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ABSTRACT
We apply the statistical methods by Schönrich, Binney & Asplund to assess the quality of
distances and kinematics in the Radial Velocity Experiment (RAVE)–Tycho-Gaia Astrometric
Solution (TGAS) and Large Sky Area Multiobject Fiber Spectroscopic Telescope (LAMOST)–
TGAS samples of Solar neighbourhood stars. These methods yield a nominal distance accuracy
of 1–2 per cent. Other than common tests on parallax accuracy, they directly test distance es-
timations including the effects of distance priors. We show how to construct these priors
including the survey selection functions (SSFs) directly from the data. We demonstrate that
neglecting the SSFs causes severe distance biases. Due to the decline of the SSFs in distance,
the simple 1/parallax estimate only mildly underestimates distances. We test the accuracy
of measured line-of-sight velocities (vlos) by binning the samples in the nominal vlos uncer-
tainties. We find: (i) the LAMOST vlos have a ∼−5 km s−1 offset; (ii) the average LAMOST
measurement error for vlos is ∼7 km s−1, significantly smaller than, and nearly uncorrelated
with the nominal LAMOST estimates. The RAVE sample shows either a moderate distance
underestimate, or an unaccounted source of vlos dispersion (e‖) from measurement errors and
binary stars. For a subsample of suspected binary stars in RAVE, our methods indicate sig-
nificant distance underestimates. Separating a sample in metallicity or kinematics to select
thick-disc/halo stars, discriminates between distance bias and e‖. For LAMOST, this separa-
tion yields consistency with pure vlos measurement errors. We find an anomaly near longitude
l ∼ (300 ± 60)◦ and distance s ∼ (0.32 ± 0.03) kpc on both sides of the galactic plane, which
could be explained by either a localized distance error or a breathing mode.

Key words: parallaxes – stars: distances – stars: kinematics and dynamics – Galaxy: kinemat-
ics and dynamics – solar neighbourhood.

1 IN T RO D U C T I O N

The Gaia satellite mission (Perryman 2001; Gaia Collabora-
tion 2016, 2016b) is the most important survey of this decade for
the fields of Galactic and stellar astronomy. It is retrieving preci-
sion astrometry for of order one billion stars throughout the Galaxy,
coupled to spectroscopic observations that allow determination of
stellar parameters and line-of-sight velocities for a large subset
of these stars. In addition, this effort is coupled to a plethora of
ground-based spectroscopic surveys, including Radial Velocity Ex-
periment (RAVE), Gaia–ESO, APOGEE, SEGUE, GALAH, Large
Sky Area Multiobject Fiber Spectroscopic Telescope (LAMOST),
and WEAVE.

Since the first release of Tycho-Gaia Astrometric Solution
(TGAS) data (Gaia Collaboration 2016; Lindegren et al. 2016),
there has been a variety of papers examining the quality of the data,
ranging from the original validation paper (Lindegren et al. 2016)
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to studies with standard candles, like red giants and red giant clump
stars (de Ridder et al. 2016; Davies et al. 2017). A thorough com-
pilation of standard validations of TGAS astrometry is found in
Arenou et al. (2017). They discuss significant deviations of the me-
dian parallax from 0 for remote objects in different regions of the
sky, e.g. for objects in the Magellanic Clouds. Most such quality
tests for parallaxes p rely on distant objects, which should have
p = 0 arcsec (to within at most a few μas), i.e. quasars, galaxies, or
objects in neighbouring galaxies. For such tests, the main caveats
are potential contamination with Galactic sources, and to a minor
extent their different geometry, and different spectral distribution.

For Milky Way (MW) studies, it is vital to have a direct validation
also of larger parallax measurements. However, well-constrained
standard candles like Cepheids are not numerous enough to allow
for resolved, high-precision testing. Most other types of standard
candles, like RR Lyrae stars, red clump stars, or blue horizontal
branch stars are more distant than the local dwarf star samples.
More importantly, their luminosities depend on additional param-
eters, like helium abundance, age, or metallicity. While relatively
well controlled via the period dependence in pulsating stars, this
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Figure 1. Positions of stars in the RAVE–TGAS (green) and LAMOST–
TGAS (red) samples in galactic latitude b versus longitude l.

is a major issue for the more numerous red clump stars. Girardi &
Salaris (2001) and Salaris & Girardi (2002) have found dependen-
cies in excess of 0.1 mag, severely limiting their value to test Gaia
parallaxes at high precision.

A key point for these validations is that even a perfectly unbiased
parallax measurement does not yet imply unbiased distances. Each
parallax measurement will still be uncertain, and so to estimate
stellar distances, one has to translate the parallax error distribution
into a distance distribution and combine the full information on this
likelihood distribution (Strömberg 1927; Astraatmadja & Bailer-
Jones 2016) with models for the density of stars in each region, and
(if stellar parameters are not directly used) with the selection func-
tion. Each of these factors can bias the derived stellar kinematics.
They are frequently neglected in attempts to test and validate Gaia
data on standard candles (see e.g. de Ridder et al. 2016; Davies
et al. 2017). For everyone studying stellar kinematics, the main
question is not if the parallaxes are unbiased, but if the derived stel-
lar distances are unbiased. In this paper, we will apply a statistical
distance estimator (Schönrich, Binney & Asplund 2012, hereafter
SBA) that does exactly this.

The RAVE–TGAS sample, released with RAVE DR5 (Kunder
et al. 2016), is the first major combined sample of ground-based
spectroscopic data from the RAVE ( Steinmetz et al. 2006) with
combined astrometry from Gaia (Gaia Collaboration 2016; Lin-
degren et al. 2016), Tycho-2 (Høg et al. 2000), and Hipparcos
(Perryman 1997; van Leeuwen 2007). The RAVE–TGAS sample
is also particularly interesting, since RAVE spectra have similar
resolution and wavelength coverage to those of the Gaia spectro-
graph. The LAMOST survey (Wang et al. 1996; Liu et al. 2015;
Luo et al. 2015) also overlaps with TGAS. As seen in Fig. 1, it
complements RAVE on the northern sky and is of great use to study
the outer disc regions of the MW.

The aim of this paper is to derive stellar distances from the Gaia
parallaxes, and to validate the resulting kinematics. We make these
data publicly available.1 For the validation, we use the method
of SBA, which employs correlations between either radial (U) or

1 Please find the data sets with distances and kinematics and our source
code at http://www-thphys.physics.ox.ac.uk/people/RalphSchoenrich/data/
tgasdist/data.tar.gz or request them directly from the authors.

