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Partially chaotic orbits in a perturbed cubic force model
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ABSTRACT
Three types of orbits are theoretically possible in autonomous Hamiltonian systems with
3 degrees of freedom: fully chaotic (they only obey the energy integral), partially chaotic
(they obey an additional isolating integral besides energy) and regular (they obey two iso-
lating integrals besides energy). The existence of partially chaotic orbits has been denied by
several authors, however, arguing either that there is a sudden transition from regularity to full
chaoticity or that a long enough follow-up of a supposedly partially chaotic orbit would reveal
a fully chaotic nature. This situation needs clarification, because partially chaotic orbits might
play a significant role in the process of chaotic diffusion. Here we use numerically computed
Lyapunov exponents to explore the phase space of a perturbed three-dimensional cubic force
toy model, and a generalization of the Poincaré maps to show that partially chaotic orbits
are actually present in that model. They turn out to be double orbits joined by a bifurcation
zone, which is the most likely source of their chaos, and they are encapsulated in regions of
phase space bounded by regular orbits similar to each one of the components of the double
orbit.

Key words: chaos – methods: numerical – celestial mechanics – galaxies: kinematics and dy-
namics.

1 IN T RO D U C T I O N

In autonomous Hamiltonian systems of 3 degrees of freedom, reg-
ular orbits obey two isolating integrals besides energy and, in prin-
ciple, chaotic orbits may either conserve only the energy or obey
also an additional integral. In fact, Contopoulos et al. (1978) found
in one of those systems three regions where the motions obeyed, re-
spectively, two integrals besides energy, one integral besides energy
or only the energy integral. The existence of at least three disjoint
invariant regions with a different ‘degree of stochasticity’ on the
same energy surface of two Hamiltonian systems [one of them
that of Contopoulos et al. (1978)] was also reported by Pettini &
Vulpiani (1984), who, from the very title of their paper, noted that
this fact would imply a possible failure of Arnold diffusion.

Several studies of the dynamics of triaxial stellar systems no-
ticed the presence of two types of chaotic orbits (see, e.g.,
Goodman & Schwarzschild 1981; Merritt & Valluri 1996), but
no importance was assigned then to recognizing one from the
other. Nevertheless, Muzzio (2003) reported that, in a strongly
triaxial model elliptical galaxy, the orbits with only one posi-
tive Lyapunov exponent had a spatial distribution different from
that of orbits with two positive exponents, dubbing them par-
tially and fully chaotic orbits, respectively. He identified the for-
mer with the orbits that have one additional integral besides
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energy and the latter with those that obey the energy inte-
gral only. His results were confirmed by Muzzio & Mosquera
(2004) and Muzzio et al. (2005), and the distinction between par-
tially and fully chaotic orbits was included in all the subsequent
work on triaxial stellar systems by him and his co-workers (see
Carpintero & Muzzio 2016, and references therein). It should be
noted that their partially chaotic and fully chaotic orbits are just
the same as, respectively, the weakly chaotic and strongly chaotic
orbits of Pettini & Vulpiani (1984). The change of wording was
justified by Muzzio et al. (2005) because the terms weak and strong
chaos had been used in connection with the maximum value of the
Lyapunov exponent (Contopoulos 2002).

The phenomenon of ‘stable chaos’ in the Solar system investi-
gated by Milani & Nobili (1992) and Milani et al. (1997) might be
another astronomical example of partially chaotic motion. Although
those authors only computed the largest Lyapunov exponent for the
cases they considered, the fact that the size of their chaotic regions
in phase space is small suggests that possibility.

Nevertheless, Froeschlé (1970a) investigated a case of the re-
stricted three-body problem and found that, when varying one pa-
rameter, the two isolating integrals other than energy seemed to
vanish at the same time, rather than one after the other. Later on,
using a four-dimensional mapping, Froeschlé (1971) concluded that
a system with 3 degrees of freedom has in general either none or
two isolating integrals besides energy, and that the disappearance
of one of those integrals entails the disappearance of the other.

Lichtenberg & Lieberman (1992) discussed the Lyapunov expo-
nents computed by Benettin et al. (1980) for the Hamiltonian system
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investigated by Contopoulos et al. (1978) and raised an important
point. They argued that, due to Arnold diffusion, an orbit initially in
the region where Contopoulos et al. (1978) found partially chaotic
orbits would end up in their region of fully chaotic orbits after a suf-
ficiently long time. Thus, since Lyapunov exponents are computed
over finite time intervals, an orbit with only one positive exponent
might turn out to have two positive exponents if integrated over a
long enough interval, and partially chaotic orbits found with this
and similar methods might actually be fully chaotic orbits in dis-
guise. They concluded that such methods should be supplemented
by other techniques in order to clarify the true nature of the chaotic
motion. Clearly, any proof obtained with numerical methods that
cover a certain time interval can be regarded as valid only over
that interval, and its extension to infinite time can only be obtained
by analytical methods. From a practical point of view, however, a
numerical proof that covers an interval much longer than the life-
time of the system investigated may be all that is needed (e.g. many
Hubble times for galactic astronomy).

Since few authors have distinguished partially from fully chaotic
orbits, the phenomenon of stickiness (see, e.g., Shirts & Reinhardt
1982; Menyuk 1985; Contopoulos & Harsoula 2010) is usually
described as the behaviour of a chaotic orbit (either partially or
fully chaotic) that remains for long intervals close to regions of
regularity mimicking a regular orbit and then moves into chaotic
regions showing its true nature. To that phenomenon we should add
now the one indicated by Lichtenberg & Lieberman (1992), i.e. a
fully chaotic orbit can remain for a long time behaving as a partially
chaotic one and, later on, display its fully chaotic character. Thus,
a sticky orbit can be not only a chaotic orbit that behaves as regular
for a long time, but also a fully chaotic orbit that behaves as partially
chaotic for a long time.

