbour of a point at distance R = R0

from the centre of the galaxy and define x and y coordinates such
that dx = R0dη and dy = R0dξ , at first order we find

∂t ρ + [
∂x (ρvx) + ∂y

(
ρvy

)] = 0. (A31)

A5.2 The Euler equation

Consider the following identity:

(vs · ∇) vc = (
� − �p

) × vs + vs · r
R

[(
d�

dR

)
× r

]
. (A32)

We can expand and approximate the second term on the right-hand
side of equation (A32) and obtain

vs · r
R

[(
d�

dR

)
× r

]

= R
d�

dR

(
vsξ cos(i) − vsη sin(i)

) (
cos(i)êξ + sin(i)êη

)
(A33)

� R
d�

dR
vsξ êξ , (A34)

where we have used that tan i � 1 and that in spiral coordinates we
have

r = R
(
cos(i)êη − sin(i)êξ

)
. (A35)

We can therefore approximate equation (A32) as

(vs · ∇) vc = (
� − �p

) × vs + R
d�

dR
vsξ êξ . (A36)

Using the relations of Section A2 and that tan i � 1, we find

(v · ∇) vs = 1

R

[(
vη∂ηvsη + vξ∂ξ vsη

)
êη

+ (
vη∂ηvsξ + vξ∂ξ vsξ

)
êξ

]
+ 1

R

(−vηvsξ sin (i) − vξvsξ cos (i)
)
êη

+ 1

R

(
vηvsη sin (i) + vξ vsη cos (i)

)
êξ (A37)

� 1

R

[(
vη∂ηvsη + vξ∂ξ vsη

)
êη + (

vη∂ηvsξ + vξ∂ξ vsξ

)
êξ

]

+ 1

R

[−vξ vsξ êη + vξ vsηêξ

]
. (A38)

Note that some terms in the above equations arise from the deriva-
tives of the unit vectors êη and êξ . Since vξ � vcξ = (�−�p)Rcos (i)
� (� − �p)R, this equation can be rewritten as

(v · ∇) vs = 1

R

[(
vη∂ηvsη + vξ∂ξ vsη

)
êη

+ (
vη∂ηvsξ + vξ∂ξ vsξ

)
êξ

]
+ (

� − �p

) × vs. (A39)

Substituting equations (A36) and (A39) into equation (A21) and
defining x and y coordinates such that dx = R0dη and dy = R0dξ ,
we finally find

∂tvs + (
vx∂xvsx + vy∂yvsx

)
êx + (

vx∂xvsy + vy∂yvsy

)
êy

= −∇Ps

ρ
− ∇�s − 2� × vs − R0

d�

dR
vsyêy. (A40)

which agrees with the result of Roberts (1969), Balbus (1988) and
Kim et al. (2014). In this equation, d�/dR is calculated at the point
R0. Note that:

(i) In equation (A40), the derivatives do not act on the unit vec-
tors.

(ii) The Coriolis term that appears in this equation is not calcu-
lated using the pattern speed �p, but using the value of � at R = R0,
i.e. of the angular rotation speed of the galaxy relative to an iner-
tial frame. However, the total velocities in the same equation are
calculated in the frame that rotates with �p.

(iii) In solving equations (A31) and (A40), the circular velocity
vc must be specified. Variation of vcx and vcy as a function of x and y
give rise to terms whose magnitude is comparable to other terms in
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equations (A31) and (A40); therefore, the circular velocity cannot,
in general, be considered constant independently from the form of
the function �(R).

A6 Connection with the problem considered in the main text

Consider equations (A31) and (A40). In these equations, the total
velocity is given by

vx = vcy + vsx, (A41)

vy = vcy + vsy . (A42)

Following Balbus & Cowie (1985), Dwarkadas & Balbus (1996)
and others let us assume that the circular velocity can be considered
constant and equal to

vcx = (
�(R0) − �p

)
R0 sin(i), (A43)

vcy = (
�(R0) − �p

)
R0 cos(i), (A44)

then the various terms in equation (A40) can be rewritten as follows:

∂tvs = ∂tv, (A45)

vx∂xvsx + vy∂yvsx = vx∂xvx + vy∂yvx, (A46)

vx∂xvsy + vy∂yvsy = vx∂xvy + vy∂yvy, (A47)