Figure 2. Schematic visualization of coordinates, velocity components in
a local heliocentric Cartesian frame (U, V, W) versus local galactocentric
Cartesian frame (Ug, Vg, W) and angle definitions for the observation of
a star from the position of the Sun. In this plot, the Galactic disc rotates
clockwise. The angle between Ug and U is α.

azimuthal (V) with vertical (W) velocities and combinations of
galactic coordinates. The correlation between U and W velocity
is affected by the vertical turn of the velocity ellipsoid above the
plane, while the correlation between V and W velocities in disc
samples can be affected by spiral breathing modes (Debattista 2014;
Faure, Siebert & Famaey 2014), or the Galactic warp (Dehnen 1998;
Poggio et al. 2017). That the MW has some warp and possible
vertical waves is known both from observations in gas (Burke
1957; Kerr 1957) and stars (Djorgovski & Sosin 1989; Xu
et al. 2015), but a possible imprint on local stellar kinematics de-
mands scrutiny, since observational errors are known to cause simi-
lar apparent correlations between heliocentric velocities (SBA). We
will discuss our finding of a warp signal in a second paper.

The structure of this paper is as follows: In Section 2, we describe
the data sets we use, the merging of data from different sources, and
our quality cuts. Section 3 provides a description how we calculate
distances from parallaxes. In Section 4, we describe how our dis-
tance estimator, can be used to measure to high accuracy the mean
distance bias in a sample and the vlos source dispersion e‖. In Sec-
tion 5, we apply this method to the RAVE–TGAS and LAMOST–
TGAS samples. We show how a separation of the samples into
subsets can be used to validate and measure the line-of-sight ve-
locity uncertainties given in a pipeline. We also show how we can
derive the effective spatial selection function for each sample and
how our distance statistics can be used to validate the results. Our
conclusions are found in Section 6.

2 DATA A N D D E F I N I T I O N S

2.1 Coordinate frame and definitions

For all subsequent discussions, please refer to Fig. 2 for defini-
tions of our coordinate frame. We use either the heliocentric Carte-
sian frame with velocities (U, V, W) radially towards the Galactic
Centre, azimuthally in the direction of Galactic rotation, and verti-
cally out of the plane, or the galactocentric cylindrical coordinate
frame, marked by indices g, naming the velocity vector (Ug, Vg, W).
The galactocentric radius is termed R, the distance to the Galac-
tic Centre r, Galactic longitude and latitude are l and b. The angle
β = tan −1(z/R) is the angle between the Galactic plane and the con-
nection line star-Galactic Centre. The angle between the Sun-centre
and the star-centre connection lines is called α. We use the Sun’s
galactocentric distance R0 = 8.27 kpc, the Sun’s total azimuthal
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velocity υ� = Vc + V� = 248 km s−1 in the Galactic rest frame,
where Vc is the local circular speed of the disc, and the Solar motion
with respect to the local standard of rest is (U�, V�, W�) = (13,
12.24, 7.24) km s−1. These values are chosen in concordance
with Schönrich (2012), McMillan (2011, 2017), and Schönrich,
Binney & Dehnen (2010). Following Joshi (2007), we place the
Sun at z = 20 pc above the Galactic mid-plane.

2.2 TGAS data

For this work, we cross-match TGAS data from Gaia DR1 (Gaia
Collaboration 2016; Lindegren et al. 2016) both with RAVE DR5
(Kunder et al. 2016) and with DR2 of LAMOST (Luo et al. 2015).
As can be seen in Fig. 1, the samples would together provide a full
sky coverage. While LAMOST DR2 has far more stars, the cat-
alogue covers significantly fainter stars giving a smaller common
footprint with TGAS. More importantly, LAMOST’s line-of-sight
velocity determinations are about one order of magnitude less pre-
cise than in the RAVE survey, so on LAMOST our statistics will
rather test their vlos measurements than the distances. To ensure
sufficient quality of the data, we adopt a few general cuts:

(i) A derived distance s > 30 pc. Lindegren et al. (2016) report
that TGAS is biased against stars with a proper motion larger than
≈3.5 arcsec yr−1. To prevent kinematic bias (a cut in proper motions
might feign a distance underestimate), we drop the few stars with
s < 30 pc, where a proper motion of 1 arcsec yr−1 would imply a
transverse velocity |v⊥| ≈ 140 km s−1.

(ii) Limiting −100 < Vg/km s−1 < 310: again this cut in helio-
centric azimuthal velocity affects only a handful of stars, and we
have tested that our results are robust against the precise choice.
However, damaged data tend to assemble in the extreme wings, so
we drop them.

(iii) Limiting the line-of-sight motion |vlos| < 500 km s−1: ex-
cising another few objects is justified by indications of erroneous
velocity determinations at extreme |vlos| in RAVE.

2.3 RAVE

The RAVE DR5 sample contains 520 701 entries. However, about
15 per cent of the entries are multiple measurements of the same
object. Of the 68 822 duplicate entries, we choose the one that has a
smaller radial velocity (RV) error given by the RAVE pipeline, leav-
ing us with 451 879 unique stars. To test the cross-match between
the RAVE DR5 sample with TGAS, we have compared two different
strategies: (i) using the already cross-matched positions in Kunder
et al. (2016) and demanding a precise match in position to the Gaia
catalogues, which gives us 210 415 cross-matched stars (by iden-
tifier we find 210 368 unique stars), and (ii) using the positions in
RAVE versus TGAS positions and proper motions, demanding that
the position and proper motion in TGAS predicts within 3 arcsec the
original position in the RAVE catalogue. The latter exercise gives
us 215 640 stars, of which a few dozen are apparent binaries in the
Gaia catalogue. The Gaia data are provided at epoch 2015.0, and
use the International Celestial Reference System (Arias et al. 1995;
Feissel & Mignard 1998). To transform the celestial coordi-
nates to Galactic coordinates l and b, we use the values (αG,
δG, l�) = (192.85948, +27.12825, 32.93192)◦ provided in ESA
(1997).2 We have compared our results from the different selections

2 See also gaia.esac.esa.int Section 3.1.7 for reference.

and cross-matches, and since these choices do not significantly af-
fect our results, we report here only results for the original RAVE
DR5 cross-match. We further exclude all stars that are flagged as
cluster members in the RAVE data set, or have a line-of-sight ve-
locity error given as σ los,RAVE = 0 km s−1. If not explicitly stated
otherwise, we use the quality cut σ los,RAVE < 5 km s−1, which will
be justified in Section 5.2. A large number of stars in this cross-
matched sample will fail our variable cut for the precision of the
measured TGAS parallax. E.g. the RAVE subsample under our
quality restrictions with parallaxes (p0) better than 20 per cent, i.e.
p0/σ p > 5, has only 88 464 members.

An important classification of RAVE spectra is given by the
flags from Matijevič et al. (2012). These flags list the 20 closest
matches to each RAVE spectrum for different classes of stars, e.g.
normal stars (marked with ‘n’), chromospherically active stars, or
suspected binaries. Throughout this paper, we use these flags to
define three subsets of RAVE: (i) all stars in RAVE irrespective of
their classification, (ii) unflagged stars, i.e. stars that have all 20
flags set to ‘n’, and (iii) suspected binaries, which have at least one
flag set to ‘b’.