As noted by Pettini & Vulpiani (1984) and Lichtenberg & Lieber-
man (1992), the existence, or not, of partially chaotic orbits and
Arnold diffusion are closely related, so that we will analyse that
relationship in more detail. Ultimately, the basis of Arnold diffu-
sion is the fact that a region of N dimensions (ND hereafter) can
be partitioned in disjoint subregions only by objects of (N−1)D.
For example, we can partition a surface (2D) using curves (1D), but
not points (0D). And we can partition a 3D volume using surfaces
(2D), but not curves (1D) or points (0D). Now, in an autonomous
Hamiltonian system with 2 degrees of freedom, chaotic motion
takes place in a 3D space (the 4D phase space minus one dimension
due to the energy integral) and the tori of the regular orbits are 2D
(another dimension is subtracted by the additional integral), so that
chaotic orbits are constrained to regions bounded by those tori. But
for autonomous systems with 3 degrees of freedom, the situation is
very different. Their phase space is 6D, so that fully chaotic orbits
are 5D, partially chaotic orbits are 4D and regular orbits are 3D.
Clearly, the 3D orbits cannot prevent the 5D fully chaotic orbits
from moving through all the space allowed to them by the energy
integral (except for the 3D space occupied by the regular orbits
themselves) and that is Arnold diffusion in a nutshell (a caveat is
that the regular 3D tori should still remain, when they broke we have
resonance superposition rather Arnold diffusion). Such a scenario
is clearly altered if partially chaotic orbits actually exist because,
in that case, the 3D regular orbits could limit the motion of the
4D partially chaotic orbits that, in turn, would place barriers to the
motion of the 5D fully chaotic orbits.

The present paper is just a first step to try to establish whether
that situation is possible. Here we show that partially chaotic orbits
are present in a toy model and that they are bounded by regular
orbits. We computed the six Lyapunov exponents of orbits and,

besides, we used cuts and slices in the 5D space to generalize the
usual Poincaré maps of the 3D space. We also made extensive use
of 3D plots using colour as the fourth dimension, a technique de-
veloped by Patsis & Zachilas (1994) and extensively used later on
by them and their co-workers (see, e.g., Katsanikas & Patsis 2011;
Katsanikas et al. 2011, 2013), including studies of the relative loca-
tion of chaotic orbits with respect to tori in 3D Hamiltonian systems.
Colour and slices were also used by Richter et al. (2014) to investi-
gate 4D symplectic maps.

Our methods cannot be easily extended to check whether fully
chaotic orbits are, in turn, bounded by partially chaotic orbits, and
that will be the subject of a future investigation.

The following section describes our model and the numerical
techniques we used to study its orbits. The results of a search for
possible partially chaotic orbits using Lyapunov exponents are pre-
sented in Section 3, where we also use the concept of the second
integral to isolate one of them and, in Section 4, we show that it is
actually a partially chaotic orbit bounded by regular orbits. Finally,
our conclusions are presented in Section 5.

2 MO D E L A N D N U M E R I C A L M E T H O D S

2.1 The model

We chose the perturbed cubic force model whose Hamiltonian is

H = (u2 + v2 + w2)

2
+ x4 + y4 + z4

4
+ εx2(y + z), (1)

where x, y and z are the coordinates, u, v and w the corresponding
impulses and ε regulates the size of the perturbation. For the present
investigation, we adopted H = 1 and ε = 0.005.

This model was thoroughly investigated by Cincotta et al. (2003),
and we refer the reader to that paper for full details. Here we will
only mention a few properties of the model that are important for
the present investigation.

The unperturbed system (i.e. ε = 0) conserves the energies in
each coordinate:

h1 = u2

2
+ x4

4
, (2)

h2 = v2

2
+ y4

4
, (3)

h3 = w2

2
+ z4

4
, (4)

and the unperturbed frequency in each coordinate is proportional
to the fourth root of the corresponding energy (ωi ∝ h

1/4
i ). The

unperturbed resonances:

l × ω1 + m × ω2 + n × ω3 = 0, (5)

with l, m and n integers and not all three equal to zero, form the
Arnold web. Hereafter, we will refer to such resonances as (l, m, n).

It is convenient to adopt the following coordinates:

e1 = h1 − 2h2 + h3√
6

, (6)

e2 = h1 − h3√
2

, (7)

e3 = h1 + h2 + h3√
3

, (8)

that have the advantage that e1 and e2 lie in the unperturbed energy
plane and e3 is perpendicular to it. Cincotta et al. (2003) present
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Partially chaotic orbits 4101

several figures showing the resonant structure in the (e1, e2) plane,
and the distribution of Mean Exponential Growth factor of Nearby
Orbits levels (their chaoticity indicator) on that plane. Similar fig-
ures had also been presented by Froeschlé et al. (2000) for a different
model. There one can see that resonances are the ‘threads’, and dou-
ble resonances1 the ‘knots’, of the Arnold web. Double resonances,
in particular, present central regions occupied by regular orbits sur-
rounded by chaotic areas, so that they look as a promising hunting
ground for partially chaotic orbits bounded by regular orbits.

In the present investigation, we will deal mainly with the double
resonance (2, −1, 0) and (0, 1, −1), and we will see that the projec-
tions of orbits on the (e1, e2) plane are more or less symmetric with
respect to a line parallel to the projection of the latter resonance on
that plane. Therefore, it will be useful to also use the coordinates:

ep = e1cos(α) + e2sin(α), (9)

en = −e1sin(α) + e2cos(α), (10)

with α = 60◦.