∇Ps

ρ
= ∇P

ρ
, (A48)

2� × vs = 2� × (v − vc) (A49)

Hence, we can rewrite (A40) as

∂tv + (
vx∂xvx + vy∂yvy

)
êx + (

vx∂xvx + vy∂yvy

)
êy (A50)

= −∇P

ρ
− ∇�s − 2� × v + 2� × vc − R

d�

dR
vsyêy. (A51)

Equations (1) and (2) can be obtained from equations (A31) and
(A51) provided that (i) the term d�/dR is neglected. This sim-
plifies the problem conceptually while not affecting the important
mathematical characteristics of the problem nor the conclusions in
the main text; (ii) the following change of notation is performed:

F = 2� × vc, (A52)

and

� = �s. (A53)

APPENDIX B: STEADY STATES FOR
�0 � 1 – R E S O NA N C E S

In the main text, we have studied numerically exact solutions of
equations (13) and (14). However, when �0 � 1 is very small, it
is possible to find approximate steady-state solutions analytically
by expanding the equations to first order in small quantities and
thus recover the small amplitude solutions without shocks found
in the main text. This also shows that depending on the values of
the parameters it is possible for resonances to occur, for which the
gas response to the imposed potential is particularly strong (Shu
et al. 1973).

Beginning with the solution for the case �0 = 0 discussed in
Section 3.1:

u0x = 1

2
, u0y = 0, (B1)

we look for solutions to equations (13) and (14) that are close to the
�0 = 0 solution,

u0x = 1

2
+ �u0x, u0y = �u0y . (B2)

Substituting (B2) into equations (13) and (14) and expanding to first
order in the quantities with � and in �, we obtain

�u′′
0x = − 16(

1 − 4c2
s

)�u0x − 2(
1 − 4c2

s

)�′′ (B3)

The solution of equation (B3) with period L is7

�u0x =
(

2π

L

)2 2�0

16 − (
1 − 4c2

s

)
(2π/L)2

cos

(
2πx

L

)
. (B4)

This is the approximate steady-state analytical solution for the case
of small �0. Note that the denominator diverges when

16 − (1 − 4c2
s )(2π/L)2 = 0. (B5)

This result has a simple interpretation. Consider small amplitude
sound waves propagating through the �0 = 0 solution, when the
medium has uniform background density and uniform background
velocity v0. The dispersion relation for these waves is

(−ω + k · v0)2 = (2�)2 + c2
s k2. (B6)

Therefore, the trajectory of a fluid element in these sound waves
has the following form:

x(t) = v0t + x1 exp

(
ik · x − i

√
(2�)2 + c2

s k2 t

)
. (B7)

In other words, a fluid element propagates oscillating around a
straight line with frequency

ω̃ =
√

(2�)2 + c2
s k2. (B8)

When �0 � 1, sound waves are similar to those for the case �0 = 0,
and a fluid element following the trajectory (B7) encounters the
maxima of the gravitational potential at time intervals separated by
L/v0x = 2�L/Fy. Hence, the fluid element feels a periodic external
forcing due to the gravitational potential with frequency:

ω� = πFy

�L
. (B9)

According to the dispersion relation (B6), the frequency of sound
waves with wavelength equal to the distance between maxima of
the potential is (kx = 2π/L, ky = 0):

ω̃ =
√

(2�)2 + c2
s

(
2π

L

)2

. (B10)

The condition for resonances is

ω̃ = ω�, (B11)

which is precisely the same as the condition (B5), after the original
parameters with dimensions are restored. In other words, resonances
are present when sound-wave oscillations of a fluid element have

7 Note that, if cs < 0.5, this is the equation of a driven harmonic oscillator,
where the driving force is given by the term with �′′.
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the same frequency as the forcing caused by the external potential
on the same fluid element.

Retaining more terms in the expansions in the quantities �u0x

and �u0y leads to higher order resonances (Shu et al. 1973).