2.4 LAMOST

To cross-match the LAMOST sample with TGAS, we use the
TGAS proper motions and positions to calculate back to the sus-
pected position in LAMOST at epoch 2000. For a proper match,
we demand

√
�2

RA + �2
Dec. < 1.2 × 10−3deg (or equivalently <

4.3 arcsec), between the predicted position and the position given
in the LAMOST catalogue. Repeat observations in LAMOST are
purged by taking for each object in TGAS the best match in posi-
tion, or at equal match, the latest entry in the LAMOST catalogue.
This leaves us with 107 663 stars in the cross-matched sample. To
avoid kinematic biases in the selection function, which could affect
our statistics, we remove the region of 0 < RA deg−1 < 67 and
42 < Dec. deg−1 < 59 from the LAMOST sample, since Luo et al.
(2015) report that this region contains a subsample of plates that
have a proper motion selection, limiting the stellar proper motions
to smaller than 7 mas yr−1. There might be minor contamination
of in-plane fields with kinematic selections, but since the distance
statistics we choose for this analysis are not sensitive to stars in the
Galactic Plane, we judge the above exclusion region to be safe.
Demanding a parallax uncertainty better than 20 per cent and a
signal-to-noise ratio (S/N) > 30, the usual line-of-sight velocity
cut |vlos| < 500 km s−1 and a galactocentric azimuthal velocity of
−100 < Vg/km s−1 < 310, we have a remaining sample of 34 384
stars. The S/N cut does not strongly affect the sample size, since the
cross-match with Gaia includes mostly bright objects; with a cut at
S/N > 5 the sample size would only increase to 38 834 stars.

We will show in Section 5.2 that line-of-sight velocities in
LAMOST have to be corrected by adding δvlos = 5 km s−1. Fur-
ther, we will limit the sample to a nominal vlos measurement
error σ los,LAM < 27 km s−1, and replace their estimate by using
σ los = 7 km s−1, motivated by Section 5.5.

3 D I S TA N C E D E T E R M I NAT I O N S

For the sake of well-defined error distributions in our distance deter-
mination, we will rely solely on parallaxes. Since the reported par-
allax errors are all larger than 0.2 mas, a 10 per cent (or 20 per cent)
quality cut on the parallax will limit the sample to within ∼0.5 kpc
(1 kpc), with some weak dependence on the prior used. With par-
allax errors still a significant fraction of the measured parallax, it
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is not advisable to use just the inverse parallax as a distance. For
the derivation of distances from parallaxes, see Strömberg (1927),
Schönrich & Bergemann (2014), or Astraatmadja & Bailer-Jones
(2016). Since we are using exclusively the parallaxes to assess stel-
lar distances, the magnitude-based selection function of the sample
has to be written into the prior, so that the posterior distribution in
distance is:

P (s) = N−1s2G(p, p0, σp)ρ(s(p), l, b)S(s(p)), (1)

where

N =
∫

ds s2G(p, p0, σp)ρ(s(p), l, b)S(s(p)) (2)

is the normalization. G(p, p0, σ p) is the observational likelihood of
the parallax given the measurement, (p0, σ p), s2 is the geometric
factor, i.e. surface of the observational cone at fixed distance s, ρ(s,
l, b) is the supposed density of stars in the direction of galactic
longitude and latitude (l, b), and S is the selection function, which
we approximate as a function of distance s only. The expectation
value for the distance of each star is then just:

〈s〉 = N−1
∫

ds s3G(p, p0, σp)ρ(s(p), l, b)S(s(p)). (3)

For the density prior ρ, we use the simple thin/thick disc + halo de-
composition from equation (32) in Schönrich & Bergemann (2014),
i.e. our density model simply reads as:

ρ(R, z) = e
− (R−R0)

Rd e
− |z|

z0 + ate
− (R−R0)

Rd e
− |z|

z0,t + ah

(
r

R0

)−2.5

, (4)

where R is the galactocentric radius in cylindrical coordinates, R0

is the (cylindrical) galactocentric radius of the Sun, Rd is the scale-
length of the disc, chosen at Rd = 2.5 kpc, z the altitude above
the plane, z0 = 0.3 kpc and z0, t = 0.9 kpc are the scaleheights of
the thin and thick discs, r is the galactic centre distance used for
a simple spherical halo model, at = 0.12 is a local thick disc nor-
malization set in concordance with Ivezić et al. (2008), ah = 0.001
normalizes the halo component. We note that the placement of the
Sun above the plane (we assume it at z� = 20 pc has virtually no
influence on the distance estimates. When assuming a vertical po-
sition of the Sun either at z� = 0 or 50 pc, every single star in the
entire RAVE sample experiences a relative distance change smaller
than 0.01, the rms dispersion of the fractional distance differences is
3 × 10−4 and the mean offset is 8 × 10−5. This is to some part due
to the dominance of the selection function, to another part due to
the inclination of most sightlines against the vertical direction.

Of great importance are, however, the selection function S(s)
and the choice, which statistical quantity we use. Fig. 3 shows
the posterior distance distribution P(s) according to equation (1)
with a solid blue curve for a typical RAVE star with σ p/p ∼ 0.2.
As a comparison, we show with a dashed red line the posterior
distance distribution P0(s) when we would neglect the selection
function S(s) (depicted in arbitrary units with a dashed green line).
The selection function favours at this distance more nearby stars,
and so the posterior distribution loses most of its tail towards long
distances. This strongly reduces the distance expectation value from
〈s〉0 ∼ 0.6 kpc down to 〈s〉 ∼ 0.47 kpc. The median and mode (which
is not a sensible statistical quantity due to its dependence on the
axis scaling) of the distribution are shifted in the same direction,
but react slightly less. Since the parallax probability distribution is
symmetric, the resulting posterior probability in distance is strongly
skew, and so the expectation value is a lot larger than the median
and in particular the mode/maximum.

Figure 3. A typical posterior probability distribution P(s) (solid blue line)
for a star with σ p/p ∼ 0.2. In the same plot, we show the selection function
S(s) for the full RAVE sample (green) in arbitrary units, and the posterior
probability distribution P0(s) (red), when we neglect S(s). The vertical lines
show expectation value (solid), median (dashed), and mode (dotted lines)
for each distribution.

In short, we have to take two things from this: (i) the mode is not
a sensible quantity to use and both median and mode underestimate
the expectation value. (ii) The selection function strongly affects all
distance estimates.

The selection function S would typically require the use of a
full population synthesis model: it is apparent that the magnitude
limits of the RAVE survey will introduce a strong bias towards
nearby and more luminous stars, which ultimately favours younger
stellar populations. Stellar metallicities affect brightness and colour,
thus influencing the selection function as well. While S will hence
in general not be isotropic, we approximate S(s) as a function of
distance s only. We discuss its derivation in Section 5.3.1.

4 A SSESSI NG DI STANCES AND
L I N E - O F - S I G H T V E L O C I T Y D I S T R I BU T I O N
E R RO R S

To assess distances, we make use of the statistical distance method
of SBA, where a full derivation of all equations can be found. In ad-
dition to the theoretical justification, we have performed numerous
validations on the original method. Since we are using a restricted
approach in this paper, we present in Appendix A, a short validation
on N-body galaxy simulations, which are structurally similar to the
MW.