2.2 Numerical methods

We explored the phase space of our model using orbits with initial
coordinates x = y = z = 0 and different initial velocity compo-
nents (all positive) such that u2 + v2 + w2 = 2, in order to have
H = 1. In the region of the double resonance mentioned above, the
interval between two crossings of the x = 0 plane is of the order
of 12.6 time units (t.u. hereafter), which can be taken as a charac-
teristic time of our investigation. To follow each orbit and at the
same time compute the six Lyapunov exponents (LEs hereafter),
we used the LIAMAG routine, kindly provided by D. Pfenniger (see
Udry & Pfenniger 1988). However, we replaced the original Runge–
Kutta–Fehlberg subroutine by the high-order Taylor subroutine of
Jorba & Zou (2005, subroutine and documentation can be obtained
at http://www.maia.ub.es/∼angel/taylor/), which allowed us to per-
form about 50 times longer integrations, with the same precision as
the original subroutine. The LEs λ1 > λ2 > . . . > λ5 > λ6 have the
property that λi = −λ7−i, due to the conservation of the volume in
phase space, and that λ3 = λ4 = 0, due to the conservation of the
energy integral. Besides, each additional isolating integral makes
zero another λi = −λ7−i pair so that, considering only the three
largest LEs, we have that all three are zero for regular orbits, only
two are zero for partially chaotic orbits, and only the third one is
zero for fully chaotic orbits.

Nevertheless, the properties of the numerically computed LEs
differ somewhat from those described above, because theoretical
LEs are defined for an infinite time interval while the orbit integra-
tions that allow their numerical computation are necessarily finite.
Therefore, numerical LEs can tend towards zero as the integra-
tion time increases, but they remain always larger than a limiting
value that can be estimated to be of the order of ln T/T, where T
is the length of the integration interval. This is a coarse estimate
only, and the limiting value should be determined in every case
(see, e.g., Zorzi & Muzzio 2012, for details). In the present inves-
tigation, we used integration times of 5 × 106, 5 × 107, 5 × 108

and 5 × 109 t.u., and energy conservation was better than about

1 Actually, if two resonant conditions are fulfilled, any linear combination
of them is fulfilled too, so that we have an infinite number of resonances. For
simplicity, however, we will refer to that condition as a double resonance.

0.5 × 10−12, 1.5 × 10−12, 5.0 × 10−12 and 20.0 × 10−12, respec-
tively. Notice that 5 × 109 t.u. corresponds to 4 × 108 characteristic
times in the present investigation, while 1 Hubble time corresponds
to about 200 characteristic times for the elliptical galaxies we in-
vestigated previously (see, e.g., Zorzi & Muzzio 2012), so that our
longest integrations cover intervals equivalent to 2 × 106 Hubble
times in a galactic context.

A powerful method for the investigation of autonomous Hamil-
tonian systems with 2 degrees of freedom is offered by the Poincaré
maps. In those systems, chaotic orbits are 3D and regular orbits 2D
so that if we make a cut, e.g. requesting that x = 0 (with u > 0 to
avoid the sign indetermination) and plot the resulting points on the
(y, v) plane, chaotic orbits appear as surfaces and regular orbits as
lines. It is tempting to try to extend this method to systems with
3 degrees of freedom where fully chaotic orbits are 5D, partially
chaotic orbits 4D and regular orbits 3D: with two cuts, we could
obtain plots where partially chaotic orbits would appear as surfaces
and regular orbits as lines. But there are several complications on
such a naive extension of the method. To begin with, while one can
make a very precise first cut using the method of Hénon (1982),
the second cut can only be done approximately (e.g. taking |y| ≤
0.000 10), and that is why the method has been dubbed ‘slice cut-
ting’ by Froeschlé (1970b). But as the width of the slice is reduced
to get more accuracy in the plots, the number of points is drastically
reduced so that very long integrations of the orbit are necessary to
get a reasonable number of accurate points. Besides, the two cuts
do not generally give a plane, as happens with the original Poincaré
method, but a warped surface, because it is embedded in a 3D space
rather than in the 2D space of the original method. Finally, in order
to compare orbits, one has to take orbits that not only have the same
energy (as in the usual 2D Poincaré maps) but also the same value
of the second integral, and we have no mathematical expression for
that integral. Therefore, the graphical representation and interpre-
tation of these plots, which we will call hereafter 3D Poincaré
maps, are much less straightforward than those of the original
method.

Despite those difficulties, we thought that the 3D Poincaré maps
might offer a useful tool to prove whether partially chaotic orbits
can be bounded by regular orbits. We resorted again to the high-
order Taylor routine of Jorba & Zou (2005) to make a program that
allowed us to follow orbits for a long time, to do a precise first cut
using the method of Hénon (1982) and a second, less precise, cut
simply selecting a small range of values for another variable. Most
of the results presented here correspond to a first cut taking x = 0
(with u > 0), a second cut with |y| ≤ 0.000 10 (plus v > 0) and a
total integration time of about 1 × 109 t.u. Energy conservation for
our 3D Poincaré maps was better than 1.3 × 10−11. The 1 × 109 t.u.
interval corresponds to 8 × 107 characteristic times of our system
so that, repeating the comparison we did above for the integration
time of the LEs, we may conclude that it is equivalent to about
4 × 105 Hubble times in a galactic context.

It was very important at several stages of our investigation to get
a clear view of orbital structures and, for that purpose, we found
very useful the technique of Patsis & Zachilas (1994), who used
3D plots plus colour to represent the fourth dimension. We have
adopted their method using gnuplot (Copyright (C) 1986 - 1993,
1998, 2004, 2007 Thomas Williams, Colin Kelley) to make the
plots.

As mentioned above, in 3D the cuts yield warped surfaces and
not planes, so that the graphic representation of the Poincaré maps
is quite a challenge. But for our purposes, the problem is simplified,
because what we need to show is that the surfaces that represent the
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partially chaotic orbits are bounded by the lines that represent the
regular orbits. Nevertheless, the separation between those orbits is
very small compared with the size of the orbits themselves, so that
a simple plot on, say, the (e1, e2) plane will lose all the details. After
careful examination of the orbits on different projections and on 3D
plots using colour as the fourth dimension (Patsis & Zachilas 1994),
we adopted the following method. We chose the e1, e2 and z variables
and, for an orbit selected as reference, we normalized each one of
those variables subtracting the corresponding value for the centre of
the orbit and dividing the result by the dispersion of the variable in
question. Then we transformed that normalized coordinate system
into a spherical one and, using the azimuth angle φ as argument,
we obtained the best-fitting Fourier series for the polar angle θ and
the radius r. For nearby orbits, we obtained the differences between
the values of their parameters (normalized using the same centre
and dispersions of the orbit taken as reference) and those given
by the corresponding Fourier series, so that we have φ as a ‘long’
variable, and the differences between their θ and r values and the
corresponding ones of the orbit taken as reference can be plotted
with considerable detail.