A P P E N D I X C : TH E D ’ YA KOV– KO N TO ROV I C H
A NA LY S I S

In this appendix, we briefly review some of the classic results
contained in a series of papers by D’yakov (1954, 1958a,b) and
Kontorovich (1958a,b). In the earlier works (D’yakov 1954; Kon-
torovich 1958a), these authors considered the stability of a single
planar shock wave to corrugations of its surface in a fluid with an ar-
bitrary equation of state. In this analysis, only the downstream flow
is perturbed, while the upstream fluid is assumed to be unperturbed
because of its supersonic velocity, which would advect any pertur-
bation to infinity if not maintained by an external forcing. They
found that shocks are generally stable, except for exotic equations
of state (see also the discussion in §90 of Landau & Lifshitz 1987).

In later works (D’yakov 1958a,b; Kontorovich 1958b, see also
McKenzie & Westphal 1968), these authors studied the transmission
and reflection coefficients for small amplitude perturbations (waves)
coming from upstream or downstream with an arbitrary angle of
incidence. There are two possible kinds of small perturbations that
can propagate in a uniform fluid moving with constant velocity:
sound waves, which move with the speed of sound relative to the
fluid, and entropy-vortex waves that are simply advected with the
fluid (see for example §82 in Landau & Lifshitz 1987). When a wave
of only one type is incident on the shock,8 the waves that diverge
from the shock are generally composed of both types.9 When a wave
is incident from upstream, only transmitted waves can be present,
and no reflected wave, since the upstream flow is supersonic. On
the other hand, when a wave is incident from downstream, only a
reflected wave is present, for the same reason. Both transmission
and reflection can result in great amplification of the disturbances.

Here, we adapt the more general results obtained by the authors
mentioned above to our simpler isothermal case. We begin with a
recap of the properties of sound and entropy–vortex waves.

C1 Sound waves and entropy–vortex waves

There are two possible kinds of small perturbations in a uniform
fluid moving with constant velocity: sound waves and entropy–
vortex waves. For our isothermal case, these can be characterized
as follows. Let us denote with s1 ≡ ρ1/ρ0 the density perturbation
and with v1 the velocity perturbation.

For a sound wave

v1 = v
(s)
1 exp (ik · x − iωt) , (C1)

s1 = s
(s)
1 exp (ik · x − iωt) , (C2)

where the dispersion relation and velocity perturbation are

c2
s k2 = (ω − k · v0)2 , (C3)

8 Note that any small amplitude perturbations can be uniquely decomposed
as a linear superposition of sound and entropy–vortex waves, so it suffices
to study the transmission and reflection of each type separately.
9 Note that since entropy–vortex waves are advected with the flow, they can
only hit the shock from upstream, not from downstream.

v
(s)
1 = c2

s

k
(ω − k · v0)

s
(s)
1 . (C4)

Therefore, a sound wave is completely specified by three quantities:
ω, ky and s

(s)
1 . The latter specifies the amplitude of the wave.

For an entropy vortex wave,

v1 = v
(e)
1 exp (ik · x − iωt) , (C5)

s1 = s
(e)
1 exp (ik · x − iωt) , (C6)

where the dispersion relation and velocity perturbation are

k · v0 = ω, (C7)

k · v
(e)
1 = 0, (C8)

s
(e)
1 = 0. (C9)

Thus, an entropy-vortex wave is also completely specified by three
quantities: ω, ky and v

(e)
1x . The latter specifies the amplitude of the

wave.

C2 Stability of isothermal shocks and their interaction with
small perturbations incident from upstream

Consider a planar shock wave at rest at x = 0 in a fluid that obeys
the following equations of motion:

∂tv + (v · ∇) v = −c2
s

∇ρ

ρ
, (C10)

∂t ρ + ∇ · (ρv) = 0 . (C11)

The unperturbed flow is assumed to move from left to right (i.e.
in the positive x-direction). The upstream density and speed are
assumed to be

ρ
(-)
0 = αρ0, (C12)

v
(-)
0 = v0/α, (C13)

and for the downstream flow:

ρ
(+)
0 = ρ0, (C14)

v
(+)
0 = v0, (C15)

where we have defined

α ≡
(

v0

cs

)2

, (C16)

and we have α < 1 since the downstream flow must be subsonic.
We take both the upstream (−) and downstream (+) flow to be a
superposition of sound waves and entropy vortex waves:

s
(±)
1 =

[
s

(e±)
1 exp

(
ik(e±)

x x
) + s

(s±)
1 exp

(
ik(s±)

x x
)]