This method exploits position dependent correlations between
different heliocentric velocity components. A stellar motion relative
to the Sun (U0, V0, W0) results in observable line-of-sight velocity
vlos and proper motions μl and μb, depending on the distance s0

to the star, calculated with the translation matrix M. Since this
translation matrix is orthogonal, we have
⎛
⎝ U0

V0

W0

⎞
⎠ = M

⎛
⎝ sμl

sμb

vlos

⎞
⎠ and

⎛
⎝ sμl

sμb

vlos

⎞
⎠ = MT

⎛
⎝ U0

V0

W0

⎞
⎠ (5)

If our distance estimate s for the star is wrong by a fraction
f, the terms containing the proper motions will be stretched by
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(1 + f) = s/s0, and our estimated velocity vector (U, V, W) for the
star will be altered to⎛
⎝ U

V

W

⎞
⎠ = (I + f T)

⎛
⎝ U0

V0

W0

⎞
⎠ , (6)

where T = MPMT, I is the identity matrix, and P is the identity for
the proper motion terms, but zero in the vlos term. For the following
discussion, we only need the terms of T connecting the vertical
motion to all velocity components, i.e.

TUW = cos(l) sin(b) cos(b),

TVW = sin(l) sin(b) cos(b), and (7)

TWW = cos2(b).

Take for example the motion of the Sun against a sample
of halo stars. The Sun has an azimuthal velocity of roughly
V� ∼ 250 km s−1, while halo stars have no net azimuthal mo-
tion. TVW is maximal when we look up out of the galactic plane
at an angle b ∼ 45◦ in or against the direction of solar motion. To
get a picture on how this term links vertical heliocentric velocities
W with azimuthal velocities V, imagine approaching horizontally
the wall of your room, while looking at the corners of the floor and
the ceiling. Both corners will be blueshifted in their line-of sight
velocity, but you also observe an angular motion. If your distance
estimate to the corners is correct, the conclusion will be a zero net
motion of the room. However, if the distance is overestimated, the
angular motion of the upper corner will be mistakenly translated into
a net upwards motion, and similarly, the lower corner will appear
to move downwards. Similarly, if we overestimate stellar distances
in our Galactic halo example, we will detect a net upwards motion
(positive W) maximal near (l, b) ∼ (90◦, 45◦), and (l, b) ∼ (270◦,
−45◦) and a downwards motion (negative W) around (l, b) ∼ (90◦,
−45◦), and (l, b) ∼ (270◦, 45◦), and opposite bias for a distance
underestimate. This motion will be proportional to the azimuthal
velocity difference between the Sun and the stars.

As discussed in SBA, there are similar connections between each
velocity pair. However, since we are dealing with a disc sample with
a complicated selection function and strive for maximum accuracy,
we will drop all terms that are to first order affected by galactic
rotation and streaming (U versus V motion). Since proper motion
errors are minimal, we can use the more precise non-linear estimator
from SBA.

As a quick test for distance errors in a sample of stars, we can
assume that (U, V, W) is sufficiently close to the real velocity vector
(U0, V0, W0) and fit a straight line to W versus TVWV, via the
regression model

Wi = γ TVW,iVi − W� + εi, (8)

where Wi and Vi are the measured vertical and azimuthal velocity
components for the ith star, and TVW, i is given in equation (7). The fit
parameters W� and γ represent the vertical motion of the Sun, and
the average fractional distance error, while εi represents the random
term from stellar velocity dispersion and measurement errors, which
should have zero expectation value. These fits are shown in Fig. 4 for
different subsamples of RAVE–TGAS, and for LAMOST–TGAS.
The dark red error bars show means of W when binning the sample
in VTVW, while the blue dashed lines show the fitted regression line
from equation (8). It is evident that in particular LAMOST and the
suspected binary stars in RAVE show a large slope γ , indicating
either a major distance bias, or a problem with line-of-sight velocity
determination.

We note that a robust linear estimator can be derived from
equation (8) by replacing the individual azimuthal velocities with
their expectation value, i.e. Vi → 〈V〉. This estimator is particularly
useful for remote samples of halo stars with a large mean helio-
centric V. However, for disc stars, this estimator is about one order
of magnitude less sensitive than our full estimator, and so for this
work of little use compared to the full distance estimator, which we
will now describe.

The regression in equation (8) can be formalized to an estimate
of the fractional distance error fUV. We adopt equation (19) from
SBA:

f = Cov(W, y)

Var(y) + 〈(T 2
VW + T 2

UW

)
σW

2〉 . (9)

where y = TUWU + TVWV − TWWW� is the ‘baseline’ on which
the rise in W is measured, Cov is the covariance, and Var(y) is the
variance of y. To measure the distance bias in practice, we multiply
all distances with the same factor, until the estimated f is zero. Error
bars shown throughout the paper are derived by varying the distance
correction, until f is at the 1σ confidence limit. The denominator of
this term matters only for the error determination. The essential task
is to find the distance correction factor, for which Cov(W, y) = 0.

To construct an estimator that is more stable against outliers in W,
we cap the vertical velocities at |W| = 200 km s−1, i.e. assign all stars
beyond that value the limit of ±200 km s−1. In statistical terms, we
are essentially using an M-estimator for our linear regression. We
have checked by varying this ceiling between 150 and 400 km s−1

that our results are not affected by outliers.
In some situations, sample kinematics/measurements may be er-

roneous, or the data may be affected by streams. In this case, it is
useful to look at the separate statistics from the U → W and V →
W terms. These separate terms have analogously the estimators:

fV = Cov(W,TVWV )

Var(V TVW) + < T 2
VWσW

2 >
, and (10)

fU = Cov(W,TUWU )

Var(UTUW) + < T 2
UWσW

2 >
. (11)

4.1 Bias corrections

There are three further contributions to these covariances: the tip-
ping of the velocity ellipsoid outside the Galactic plane, observa-
tional uncertainties in proper motions, and both vlos measurement
errors and intrinsic vlos dispersion from binaries. We summarize the
last two items as vlos source variance e2

‖ . To get an unbiased distance
estimator, we have to subtract these contribution from the measured
covariance:

Cov(W,TVWV ) = Covmeasured(W,TVWV ) − Covbias. (12)

We now separate the bias term Covbias into its three sources: the bias
from the tipping velocity ellipsoid Covve, the measurement error on
proper motions Cov⊥ and the e‖ term Cov‖:

Covbias(W,TVWV ) = Covve + Cov⊥ + Cov‖. (13)

Let us first discuss the minor contribution from the tipping of the
velocity ellipsoid. As we can see in Fig. 2, some part of the galac-
tocentric radial motion contributes to the heliocentric azimuthal
velocity, when a star is observed away from the connecting line
between Sun and Galactic Centre. This way, the inclination of
the non-isotropic velocity ellipsoid in galactocentric coordinates
translates into a minor correlation between the velocities in the
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3984 R. Schönrich and M. Aumer