We experimented with different numbers of terms and found that
the mean square error decreased as we increased that number up to
about 121 terms (that is, up to terms sin(60φ) and cos(60φ)) and
reached a plateau where increasing the number of terms did not
significantly decrease the mean square error any further, so that we
adopted that number of terms for our computations. For slices with
|y| ≤ 0.000 10, the resulting mean square errors of the e1, e2 and z
variables turned to be of the order of 0.3 × 10−5, 0.5 × 10−5 and
0.4 × 10−4, respectively, which imply errors relative to the range of
the corresponding variable of the order of 0.03, 0.04 and 0.005 per
cent, respectively. For slices with |y| ≤ 0.000 20 and |y| ≤ 0.000 05,
the errors were twice larger and one half smaller, respectively, i.e.
proportional to the width of the slice as could be expected. To
estimate the errors of integration, we obtained the Fourier series
using only the first 20 per cent points and computed the mean square
errors of the last 20 per cent points with respect to those series. The
dispersions turned out to be essentially the same, so that the errors
of integration should be much smaller than the dispersion caused
by the slice widths.

3 PA RT I A L LY C H AOT I C O R B I T S

The first step of our investigation was to search for possible partially
chaotic orbits in regions of the phase space populated mainly by
regular orbits and, as indicated above, we chose the region of the
double resonance (2, −1, 0) and (0, 1, −1). We performed our search
using LEs, so that the already-mentioned warning of Lichtenberg &
Lieberman (1992) applies: we can never be sure that LEs obtained
with longer integrations would not reveal that the partially chaotic
orbits found in that way are actually fully chaotic orbits on disguise.
Thus, it should be recalled that the orbits that we will refer to as
partially chaotic in the present section can be regarded as such only
over time intervals of the order of those covered by our numerical
integrations.

3.1 The search

The (2, −1, 0) and (0, 1, −1) resonances of the unperturbed
Hamiltonian [equation (1), with ε = 0] cross on the (e1, e2) plane
at (−5/(11

√
6, −5/(11

√
2) � (−0.185 57, −0.321 41). Therefore,

we prepared a sample of initial conditions taking H = 1,
x = y = z = 0 and a grid of e1 and e2 values, with 2−12 � 2.44 × 10−4

-0.21 -0.205 -0.2 -0.195 -0.19 -0.185 -0.18 -0.175 -0.17 -0.165
e1

-0.335

-0.33

-0.325

-0.32

-0.315

-0.31

-0.305

e2

Figure 1. Initial conditions on the (e1, e2) plane of orbits classified as
regular, partially and fully chaotic from the values of their LEs near the
double resonance (2, −1, 0) and (0, 1, −1). The blank areas correspond
to regular orbits, partially chaotic orbits are shown as filled squares (red
in the electronic version) and fully chaotic orbits as plus signs (blue in the
electronic version). The short black line shows the region covered by Fig. 2.
(A colour version of this figure is available in the online version.)

spacing, centred at that point. The advantage of taking these initial
conditions is that the energy of our full Hamiltonian is the same
as that of the unperturbed Hamiltonian there. Besides, as we will
take cuts with x = 0 later on, the energies of the unperturbed and
perturbed Hamiltonians at those cuts will again be the same, i.e.
the value of the coordinate e3 will be conserved. With those initial
conditions, and using the full Hamiltonian with ε = 0.005, we com-
puted the orbits and obtained the LEs with an integration time of
5 × 106 t.u., which we used to classify the orbits as regular, partially
or fully chaotic. Our results are presented in Fig. 1, where we note
a central region dominated by regular orbits, surrounded by another
one dominated by fully chaotic ones, with most of the partially
chaotic orbits lying on the border between those regions. That bor-
der is by no means clear cut and displays considerable structure but,
what interests us here is that many partially chaotic orbits appear
also well inside the regular domain and they even seem to form
chains there. In all likelihood, they correspond to resonances.

Three sectors of one of those chains are shown in Fig. 2, which
was obtained in the same way as Fig. 1, but with a much finer grid
spacing of 2−17 � 7.63 × 10−6. The same region is shown by a short
black line in Fig. 1. The chain extends continuously in between the
sectors shown and beyond the third one, but it seems on the verge
of disappearance on the first sector and probably it does not extend
much further in that direction. Several of the partially chaotic orbits
found here were followed with integrations of 5 × 107, 5 × 108

and 5 × 109 t.u. and their LEs were computed, and in all cases they
continued to appear as partially chaotic.

Fig. 3 shows, in the 3D space (e1, e2, y) and using colour to repre-
sent the fourth dimension z, the cut x = 0(u > 0) of the orbit whose
initial condition lies on e1 = −0.184 903 65 and e2 = −0.330 786 44
and that we will dub pch hereafter; it was obtained with an integra-
tion over 1. × 1010 t.u. This is one of the partially chaotic orbits that
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Partially chaotic orbits 4103

Figure 2. High-resolution plots of small sections of Fig. 1. Regular orbits are shown as crosses and partially chaotic orbits as filled squares.

Figure 3. A cut with the plane x = 0 (u > 0) of a partially chaotic orbit
from the chain shown in Fig. 2. It is shown in the 3D space (e1, e2, y) with
the fourth dimension z given by the colour scale in the electronic version.
(A colour version of this figure is available in the online version.)

lie on the chain shown in Fig. 2, and the form of the cut reminds
that of a croissant. Some mixing of the colours might be present,
a characteristic of chaotic orbits in this sort of plot as indicated
by Patsis & Zachilas (1994) but, if it exists, it is far from clear.
In fact, except perhaps for the colour distribution, similar plots for
other orbits from the same region, either regular or partially chaotic,
look very much the same. Thus, while Fig. 3 is useful to show us
the general aspect of these orbits, we need more precise ways to
proceed with our investigation. As indicated above, the croissant is
approximately symmetric with respect to a plane normal to the (e1,
e2) plane and parallel to the line drawn on the latter plane by the (0,
1, −1) resonance.