× exp
(
ikyy − iωt

)
, (C17)

v
(±)
1 =

[
v

(e±)
1 exp

(
ik(e±)

x x
) + v

(s±)
1 exp

(
ik(s±)

x x
)]

× exp
(
ikyy − iωt

)
. (C18)

This encompasses both the case in which the upstream flow is
unperturbed (which corresponds to v

(-)
1 = s

(-)
1 = 0) and the case
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in which small perturbations are incident from upstream.10 Note
that ky must be the same upstream and downstream, while kx is
general different.11 Using the conditions (C7)–(C9) and (C3)–(C4),
we can write

s
(e±)
1 = 0, (C19)

k(e±)
x = ω/v

(±)
0 , (C20)

k(s±)
x ≡ k(±)

x , (C21)

c2
s

((
k(±)

x

)2 + k2
y

)
=

(
ω − k(±)

x v
(±)
0

)2
, (C22)

v
(s±)
1 = c2

s

k(±)(
ω − k

(±)
x v

(±)
0

) s
(s±)
1 , (C23)

v
(e±)
1 = v

(e±)
1x

(
x̂ − ω

kyv
(±)
0

ŷ

)
. (C24)

Thus at x = 0, we have

s
(±)
1 = s

(s±)
1 , (C25)

v
(±)
1x = v

(e±)
1x + c2

s

kx
(±)(

ω − k
(±)
x v

(±)
0

) s
(s±)
1 , (C26)

v
(±)
1y = −v

(e±)
1x

ω

kyv
(±)
0

+ c2
s

ky(
ω − k

(±)
x v

(±)
0

) s
(s±)
1 . (C27)

As in the main text, the surface of the shock is assumed to be
displaced in the x-direction by an amount:

ξ1 = z1 exp(ikyy − iωt), (C28)

where z1 is a complex number. We can now use the jump conditions
(27)–(28) to relate the downstream quantities to the upstream quan-
tities. For the case considered in this appendix, these can be written
as

ρ
(-)
0 v

(-)
1x s

(-)
1 + ρ

(-)
0 v

(-)
1x + iωρ

(-)
0 z1

= ρ
(+)
0 v

(+)
1x s

(+)
1 + ρ

(+)
0 v

(+)
1x + iωρ

(+)
0 z1, (C29)

c2
s +

[
v

(-)
0

]2

2v
(-)
0

s
(-)
1 + v

(-)
1x =

c2
s +

[
v

(+)
0

]2

2v
(+)
0

s
(+)
1 + v

(+)
1x , (C30)

v
(-)
1y + ikyv

(-)
0 z1 = v

(+)
1y + ikyv

(+)
0 z1. (C31)

Plugging equations (C25)–(C27) into equations (C29)–(C31), we
obtain the following system:

AX = b, (C32)

where

X =

⎛
⎜⎜⎝

s
(s+)
1

v
(e+)
1x

z1

⎞
⎟⎟⎠, (C33)

10 The upstream perturbations are waves that are assumed to be sent from
x = −∞ by an external source.
11 The change in the ratio kx/ky is directly related to reflection and refraction
laws similar to Snell’s law in geometrical optics, see for example McKenzie
& Westphal (1968).
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1 i
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]
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s
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1 0
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2
s
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x v0

− ω
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0

]

⎞
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,

(C34)

and

b =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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(-)
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(-)
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− ωv0
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s

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎝ s

(s-)
1

v
(e-)
1x

⎞
⎠. (C35)

Equation (C32) is a linear system in the three unknowns s
(s+)
1 , v(e+)

1x

and z1. The term b represents the waves incident from upstream and
it vanishes if the upstream fluid is unperturbed. In this latter case,
the linear system has non-zero solutions only if

det A = 0. (C36)

Performing the calculations, we obtain:

det A = i
(
c2

s /v
2
0 − 1

)
2ky

(
k

(+)
x v0 − ω

) [(
1 − v2

0

c2
s

)