Figure 4. Trends in W versus VTVW in all RAVE stars (top left), all unflagged RAVE stars (top right), all RAVE stars with at least one binary flag (bottom
left), and all LAMOST stars with σ los,LAM < 25 km s−1 (bottom right). The dark red error bars show the mean values of W when binning the sample along the
x-axis. The green short dashed line marks the reflex motion of the Sun and the blue long-dashed line the linear fit to the data. Despite the curious outliers at
extreme azimuthal velocities in the RAVE sample, the slopes in all four plots are significant and given in Table 1.

heliocentric frame. The velocity ellipsoid corrections from equa-
tions (40f) of Schönrich, Binney & Asplund (2012) for the U → W
and V → W terms read:

Covve(W,TUWU ) = 1

4

〈
sin(2b) cos(l) cos(α) sin(2β)

× (
σ 2

U − σ 2
W

) 〉
,

Covve(W,TVWV ) = −1

4

〈
sin(2b) sin(l) sin(α) sin(2β)

× (
σ 2

U − σ 2
W

) 〉
, (14)

where σ 2
U and σ 2

W, are the radial and vertical velocity dispersions.
For definitions of the angles, see Fig. 2 and Section 2.1. Here, we
assume that the velocity ellipsoid is pointing roughly towards the
Galactic Centre (Siebert et al. 2008; Binney et al. 2014). σ U and σ W

are measured directly from the data. Since our samples are local and
close to the plane (small α and β), the resulting bias on the distance
estimators is significantly less than 0.01 for fU, and less than 0.002
for fV.

Adapting equations (23ff) from SBA, we can calculate the bias
in the covariance from proper motion errors:

Cov⊥(W,TUWU ) = −
∑

i

T 2
UW,ie

2
⊥,i

Cov⊥(W,TVWV ) = −
∑

i

T 2
VW,ie

2
⊥,i (15)

where again i is the index running over all stars in the sample. e⊥, i

is the uncertainty in the proper motion of star i in the latitudinal
(b) direction. If uncorrected, this term will feign a slight distance
overestimate, but due to the excellent proper motions in TGAS, the
resulting bias on the fractional distance error is below 0.3 per cent.

4.2 Line-of-sight velocity variance

The vlos errors require significantly more caution. Consider the effect
on fV, an analogous discussion will apply to fU. Just where TVW is
maximal, i.e. at l ∼ 90◦, 270◦ and at an elevation of b ∼ 45◦ above
the Galactic plane, an error in line-of-sight velocity determination
will be evenly split into the derived V and W velocities, leading
to a maximal correlation. This term will, if uncorrected, push the
statistics towards a distance underestimate:

Cov‖(W,TUWU ) =
∑

i

T 2
UW,ie

2
‖,i and

Cov‖(W,TVWV ) =
∑

i

T 2
VW,ie

2
‖,i, (16)

where e2
‖,i is the source vlos variance (we analogously call e‖ the

source vlos dispersion), i.e. all vlos variance that does not derive from
the stellar velocity ellipsoid. For the full estimator f, both Cov terms
have to be added. We conceptually split e‖ into two contributions:

e2
‖ = σ 2

los + σ 2
bin, (17)
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where σ los is the intrinsic measurement error in each survey, and
σ bin is the line-of-sight velocity dispersion from the orbital mo-
tion of multiple stellar systems (which we will address simply as
‘binary’ contamination). The source vlos variance is the most im-
portant bias in LAMOST, with a distance bias near 10 per cent. The
impact of σ los,RAVE on the distance estimators is nearly negligible
with less than 0.3 per cent, but σ bin might be important. While the
general problem of binary velocity dispersions has been known for
a long-time (Olszewski, Pryor & Armandroff 1996; Hargreaves,
Gilmore & Annan 1996), we could not locate a good prediction
for the MW. A strong expected age dependence (Gieles, Sana &
Portegies Zwart 2010), and probably some metallicity dependence,
make it difficult to translate results from dwarf spheroidal galax-
ies to the MW. Depending on the binary fraction and distribution,
the dispersion contributed to the line-of-sight velocities could be of
order 3 km s−1 with a large uncertainty (Vogt et al. 1995), though
some open clusters appear to yield smaller values. We also note that
our statistics will not pick up the full line-of-sight velocity disper-
sion, since the proper motions will also be affected to some extent.
The difference is mostly in the long baseline in time for Gaia –
short-period binary systems (with periods significantly shorter than
the time elapsed between Hipparcos and Gaia) should fully affect
f, whereas we expect that very long-period binary systems will have
a vanishing effect. However, while long-period systems are more
numerous, most of the contribution to the velocity distributions by
binary systems is expected to stem from short-period systems (see
e.g. de Rijcke & Dejonghe 2002).

This problem will be further examined in Sections 5.2 and 5.5.
Can we discriminate the contribution of e‖ from a general distance

error? To some extent, yes, with a sufficiently large number of stars
in our sample. The bias from e‖, Cov‖/N, for any sample of N stars
should be the same between subsamples with the same geometry
(i.e. distribution in values of TVW, i), and same vlos measurement
quality and binary contamination (i.e. similar e‖, i). In contrast with
this, the covariance term created by a distance error depends on
the length of the baseline, which can be seen by isolating Cov(W,
TVWV) or Cov(W, y) in equation (9).

To summarize, these equations allow for a degenerate estimate
between the mean distance error and an unknown bias in the line-
of-sight velocities from binaries, but this degeneracy can be broken
by selecting different subsamples with different baseline lengths
(Var(TVWW)), either by cuts in metallicity or (more dangerous) by
enforcing cuts on the galactocentric azimuthal velocity Vg.3

To account for uncertainties in Covbias, we add 30 per cent of
the distance bias from the tipping velocity ellipsoid and the proper
motion errors as independent terms to the error budget in f. The
geometric terms of the source vlos dispersion e‖ are not uncertain,
and so we add 10 per cent of this bias to the error budget.

4.3 Further biases and caveats

In a realistic galaxy, we expect further biases on our distance esti-
mator from Galactic structure. The main features will be

(i) streams from accretion events,
(ii) the Galactic warp correlating V and W motions near the line

of nodes,

3 We iterate the warning that while it is feasible to cut the sample in Vg,
cuts in heliocentric V are illicit, since they produce a biased cut in the actual
velocity ellipsoid, biasing the sample in Ug and hence, via the inclination of
the velocity ellipsoid in W.

(iii) (vertical) breathing modes from bar and spiral pattern, and
(iv) disc streaming motions near resonances.

We do not expect a major bias from disc streaming, because those
motions are predominantly in the galactic plane (Dehnen 2000;
Peréz-Villegas et al. 2017), and our distance estimator is only biased
by vertical motions.