Fig. 4 shows the result of taking a slice |y| ≤ 0.000 10(v > 0)
from the x cut of Fig. 3 in the 3D space (e1, e2, z). As anticipated,
the points lie on a warped surface (actually, it has a very small width
because there is a finite range of y values) and not on a plane. There
are two separate lobes that correspond to the two slices taken from
the croissant by the slice |y| ≤ 0.000 10 (compare with Fig. 3). For
the time being, we will concentrate on the lobe that corresponds
to the larger values of e1 and e2.

Fig. 5 shows the projections of that lobe on the (e1, e2) plane,
for the same partially chaotic orbit of the previous two figures, and
for two regular orbits with initial conditions e1 = −0.184 892 701,
e2 = −0.330 778 44 (r1 hereafter) and e1 = −0.184 908 51 and
e2 = −0.330 792 72 (r2 hereafter), respectively, which lie each one
on each side of the partially chaotic lane of Fig. 2. We notice that the

Figure 4. A slice |y| ≤ 0.000 10 (v > 0) of the cut of Fig. 3 in the 3D space
(e1, e2, z).

partially chaotic orbit is double and, as we will see later, it is not just
a double loop but the two parts cross themselves, i.e. it bifurcates
and that is the cause of its chaoticity. One can already note that the
outer tip of the orbit near e1 = −0.1852 and e2 = −0.3218 is thicker
than the neighbouring inner tip, and the reason is that the former is
a surface and not a line, as we will see later on. Interestingly, each
one of the two regular orbits is similar to each one of the two parts of
the regular orbit. In other words, the lane of partially chaotic orbits
shown in Fig. 2 is a transition zone from regular orbits similar to r1
to regular orbits similar to r2. Thus, it seems reasonable to assume
that the 4D partially chaotic orbits of that lane are bounded by the
3D tori of the regular orbits that border the lane and, in terms of
Fig. 3, we could expect the 3D croissant of a partially chaotic orbit
to be bounded by 2D croissants of regular orbits. Let us explore
how to check that possibility.

3.2 The second integral of motion

As we mentioned above, for our 3D Poincaré maps we have to
select orbits with the same value of the energy and the same value
of the second integral, but the problem is that we do not know the
mathematical expression of that second integral. Since the initial
conditions we used to map the unperturbed energy plane had all
the same energy and x = y = z = 0, Fig. 2 is, except for the fact
that it includes orbits with different values of the second integral,
a kind of Poincaré map resulting from the three cuts x = 0, y = 0
and z = 0, so that every partially chaotic orbit should appear there
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Figure 5. Projections on the (e1, e2) plane of the cuts x = 0(u > 0) and |y|
≤ 0.000 10(v > 0) of the orbits r1 (top), pch (centre) and r2 (bottom).

are as a 1D curve. Therefore, the lane of partially chaotic orbits in
Fig. 2 can be seen as the surface that results from the superposition
of the curves corresponding to partially chaotic orbits with different
values of the second integral. Our problem is, thus, to identify the
individual curves that make up that surface. A simple idea would
be to follow a single partially chaotic orbit and to take a third cut,
or slice, z � 0 in addition to x = 0 and y � 0, but it fails because
it is impossible to get a reasonable number of points with sufficient
accuracy: if one uses small widths for the y and z slices, one gets
almost no points, and if one increases those widths to get enough
points, they appear distributed on a surface rather than on a line.
Another simple idea, to take the points that result from the x = 0
and y � 0 cuts and lie near z = 0, to fit them to a surface and to
determine the intersection of that surface with the plane z = 0 also
fails for similar reasons, plus the fact that the surface in question is
warped and difficult to adjust. Finally, we reasoned that the points
in Fig. 2 are all very accurate, because the initial conditions of the
corresponding orbits had been selected by ourselves, so that what
we had to do was to determine which points of the partially chaotic
lane corresponded to the same orbit, i.e. we had to find which initial
conditions gave the same distribution of points resulting from the
x = 0 and y � 0 cuts.

The first step to that approach was to find a suitable sector of
the partially chaotic orbits to do the comparison, and the tip near
e1 = −0.1852 and e2 = −0.3218 (see Fig. 5) was an obvious
choice. In 3D plots in the (ep, en, z) space [see equations (9)
and (10)], it looks like a half cylinder with its axis lying on the
(en = −0.000 55, z) plane. The z height of its minimum turned
out to be highly dependent on the orbit in question, so that we de-
cided to take a slice of 0.000 10 width around en = −0.000 55,
plus similar slices around en = −0.000 45 and −0.000 35 as
additional aid.

Fig. 6 shows the results for the partially chaotic orbit pch
from Figs 3–5 together with three other partially chaotic orbits
from the lane shown in Figs 2: pa (top) with initial conditions
at e1 = −0.184 898 18 and e2 = −0.330 780 78, pb (centre) with
initial conditions at e1 = −0.184 897 36 and e2 = −0.330 781 26
and pc (bottom) with initial conditions at e1 = −0.184 896 53 and
e2 = −0.330 781 74. Despite the very small differences among the
initial conditions, it is clear that orbits pa and pc are not the same
as orbit pch, while orbit pb coincides perfectly well with it. Fig. 7
shows the projections of orbits pch and pb on the (ep, en) plane
confirming the excellent fit.