× (
k(+)

x v0 − ω
) (

c2
s k

2
y + ω2

) + 2ω
(
k2

yv
2
0 + ω2

)]
,

(C37)

which coincides with the result of D’yakov (1954) and equation
(90.10) of Landau & Lifshitz (1987) except for an unimportant
overall multiplication factor. We can now solve equation (C36)
coupled with equation (C22) (taken with the plus sign) in the two
unknowns ω, k(+)

x to obtain the proper oscillation frequencies of the
system:

ω = ±csky, k(+)
x = ∓2cskyv0

c2
s − v2

0

. (C38)

This is the result of D’yakov (1954) for our simple isothermal case.
The eigenfrequencies of the system are real, meaning that the system
is stable. This is also referred as ‘spontaneous emission of waves’
from the shock (Landau & Lifshitz 1987).

By solving the inhomogeneous case in which b �= 0 it is pos-
sible to obtain the transmission coefficients and the amplification
factors of incident waves. The full formulas for these quantities can
be found elsewhere and are not reported here (D’yakov 1958a,b;
Kontorovich 1958b; McKenzie & Westphal 1968). Here, we limit
ourselves to mention that the expression for these quantities contain
the quantity det A in the denominator, and therefore, they diverge if
waves are sent with frequencies corresponding to the proper oscilla-
tion frequencies of the system. Thus, if sound waves spontaneously
emitted from the shock were somehow allowed to reenter from the
other side, these could resonate with the shock, leading to unsteady
flow. Large amplifications that are possible for these values of the
frequency of incident waves provide a physical picture to explain
why periodicity is the key that makes shocks unstable.
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APPENDIX D : A N EVEN SIMPLER TOY
PROBLEM

According to the interpretation given in the main text, shocks are
always unstable under periodic boundary conditions, while they
can be unstable under DK boundary conditions only if high shear
in the post-shock region triggers a parasitic KHI, which we argued
to be distinct from the periodic shock instability. To test whether
this is true, we looked for a similar problem such that the steady
state always has v0y = 0 (no shear). If our interpretation is correct,
this problem should always be unstable under periodic boundary
conditions, and always stable under DK boundary conditions. In
this appendix, we study such a variant of the main problem:

Consider the following:

∂tv + (v · ∇) v = −∇P

ρ
− ∇�, (D1)

∂t ρ + ∇ · (ρv) = 0, (D2)

with

�(x) = �0 cos

(
2πx

L

)
− Fx, (D3)

where F is a constant, and as before we assume the gas to be
isothermal. This problem is equivalent to the problem posed by
equations (1) and (2) for the case � = Fy = 0. Dimensional analysis
shows that without loss of generality, we can put F = L = 1, and
the problem has only two dimensionless parameters: �0 and cs.

Looking for steady states that depend only on x and have period
L as before, we arrive at the following equations (which are the
analogues of equations 10 and 11) :

v′
0x = −�′

v0x − c2
s

v0x

, (D4)

v′
0y = 0. (D5)

The top panel in Fig. D1 shows for example a steady-state solution
obtained for cs = 1, �0 = 0.5, while the bottom panel shows the
corresponding �. In between shocks, fluid elements have a net gain
of energy from the ever decreasing potential that is then radiated
away at the shock and the cycles starts over.

We have performed the same linear stability analysis that we
presented in the main text. We used several values of cs = 0.5,
1.0 and �0 = 0.5, 1.0, 2.0 in this toy problem. In every case, we
have found that imposing periodic boundary condition the system
is unstable, while imposing DK boundary conditions the system is
stable.

Note that this problem is equivalent to the problem of nearly
one-dimensional gas flow through a nozzle, where �(x) plays the
role of the nozzle width A(x) (see for example §97 in Landau &
Lifshitz 1987). It is known that to accelerate gas from sub- to
supersonic velocities through a nozzle, the nozzle must be first
converging and then diverging, and the sonic point occurs where
the nozzle has minimum width. One cannot achieve supersonic
velocities using an ever narrowing nozzle. Analogously, in our case
the gas cannot achieve supersonic velocity through a monotonically
decreasing �(x). �(x) must have a local maximum at the sonic point.
This can also be seen from equation (D5): v′

0x can remain finite at
the sonic point only if �′ = 0. Accelerating gas to supersonic
velocities is a necessary to have shocks, so no solution with shocks
can be found if maxima of � are not present. Note also that the
equations and physical mechanism to accelerate gas from subsonic
to supersonic velocities described here is essentially the same as in

Figure D1. Top panel: an example of steady-state solution for the toy
problem for cs = 1.0, �0 = 0.5. Bottom panel: the corresponding �.