If a stellar stream through the sample, it may have a large vertical
motion W. This does not yet imply even a local bias on our distance
estimator, because even a correlation between W and V velocities is
not enough. The stream has to correlate W significantly with TVWV
to affect the fV part. Even if the condition is fulfilled, good spatial
coverage will cancel the bias to first order: If we have a bias at b > 0,
an equivalent patch in the southern galactic hemisphere b < 0 will
cancel the impact of the stream, because the stream’s W and V
velocities will be similar, but the geometric term TVWV reverses
its sign. In addition, the fU estimator will not be affected or react
differently, and tend to cancel the effect. In short, streams in a sample
with good spatial coverage will not be a problem, and in worst
case be detected by internal discrepancy between fU and fV. Helmi
et al. (2017) have already suggested that the TGAS sample has no
dominant single stream or small number of identifiable streams.

Similarly, the Galactic warp may be a problem for the fV term,
but since the correlation between W and V will be similar in all
directions (Dehnen 1998), fV is only biased, if our sample looks
predominantly into one quadrant of the sky. This is a major caveat,
however, for dissecting samples in l and b.

Vertical breathing modes (Faure et al. 2014) are more danger-
ous, because their W motion reverses in parallel with a sign rever-
sal of TVW between b > 0 and b < 0. This can have some im-
pact, if the vertical motion feature is not symmetric in the field
of view. However, the effect can be detected by comparing fV

with fU.
A summary of performance tests of our method on N-body simu-

lations of MW-like galaxies, which reasonably match both Galactic
structure and local kinematics, is discussed in Appendix A. On full
sky samples measured at a solar-like position, the distance estima-
tors perform at the level of their statistical error, i.e. the systematic
effects discussed in this section must be below 1 per cent on the
distance estimator. The worst case scenario that we could find was
a simulation with an unrealistically long bar. In that case, the sub-
structure introduced no concerning bias on the full sample, but a
scatter of ∼4 per cent in fV and ∼2 per cent in f when we restricted
the sample to separate hemispheres in l.

We further note that (cf. the discussion in SBA) f is an intrinsically
quadratic estimator. Stars with distance overestimates have a longer
measured baseline in y, and so achieve a slightly larger weight in
the distance estimator than distance underestimates. So, for a set of
different fractional distance errors fi for a set of stars, the fractional

distance estimate is in fact f = 1 −
√∑

i < (1 + fi)
2 >. While

of some importance with spectrophotometric distances, the effect
is not important here due to the good parallax quality and hence
moderate random scatter of distance estimates in TGAS.

5 A P P L I C AT I O N TO T H E DATA

5.1 Mean distance error in the different subsamples

We start our discussion with an inventory of the mean distance biases
in different subsamples, and will justify some of our assumptions
in the later sections. For deriving distances in these samples, we
use the full distance prior from equation (3) including the survey
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3986 R. Schönrich and M. Aumer

Table 1. Distance correction factors assuming the given errors for different subsamples of RAVE and LAMOST stars. Column 2 shows the number of
stars, γ is the slope in the simple linear regression from equation (8), fV is the distance estimator from equation (10), �f is the bias correction from
equation (13) to f, and f is the full distance estimator from equation (9). The shorthands for the used samples are: RAVE: using RAVE stars with parallax
errors better than 20 per cent; RAVE10: RAVE stars with parallax errors better than 10 per cent; all: all stars; nf: no flags; nf,s: no flags and excluding
the distance region 0.3 < s/kpc < 0.35; b: at least one binary flag; LAMe1: LAMOST with given line-of-sight uncertainties σ los,LAM < 25 km s−1, and
LAMe2: LAMOST with σ los,LAM < 15 km s−1. A positive f indicates an average distance overestimate by a 1 + f.

Sample Number of stars γ fV �f f

RAVEall 88464 −0.041 ± 0.007 −0.027 ± 0.007 −0.009 −0.013 ± 0.005
RAVE10,all 40570 −0.063 ± 0.010 −0.041 ± 0.010 −0.004 −0.024 ± 0.007
RAVEnf 59923 −0.012 ± 0.008 −0.009 ± 0.009 −0.011 0.001 ± 0.006
RAVEnf,s 52865 −0.026 ± 0.009 −0.022 ± 0.009 −0.011 −0.006 ± 0.007
RAVE10,nf 22574 −0.030 ± 0.014 −0.014 ± 0.015 −0.005 −0.010 ± 0.009
RAVE10, nf, s 18710 −0.045 ± 0.015 −0.032 ± 0.016 −0.005 −0.017 ± 0.010
RAVEb 5929 −0.261 ± 0.027 −0.170 ± 0.024 −0.006 −0.123 ± 0.016
RAVE10, b 2803 −0.332 ± 0.041 −0.207 ± 0.037 −0.001 −0.114 ± 0.024
LAMe1 28475 −0.134 ± 0.012 0.131 ± 0.035 0.214 0.147 ± 0.031
LAMe2 6673 −0.141 ± 0.024 −0.013 ± 0.026 0.084 0.011 ± 0.019

selection functions, which we will derive in Section 5.3.1, and full
bias corrections with the given errors according to equation (13).

Table 1 summarizes the distance statistics for different subsam-
ples in RAVE and for LAMOST. The third column (γ ) provides
the slope in the simple linear fit of W motion against VTVW given
in equation (8). These simple fits are shown with blue dashed lines
for four samples in Fig. 4: all RAVE stars (top left), unflagged
RAVE stars (top right), suspected binaries in RAVE (bottom left),
and LAMOST (bottom right). These slopes indicate distance under-
estimates or significant vlos source dispersions e‖ in all samples, but
in particular for the suspected binaries and LAMOST. The fourth
and fifth columns of Table 1 show the two bias-corrected distance
estimators fV and f from equations (9) and (10). For the full RAVE
sample, these terms both show a moderate, but significant distance
underestimate of order 2 per cent.

Our first, naive, idea was to ascribe this distance underestimate
to parallax errors in TGAS, as systematic effects are e.g. found in
Arenou et al. (2017). However, when we select stars that have no
flags according to Matijevič et al. (2012), i.e. are considered likely
normal stars, the distance bias diminishes. In turn, when we test sus-
pected binary systems, i.e. stars that have at least one ‘b’ flag, there
is a very strong bias equivalent to more than 10 per cent distance
underestimate. We can conclude from this that Gaia astrometry
is generally of high quality, as long as we restrict the sample to
apparently normal, single stars.

For the LAMOST sample, the situation is more complex. The
simple linear regression test delivers a slope |γ | in excess of 0.1,
i.e. a very strong kinematic bias. However, LAMOST vlos determi-
nations have nominal measurement errors σ los,LAM > 10 km s−1. In
the bias corrected statistics f and fV, the expected impact by σ los

fully accounts for this correlation in the LAMOST subsample with
σ los,LAM < 15 km s−1, resulting in a near-zero f. When we ease this
limit to σ los,LAM < 25 km s−1, the bias correction apparently over-
shoots, giving strongly positive f. The only viable conclusion is that
LAMOST greatly overestimates its vlos measurement error. We will
test this hypothesis and estimate the real vlos measurement error of
LAMOST in the next section.