Then we prepared a plot of the initial conditions on the (e1, e2)
plane that produce regular and partially chaotic orbits, similar to
those of Fig. 2 but with a finer grid spacing of 2−19 � 1.91 × 10−6

and with the grid tilted 60◦ to follow better the direction of the
partially chaotic lane. It is shown in Fig. 8 with blank spaces for
the regular orbits and filled small circles for the partially chaotic
ones. Taking the results of orbit pch as reference, we prepared plots
similar to those of Fig. 6 for partially chaotic orbits with the initial
conditions of nearby points on the (e1, e2) plane and used them
to select the initial conditions that provided good fits. In several
instances, the points from the grid did not give a good enough fit,
and we used additional points interpolated between those that gave
results above and below those of orbit pch. It was hard work, indeed,
because for each (e1, e2) point we had to compute the orbit and the
x = 0, y � 0 cuts, do the plots and examine them by eye, but the
results were excellent and are shown as big open circles in Fig. 8.
Those open circles correspond all to one single partially chaotic
orbit and, therefore, they trace the line along which the second
integral is constant.
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Partially chaotic orbits 4105

Figure 6. Projections on the (ep, z) plane of slices around en = −0.000 55,
−0.000 45 (red in the electronic version) and −0.000 35 (blue in the elec-
tronic version) of the cuts x = 0(u > 0) and |y| ≤ 0.000 10(v > 0) of the orbit
pch, together with those of the orbits pa (top), pb (centre) and pc (bottom).
(A colour version of this figure is available in the online version.)

Figure 7. Projections on the (ep, en) plane of the cuts x = 0(u > 0) and |y|
≤ 0.000 10(v > 0) of the orbits pch (filled circles) and pb (plus signs).

Figure 8. Initial conditions on the (e1, e2) plane of orbits subsequently
classified as regular (blank space) or partially chaotic (small filled circles).
The large open circles correspond all to the same partially chaotic orbit; see
the text for explanation.

4 B O U N D I N G R E G U L A R O R B I T S

4.1 Finding the boundaries

It seems natural to try to extend the method we used to find the
trace of the second integral of a partially chaotic orbit to search
for the regular orbits that have the same value of that integral and,
therefore, bound that orbit. For that purpose, we selected from our
grid on the (e1, e2) plane points that corresponded to regular orbits
and were located near the extrapolation of the line we had found for
the second integral. Taking again the partially chaotic orbit pch as
reference, we used plots like the one shown in Fig. 9 to find which
regular orbits offered the best extrapolation to the results of pch.
In that way, we selected the orbit r1 shown in that figure (see also
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Figure 9. Same as Fig. 6, but for partially chaotic orbit pch and regular
orbit r1.

Fig. 5). Of course, since the tori of the regular orbits that have the
same values of the energy and of the second integral fit one inside
the other like Russian dolls, many can be found and orbit r1 is just
one reasonable choice among other possible ones.

Fig. 10 shows the projection of the same orbits pch and r1 on the
(ep, en) plane, and one can notice again the good fit. The upper part
of the figure was obtained with a slice |y| ≤ 0.000 10(v > 0), as
used for all the previous figures, and the lower part with a slice |y|
≤ 0.000 05(v > 0). Clearly, the reduced slice width reduces almost
in half the width of the band occupied by the regular orbit, as could
be expected since for y = 0 we should get a line. But the global
width of the region occupied by the partially chaotic orbit is only
slightly reduced, as should happen because for y = 0 we should get
a surface. Besides, we note that for the regular orbit the points with
y < 0 are clearly separated from those with y > 0, the former lying
towards the left and the latter towards the right, further proof that
the width of the band of r1 points is essentially due to the width
of the y slice. Moreover, we note that for the partially chaotic orbit
the points with positive and negative values of y appear mixed, as
they should because such an orbit lacks the second isolating integral
besides energy that has the regular orbit. Nevertheless, the effect of
the width of the y slice can also be noticed for orbit pch because its
points that lie on the extreme left have y < 0 and those that lie on
the extreme right have y > 0. Last but not least, it is clear that the
apparent overlap of the r1 and pch orbits in Figs 9 and 10 is only
apparent and just caused by the thickness of the y slice.

Unfortunately, one cannot apply the same procedure to find the
bounding regular orbits below the partially chaotic lane because reg-
ular orbits there lack the tip near e1 = −0.1852 and e2 = −0.3218
(see Fig. 5), so that we had to look for another region of the partially
chaotic orbit where the x and y cuts yielded a suitable surface. The
bifurcation regions seemed an obvious choice, and Fig. 11 shows
one of those regions of orbit pc together with the adjacent regions
of regular orbits r1 and r2. We had found r1 as described above,
and we found r2 searching for another good boundary in the way
we describe below. The plot presents the cut x = 0 (u > 0) and
|y| ≤ 0.000 10(v > 0) in the (e1, e2, z) space and using colour
for the fourth dimension y. We note that, as indicated by Patsis &

Figure 10. Projections on the (ep, en) plane of the cuts x = 0(u > 0) and
|y| ≤ 0.000 10(v > 0) (top) and |y| ≤ 0.000 05(v > 0) (bottom) of the orbits
r1 (crosses) and pch (circles).

Zachilas (1994), the colours appear mixed on the surface that cor-
responds to the partially chaotic orbit because, since one integral
of motion is lacking, y is not correlated to the other variables. For
the regular orbits, instead, there is a clear progression from negative
values of y at left and below to positive values at right and above,
i.e. these orbits are, as they should, lines and their thickness is only
due to the width of the y slice.