Parker (1958, 1965) solar wind solution. In this latter case however
the flow is not periodic but extends to infinity.

Thus, the requirement that �(x) has local maxima puts a lower
limit on �0:

�0 ≥ FL

2π
. (D6)

It is tempting to identify this with �c (i.e. the minimum � for
which shock solutions exist) for this toy problem. However, this is a
necessary but not sufficient condition to find a solution with periodic
shocks in our problem. To understand why, consider Bernoulli’s
theorem, which states that between shocks the following quantity
is conserved in our steady states:12

v2
x

2
− c2

s

2
− c2

s log (vx/cs) + �(x) = constant. (D7)

Let va and vb be the velocity just before and after the shock. If �0 is
too small, for example just above the limit given by equation (D6),
as we start integrating backwards from the sonic point (which coin-
cides with xmax), vx decreases until xmin, but then it starts increasing
again (look at how the sign of v′

x depends on �′ in equation D5). If
xmin and xmax are too close, the flow starts decreasing before it has
reached a sufficient velocity to satisfy the shock jump condition, that
in this case is vavb = c2

s . A sufficient condition for the existence of
solutions with periodic shocks can be found by imposing that when
�0 = �c the shock should appear at the position xmin. This amounts
to solving the following system in the three unknowns va, vb, �0

12 At shocks in a periodic steady state it jumps by an amount FL.
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Figure D2. �c as a function of the only dimensionless parameter, cs, for
the toy problem.

for given cs, L and F:

v2
a

2
− c2

s

2
− c2

s log (va/cs) + �(xmin) = �(xmax) (D8)

v2
b

2
− c2

s

2
− c2

s log (vb/cs) + �(xmin + L) = �(xmax) (D9)

vavb = c2
s . (D10)

The solution to this system yields a �c that depends on the only
other dimensionless parameter of this toy problem:

�c = �c(cs). (D11)

This function can be calculated numerically by solving the system
above and is shown in Fig. D2. For cs = 0.0, the �c coincides with
the lower limit (D6). This explains the origin of �c in this simple
toy problem.

APPENDIX E: TABLES WITH SOLUTIONS O F
T H E EI G E N VA L U E PRO B L E M

In this appendix (see Tables E1 and E2), we provide values of the
initial conditions for u1y and eigenfrequencies for the modes with

Table E1. Initial conditions at the sonic point
and eigenfrequencies for modes with ky = 0
in Fig. 3.

u1y ω

�0 = 0.25, cs = 0.7 periodic b.c.

0.640 + 0.640i 0.000 − 1.670i
0.279 − 0.837i 2.567 − 0.361i

−4.331 + 0.262i 3.142 + 0.000i
−1.995 + 1.544i 6.284 − 0.000i

0.169 − 0.267i 8.624 − 0.001i
−4.009 − 2.907i 9.426 + 0.000i
−3.613 + 2.962i 12.568 − 0.000i
−0.135 + 3.665i 15.710 − 0.000i

0.104 − 0.133i 16.579 − 0.005i
−4.621 + 3.751i 18.852 + 0.000i

�0 = 0.25, cs = 0.7 DK b.c.

0.838 + 0.838i 0.000 − 1.595i
0.433 − 0.678i 3.110 − 1.137i
0.643 − 0.334i 3.446 − 3.266i
0.481 − 0.310i 4.608 − 3.085i
0.395 − 0.268i 5.637 − 3.139i
0.329 − 0.232i 6.772 − 3.218i
0.280 − 0.205i 7.918 − 3.258i
0.244 − 0.184i 9.066 − 3.286i
0.215 − 0.166i 10.217 − 3.310i
0.192 − 0.152i 11.371 − 3.330i
0.174 − 0.140i 12.528 − 3.347i
0.158 − 0.130i 13.686 − 3.363i
0.145 − 0.121i 14.846 − 3.378i
0.134 − 0.113i 16.007 − 3.392i
0.125 − 0.106i 17.168 − 3.406i
0.117 − 0.100i 18.329 − 3.419i
0.109 − 0.094i 19.490 − 3.433i