5.2 Testing line-of-sight velocity errors

We can use our method to test line-of-sight velocity errors. Even if
we do not fully trust the parallax distances, Gaia–TGAS astrometry
and hence our distance estimates are independent of the stellar

parameters and line-of-sight velocity determinations. We can thus
reasonably assume that the real distance bias in the sample should
be nearly the same between samples of stars grouped according
to their σ los given by the spectroscopic surveys. A minor caveat is
the potential correlations of line-of-sight velocity errors with stellar
apparent magnitude, metallicities, and ages, which introduce a small
bias to the selection function.

The top panel of Fig. 5 shows 1 + f for subsamples of RAVE
grouped by σ los,RAVE and binned to samples of 4500 stars, sliding
the mask by 1500 stars each, so every third data point is indepen-
dent. We use the given error estimates from the RAVE pipeline, i.e.
we set e‖ = σ los,RAVE. The contribution to f from σ los is small in
this region, reaching δf ∼ 1.5 per cent at e‖ = 5 km s−1. Green error
bars show the statistics for the entire RAVE sample, while the blue
error bars depict the RAVE sample with no flags from Matijevič
et al. (2012). There are some stars in the RAVE sample with given
σ los,RAVE > 10 km s−1, and the sharp decline in the 1 + f estimate
seen in the full sample continues for those. Since their distance
error should not be substantially different, this implies that beyond
σ los,RAVE > 5 km s−1, vlos estimates are significantly more uncertain
than stated and should not be used at all. It is apparent that the un-
flagged sample shows excellent stability; the little aberration around
σ los,RAVE ∼ 1.7 km s−1 is likely just a statistical fluctuation (about
10 error bars should have their 1σ confidence intervals not crossing
1.0). The entire sample, however, shows a clear abnormality for
σ los,RAVE > 2 km s−1. Apparently, the flagged stars contain line-of-
sight velocity uncertainties beyond the provided errors, but the con-
tamination is comparably small for σ los,RAVE < 2 km s−1. There is
some tentative indication for problems with the line-of-sight veloc-
ities of stars with very small errors σ los,RAVE < 0.7 km s−1, possibly
from some erroneous σ los,RAVE determinations going in hand with
vlos measurement errors.

The same analysis on LAMOST (bottom panel of Fig. 5) demon-
strates the usefulness of the SBA method. Note that the x-axis in
this plot just starts beyond the range of the top panel, i.e. in the
entire sample, the correction of f for e‖ and hence vlos errors is
crucial. Here, we show the bias corrected estimates for 1 + f with
red error bars, setting e‖ = σ los,LAM. These are compared to the
same estimate without correcting for the e‖ bias. If the pipeline
estimates for σ los,LAM were correct, the red error bars should lie in a
horizontal line, while the uncorrected estimates (blue) should trend
sharply downwards. However, we observe the opposite. While the
uncorrected 1 + f < 1 indicates a significant vlos source dispersion
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Figure 5. Testing line-of-sight velocity uncertainties σ los as provided by
the RAVE (top panel) and LAMOST surveys (bottom panel). Both samples
are binned in σ los using a mask of 4500 stars sliding by steps of 1500 stars,
so every third data point is independent. The small vlos errors of RAVE result
in small bias corrections, so here we show only corrected estimates for f.
The entire RAVE sample is shown with green error bars, the subsample of
unflagged stars is shown in blue. Note the better stability of the cleaned
sample towards larger σ los. Due to the larger errors in LAMOST, the bottom
plot is on a different scale. Here, we plot the bias corrected distance statistics
(red error bars) versus the uncorrected distance statistics (blue). The last data
points for the corrected sample are above the figure margin.

e‖, the points lie in a horizontal line, indicating that there is almost
no correlation between the real e‖ and the estimated σ los,LAM. We
conclude that σ los,LAM does not indicate the real vlos measurement
error, and that the real vlos measurement errors must be far better
than claimed by their pipeline. In accordance with this, the red error
bars trend sharply upwards, because the bias correction increasingly
overestimates the real vlos measurement uncertainty, explaining our
findings in Table 1.

The top panel of Fig. 6 shows the measurement of e‖ from the bias
in f when ordering the sample in terms of σ los,LAM. For this figure,
we use our experience from RAVE that the distance bias should be
negligible compared to the e‖ bias correction, and hence determine
e‖ by demanding an estimate of f = 0 after the bias correction.
The error bars are derived by varying e‖ until the estimate for f
becomes marginally positive or negative. Since the bias correction
on f from equation (16) is quadratic in e‖, the error bars on e‖ are
asymmetric. The plot clearly shows that e‖ is nearly uncorrelated
with σ los,LAM, in fact it slightly declines. The sudden rise of e‖ near

Figure 6. Top panel: measuring the vlos source dispersion e‖ in subsamples
of stars ordered by the measurement uncertainty as provided by LAMOST
in each subsample. Since for these values e2

‖ � σbin, the values on the y-axis
can be directly compared to σ los,LAM. We mark the identity line in red. The
plot uses again a sliding mask, i.e. every third data point is independent. In
the middle panel, we show the same statistics, but using a general correction
of LAMOST vlos by the offset δvlos = 5 km s−1. The bottom panel shows
the average vertical velocity W versus average sin b when we take around
each star all objects with sin b values within 0.1 and longitude l within π/4.
The trend line (green dashed) was obtained by fitting equation (18) on the
LAMOST sample; its slope indicates a 5 km s−1 global bias in LAMOST
vlos measurements, which we corrected to create the middle panel.
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Table 2. Fit parameters for testing the line-of-sight ve-
locities via the dependence of vertical velocities on sin (b)
as in equation (18). The slope ξ between W and sin (b)
can be interpreted as an average vlos measurement offset
δvlos.

Sample δvlos/km s−1 −W�/km s−1

RAVEall 0.26 ± 0.13 −7.68 ± 0.09
RAVEnf 0.20 ± 0.16 −7.56 ± 0.10
RAVE10,nf −0.09 ± 0.28 −8.12 ± 0.19
RAVEb 0.24 ± 0.47 −8.27 ± 0.31
LAMOST −4.81 ± 0.21 −7.63 ± 0.15
LAMOSTe15 −4.72 ± 0.40 −7.73 ± 0.29

σ los,LAM = 27 km s−1 indicates problems with vlos estimates beyond
this point, so that we from now own will adopt the quality cut
σ los,LAM < 27 km s−1. However, there is a problem: the estimates of
e‖ using the full set of terms in f are significantly smaller than the es-
timates of e‖ when using only the azimuthal versus vertical motions
in fV. Something must be wrong beyond a random uncertainty.