The form of the partially chaotic surface resembles again that of
a half cylinder, so that we might proceed in a similar way as we
did to find the bounding orbit r1. But, in that case, the sector of the
partially chaotic surface was oriented in the (ep, en, z) space in a
way that facilitated our purposes. In the present case, we need to
find a system of coordinates that allows us to see part of the cylinder
edge on so as to be able to select an adequate bounding orbit as the
limit of that edge. We found that three rotations were necessary: (1)
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Partially chaotic orbits 4107

Figure 11. One of the bifurcation zones of the partially chaotic orbit pch
together with the nearby sections of regular orbits r1 and r2. We show the
result of cuts x = 0 (u > 0) and |y| ≤ 0.000 10(v > 0) in the (e1, e2, z) space
and using colour for the fourth dimension y in the electronic version. (A
colour version of this figure is available in the online version.)

one of an angle θ around the z axis, to bring the (e1, e2, z) system to
a new (d1, d2, z) system; (2) a second one of an angle ψ around the
d1 axis to bring the latter to the (g1, g2, d1) system; (3) a final one of
an angle τ around the g2 axis to obtain the (q1, q2, g2) system. We
took the points of the orbit pch shown in Fig. 11 and, for different
trial values of θ , we determined the ψ and τ angles that aligned the
region covered by those points with the d2 and z axes and with the
g1 and d1 axes, respectively, and we computed the z thickness of
the (d2, z) projection. Finally, we adopted the angles that minimized
that thickness, which turned out to be θ = 43.◦60, ψ = 89.◦21 and
τ = 89.◦25. It is quite possible that other systems of coordinates
might be used for the same purpose, but the one described worked
well and that was all we needed here. To search for the regular
orbit that bounded the partially chaotic orbit pch, we used plots
on the (q2, g2) and the (q2, q1) planes; in the first case, we plotted
separately the points within the slices (−0.235 < q1 < −0.228),
(−0.228 < q1 < −0.221) and (−0.221 < q1 < −0.214), in a similar
way as we had done to search for the limiting regular orbit r1 on the
other side of the partially chaotic lane.

Fig. 12 shows the diagram we used to select regular orbit r2 as the
boundary to partially chaotic orbit pch and we have included also
orbit r1, which provides the other boundary. While r2 was found
searching for a good boundary to the surface shown in the figure,
r1 had been found from fits to a completely different region of the
partially chaotic orbit, so that its excellent agreement with this new
region gives a strong support to our method. Fig. 13 shows the
projection on the (q2, q1) plane confirming our results.

4.2 3D Poincaré maps

We adopted as our reference orbit the upper-right lobe that results
from the cuts x(u > 0) and |y| ≤ 0.000 05(v > 0) of orbit r2, and we
computed the mean values (〈e1〉, 〈e2〉 and 〈z〉) and the dispersions
(σ 1, σ 2 and σ z), of its e1, e2 and z values. Adopting those mean
values as the centre of the orbit, we computed the normalized values
(e1 − 〈e1〉)/σ 1, (e1 − 〈e1〉)/σ 1 and (z − 〈z〉)/σ z and used these
normalized values to define a new spherical system of coordinates,
with azimuth angle φ, polar angle θ and radius r. Then, taking φ as
argument, we adjusted each normalized coordinate with a Fourier
series and we used them to iteratively improve the centre of the

Figure 12. Projection on the (q2, g2) plane of slices around q1 � −0.2175
(blue in the electronic version), −0.2245 (red in the electronic version) and
−0.2315 of the cuts x = 0(u > 0) and |y| ≤ 0.000 10(v > 0) of the partially
chaotic orbit pch and of regular orbits r1 (right) and r2 (left). (A colour
version of this figure is available in the online version.)

Figure 13. Projection on the (q2, q1) plane of the cuts x = 0(u > 0) and |y|
≤ 0.000 10(v > 0) of the partially chaotic orbit pch (filled circles) and the
regular orbits r1 (crosses) and r2 (plus signs).

orbit. Finally, we obtained new Fourier series to represent θ and r
as functions of φ. The differences between the true values and those
given by the series, i.e. the residuals, were used to represent orbit r2
in our 3D Poincaré maps, that is, straight lines with some dispersion
through θ = 0 and r = 0, respectively.

For other orbits, we normalized their e1, e2 and z values using the
same centre and dispersions adopted for the r2 orbit and obtained
the corresponding φ, θ and r values. Finally, using their φ values
as argument of the Fourier series obtained for r2, we obtained the
differences between their θ and r values and those given by the
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Figure 14. 3D Poincaré maps (φ, θ ) (top) and (φ, r) (bottom) of orbits r1
(turquoise in the electronic version), r2, pch (red in the electronic version),
r3 (green in the electronic version) and r4 (orange in the electronic version).
They correspond to the x = 0 (u > 0) and |y| ≤ 0.000 05(v > 0) cuts and
to the right lobe. The ordinates give the differences between the values of
θ and r, respectively, of each orbit and those given by the Fourier series
fitted to the corresponding values of orbit r2. See the text for explanation.
(A colour version of this figure is available in the online version.)

series. In other words, our 3D Poincaré maps are just the differences
between each orbit and r2, so that we can clearly represent those
small differences as we follow the orbit through all the different
azimuth angles.

Fig. 14 presents the result. Besides the partially chaotic orbit
pch (red dots in the electronic version) and the bounding orbits
r1 (turquoise dots in the electronic version) and r2 (black dots),
we included regular orbits r3 (green dots in the electronic version)
and r4 (orange dots in the electronic version) that lie in the main

holes of the partially chaotic orbit. r3 and r4 were found interpo-
lating values within those holes, and have initial condition x = 0,
plus e1 = −0.186 370 00, e2 = −0.319 920 00, y = −0.397 200 00,
z = 0 for r3 and e1 = −0.185 280 00, e2 = −0.323 720 00, y = 0,
z = −0.394 980 00 for r4. As those orbits have velocities of oppo-
site signs in alternate holes, in this case the conditions u > 0, at
the x cut, and v > 0, at the y cut, were not applied. The fact that
they are regular orbits is supported not only because they appear
as lines on the Poincaré map, but also by computations of their
LEs. We even found a regular orbit that lies in the smaller holes
of the partially chaotic orbit, with initial conditions x = 0, y = 0,
z = −0.402 825 00, e1 = −0.185 100 00, e2 = −0.321 681 00, but
we preferred not to include it in the figure in order that those smaller
holes could be better seen. One should recall that we are dealing
with warped surfaces and not with planes, and that is the reason
why some orbits seem to cross on the (φ, r) plot, but there are no
crossings on the (φ, θ ) plot and, therefore, neither are there in space.
Except for that caveat, there are no significant differences between
our plots, particularly the (φ, θ ) plot, and a standard Poincaré map
for an autonomous Hamiltonian with 2 degrees of freedom: the par-
tially chaotic orbit pch occupies a surface and is bounded by the
lines that represent the regular orbits r1 and r2; besides, it has holes
where other regular orbits lie.