ky = 0 shown in Figs 3 and 4. The initial conditions are given at the
sonic point, which is the point where we start integrating equations
(20)–(22) in our numerical scheme. The initial value of s1 at the
sonic point is always fixed to be 1 + i, while the initial value of u1x

can be calculated from the sonic condition (30).
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Table E2. Initial conditions at the sonic point
and eigenfrequencies for modes with ky = 0
in Fig. 4.

u1y ω

�0 = 0.025, cs = 0.3 periodic b.c.

0.000 + 0.000i 0.000 − 0.000i
−0.770 − 0.860i 1.961 + 0.005i
−0.322 + 0.181i 3.143 − 0.000i

0.257 − 0.448i 6.085 − 0.003i
−0.057 − 0.196i 6.285 − 0.000i
−0.304 + 5.976i 9.428 + 0.000i

0.164 − 0.210i 10.990 − 0.001i
−4.037 + 7.922i 12.571 + 0.000i
−0.491 + 0.798i 15.713 − 0.000i

0.116 − 0.136i 16.103 − 0.001i
−1.435 + 2.412i 18.856 − 0.000i

�0 = 0.025, cs = 0.3 DK b.c.

−0.518 + 0.097i 0.776 − 0.868i
0.451 + 0.514i 0.823 − 3.033i
0.687 + 0.501i 1.844 − 3.172i
0.851 + 0.178i 2.977 − 3.204i
0.708 − 0.080i 4.109 − 3.251i
0.544 − 0.163i 5.231 − 3.294i
0.429 − 0.180i 6.348 − 3.329i
0.351 − 0.176i 7.462 − 3.359i
0.296 − 0.166i 8.576 − 3.386i
0.256 − 0.155i 9.689 − 3.411i
0.225 − 0.144i 10.801 − 3.435i
0.201 − 0.134i 11.911 − 3.459i
0.181 − 0.126i 13.019 − 3.483i
0.165 − 0.118i 14.123 − 3.506i
0.151 − 0.111i 15.223 − 3.526i
0.140 − 0.105i 16.321 − 3.541i
0.130 − 0.099i 17.418 − 3.550i
0.122 − 0.094i 18.520 − 3.555i
0.114 − 0.090i 19.626 − 3.558i

Table E2 – continued

u1y ω

�0 = 0.25, cs = 0.3 periodic b.c.

−0.000 − 0.000i 0.000 + 0.000i
−0.363 − 0.809i 1.759 + 0.237i
−1.053 − 0.064i 3.143 + 0.000i

0.092 − 0.107i 6.285 − 0.000i
0.191 − 0.382i 6.674 + 0.023i

−0.681 + 0.352i 9.428 − 0.000i
0.472 − 0.081i 12.571 + 0.000i
0.131 − 0.176i 12.967 − 0.108i
0.097 + 1.143i 5.713 − 0.000i
0.242 − 0.615i 18.856 + 0.000i
0.093 − 0.113i 19.371 − 0.103i

�0 = 0.25, cs = 0.3 DK b.c.

0.574 + 0.574i 0.000 − 3.233i
−0.884 − 1.493i 1.701 − 1.067i

0.661 + 0.569i 2.621 − 4.864i
0.763 − 0.046i 3.375 − 4.046i
0.548 − 0.162i 4.840 − 4.110i
0.408 − 0.177i 6.319 − 4.158i
0.320 − 0.168i 7.808 − 4.191i
0.262 − 0.154i 9.305 − 4.216i
0.221 − 0.141i 10.805 − 4.236i
0.190 − 0.129i 12.309 − 4.252i
0.167 − 0.118i 13.813 − 4.267i
0.149 − 0.109i 15.320 − 4.280i
0.134 − 0.101i 16.828 − 4.293i
0.122 − 0.094i 18.338 − 4.306i
0.112 − 0.088i 19.848 − 4.321i

This paper has been typeset from a TEX/LATEX file prepared by the author.
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