It is remarkable that, although we found the bounding regular
orbits r1 and r2 using only fits to very small sections of those orbits
and of the partially chaotic orbit pch, we find now a perfect match
to the whole orbits, but there is still more. Fig. 15 is similar to the
previous one, but it corresponds to the left lobe, i.e. the one that had
not been used at all to find r1 and r2. Again, it is very similar to
ordinary Poincaré maps, with the partially chaotic orbit pch bounded
by the regular orbits r1 and r2 and with a hole that contains the
regular orbits r3 and r4. Finally, Fig. 16 presents again results for
the right lobe, but this time they come from the cuts x(u > 0) and
|z| ≤ 0.000 05(w > 0), i.e. using z instead of y and, once again,
different from the cuts used to find r1 and r2. The conclusion that
pch is a partially chaotic orbit bounded by regular orbits r1 and r2
seems therefore unavoidable, but it should be recalled that it is valid
over time intervals of the order of that covered by our numerical
integrations.

5 C O N C L U S I O N S

We have found a group of partially chaotic orbits immersed in the
mostly regular domain around the double resonance (2, −1, 0) and
(0, 1, −1) of the unperturbed Hamiltonian 1. They are double orbits
joined by a bifurcation that is the likely cause of their chaotic nature.
Those orbits, all with initial conditions with x = y = z = 0, occupy a
lane on the (e1, e2) plane, sections of which are shown in Fig. 2. That
lane is, therefore, made up of the 1D curves that result from cutting
4D partially chaotic orbits with the planes x = 0, y = 0 and z = 0, and
we could identify one of those curves, corresponding to our orbit
pch and shown in Fig. 8. Moreover, a 4D partially chaotic orbit can
be bounded by 3D regular orbits, and we found two such bounding
orbits, r1 and r2, in Section 4.1. Finally, in Section 4.2, we presented
3D Poincaré maps that (1) are very similar to the usual Poincaré
maps for autonomous Hamiltonians with 2 degrees of freedom; (2)
show that the partially chaotic orbit pch is actually bounded by
the regular orbits r1 and r2; (3) show that, as in some 2D cases,
the partially chaotic orbit has holes that contain additional regular
orbits. In brief, we have made up a strong case for the existence of
partially chaotic orbits in cocoons well isolated from the Arnold web
by the regular orbits. Our conclusions are supported by numerical
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Figure 15. Same as Fig. 14, but for the left lobe.

integrations and, therefore, are valid over time intervals of the order
of those covered by the integrations, but for elliptical galaxies those
intervals are equivalent to about one million Hubble times, i.e. much
longer than the galactic lifetimes.

An important by-product of our work is that, despite the dif-
ficulties to extend to 3D the use of the Poincaré maps, we have
shown that it is possible and, actually, 3D Poincaré maps were a
very important tool for the present investigation.

We have already noted that other chains of probably partially
chaotic orbits can be seen in our Fig. 1, in the region of the double
resonance (2, −1, 0) and (0, 1, −1), so that the example shown
here does not seem to be just a rara avis. Moreover, we have found
similar lanes of probably partially chaotic orbits near other double
resonances of the same Hamiltonian investigated here, e.g. near
e1 = 0.352 773 69 and e2 = −0.349 759 17 in the region of the dou-

Figure 16. Same as Fig. 14, but for the cuts x = 0 (u > 0) and |z| ≤
0.000 05(w > 0).

ble resonance (2, −3, 0) and (4, 0, −3). Nevertheless, the structure
of those orbits is different from that of the simple croissants stud-
ied here, and to prove that they are actually partially chaotic will
demand a whole new investigation.

Of course, the big prize would be to show that partially chaotic
orbits bound fully chaotic ones, placing even more significant limits
to chaotic diffusion. But it is hopeless to try to do that by simply
extending the same techniques used here. In order to get a significant
number of points, our 3D maps demand much longer integration
times than the regular 2D ones and, to make one additional cut
(say, x = y = z = 0), will require prohibitively longer numerical
integrations. Besides, there is another limitation: we know from
theory that regular orbits are tori and, therefore, that they can bound
partially chaotic orbits, but we do not know whether the latter are

MNRAS 471, 4099–4110 (2017)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/471/4/4099/4044715 by guest on 19 April 2024



4110 J. C. Muzzio

closed surfaces or not and, therefore, we do not know whether
they can actually bound fully chaotic orbits. Nevertheless, partially
chaotic orbits, having only one dimension less than fully chaotic
ones, can at least pose some barriers to the latter and, therefore,
they might be a factor to be taken into account in studies of chaotic
diffusion. Therefore, we plan to continue investigating this subject.

AC K N OW L E D G E M E N T S

We are very grateful to A. Jorba, M. Zou and D. Pfenniger for the
use their codes, and to D. D. Carpintero, R. E. Martı́nez (sadly,
recently deceased), M. E. Muzzio, P. Santamarı́a, H. R. Viturro and
F. C. Wachlin for their assistance. Special thanks go to an anony-
mous reviewer whose suggestions were very useful to improve the
original version of the present paper. This work was supported with
grants from the Consejo Nacional de Investigaciones Cientı́ficas y
Técnicas de la República Argentina, the Agencia Nacional de Pro-
moción Cientı́fica y Tecnológica and the Universidad Nacional de
La Plata.

R E F E R E N C E S

Benettin G., Galgani L., Giorgilli A., Strelcyn J.-M., 1980, Meccanica, 15,
9

Carpintero D. D., Muzzio J. C., 2016, MNRAS, 459, 1082
Cincotta P. M., Giordano C. M., Simó C., 2003, Physica D, 182, 151
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