The bottom panel of Fig. 6 solves this riddle. Around each star
in LAMOST, we select all stars that have a similar value in galactic
latitude, i.e. �sin (b) < 0.1 and lie within π/4 in l. We plot the
average vertical velocity of each subsample versus its mean value
in sin (b); the colour indicates the mean longitude < l > in degrees.
Apart from some statistical fluctuations, the sample lies almost
perfectly along a line:

W = −W� + ξ sin(b). (18)

However, sin (b) is just the projection factor of the vlos estimate into
W, so the slope ξ can be interpreted as an average global offset in
the vlos determinations: ξ = δvlos. An alternative explanation would
be a vertical breathing mode in the disc, but it cannot explain the
perfect trend. Table 2 compares fits of equation (18) for different
subsamples of RAVE and LAMOST. No subsample of RAVE shows
an appreciable slope, ruling out a physical phenomenon. Note that
the plotting technique leads to a strong autocorrelation between the
plotted points (there would be about 20–30 independent samples
with an error of σ<w > ∼ 1 km s−1), so to the eye, there might
be an optical illusion of deviations from the plotted trend, which
are, however, not significant. We conclude that LAMOST has an
average zero-point offset δvlos ∼ −5 km s−1, which we correct by
adding 5 km s−1 to all LAMOST vlos estimates.

The middle panel of Fig. 6 confirms the benefit of this correction
– the two different estimators for e‖ are now in line. The estimated
vlos source dispersion e‖ ∼ 7.1 km s−1 is significantly smaller than
in the top panel, and shows that the LAMOST vlos determinations
are far more precise than their estimate σ los,LAM. We also find a
comparable dichotomy of mean radial stellar velocities inwards
and outwards along the connection line between Sun and Galactic
Centre, which confirms the vlos offset found on vertical motion.
Such an offset in vlos is not unprecedented – SEGUE/Sloan Digital
Sky Survey was plagued by a similar problem, and even after its
correction, Schönrich (2012) found a residual bias, although smaller
than this one. The fact that the vlos bias on SEGUE depends on colour
and metallicity of stars as discussed by Schönrich (2012), indicates
that future revisions of the LAMOST sample should examine those
dependencies as well.

To summarize our findings in this section: we have shown that
our method can be used to test the quality of σ los estimates. vlos

estimates and σ los,RAVE estimates from the RAVE survey are of
high quality, with minor issues for flagged stars. A strict cut of
σ los,RAVE < 5 km s−1 should be applied. The LAMOST vlos de-

terminations are far more precise than suggested by their nominal
σ los,LAM. We adopt the quality cut σ los,LAM < 27 km s−1. One should
adopt a general error of σ los ∼ 7 km s−1, and correct all vlos estimates
by +5 km s−1.

5.3 Distance-dependent bias

5.3.1 Retrieving the prior/selection function

In this section, we will finally derive the selection function S(s)
required in the distance estimate in equation (3) and test it by
measuring the distance bias f in samples binned in distance s.

A full a priori calculation of the distance priors and selection
functions S(s), which enter the distance estimation in equation (3),
would demand a full chemodynamical model of the disc with all
its assumptions. Population synthesis models can calculate S(s, τ ,
[Fe/H]) and give us some indication of the shape of the selection
function. However, even with this knowledge, we still cannot reli-
ably build a selection function for our samples, since we would need
to know/assume the exact distribution of stars in age and metallicity
at each point in the Solar neighbourhood.

For example, the RAVE selection function described in Wojno
et al. (2016) can be roughly described as a flat selection in I-band
magnitudes between about 9 and 11.3 mag, with some wings to-
wards lower and higher magnitudes. Running a population synthesis
model as used in Schönrich & Bergemann (2014) on this selection,
demanding additionally Teff > 4200 K for reasonable stellar param-
eter estimates, we obtain a relatively steep selection function S(s, τ )
in distance and age: S(s) at fixed metallicity and age falls off approx-
imately exponentially with a scalelength of 0.12 kpc at s > 0.2 kpc,
and with a flatter slope at s > 0.5 kpc. At fixed metallicity and
distance, S(τ ) behaves roughly like 1/(τ + 1.5) Gyr.

Here, we will adopt a simpler, more direct approach: we can
actually derive the S(s) from the data. We know that with the correct
prior, this should give stable values of f versus 〈s〉, just like we could
demand a stable distance bias f when binning in σ los in the previous
section.

To obtain the full prior including the selection function, we start
from the simple density model in equation (4). For the sake of sim-
plicity, we assume that the selection function is solely a function
of distance, i.e. S(s), ignoring angle-dependent deviations from the
simple density model, and more importantly from the age and metal-
licity structure of the disc. We can now measure S(s) in a simple
way: With an expected distribution of stars in distance ρS(s), we can
estimate S(s) ∼ ρm(s)/ρS(s), where ρm(s) is the measured density
of stars in distance. Since the distances of single stars are quite well
determined, we approximate ρm(s) by simply binning the number of
stars according to their distance expectation value 〈s〉. One caveat
is that near the far end of the sample, the measurement will fall
quickly below the real selection function, due to stars dropping out
from the sample by the quality cut on parallax accuracy. The latter
information is already used by the quality cut, and so must not be
written into the prior.

To obtain ρS(s), we use the positions (li, bi) on the sky of all stars
i in the sample on our density model and sum up their normalized
density distributions in distance s:

ρS(s) =
∑

i

N ′
i s

2ρ(s, li, bi), (19)

where

N ′−1
i =

∫
ds s2ρ(s, li, bi) (20)
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Distances and kinematics in Gaia/TGAS 3989

normalizes the integral in distance s over each of the individ-
ual distance distributions to 1, and ρ(s, li, bi) is calculated from
equation (4). The problem is solved by an iteration. We start with a
flat S0(s) in distance, calculate all distance expectation values from
equation (3), bin them in distance to obtain ρm(s) and calculate our
first estimate for S1(s) = ρm(s)/ρS(s). We fit Si(s) with a simple
analytic equation. A smooth fitting function is important, because
a non-smooth function might pull data towards single points yield-
ing a false convergence. We re-insert this analytic approximation to
S into the distance calculation and repeat the procedure, until the
selection function converges (typically within five iterations).

The top (linear) and middle (logarithmic plot) panel of Fig. 7
show the measurement and fits to the selection function from the
entire RAVE sample. The blue points show the first estimate S1(s),
and green points depict the final estimate for S(s), which is the
selection function that reproduces itself in further iterations. The
precise parallaxes on the near end result in virtually no change of
the shape of S at distances s < 0.2 kpc. On the long distance end,
the selection function pulls stars closer, steepening S(s).

As a fitting equation, we employ a lognormal distribution, plus a
minor exponential term to smooth the edges:

S(s)=d1(exp(−((ln(s/ kpc)− ln(a))c1)2/2)+d2 exp(−sc2), (21)

where a, c1, c2, d1, d2 are free fitting parameters. The fit shown
in Fig. 7 yielded a = 0.112, c1 = 1.37, d1 = 9.52, d2 = 1.3, and
c2 = 6.51 kpc−1, converging within five iterations. The fit quality
is good; the discrepancy at large s is caused by the quality cut on
parallaxes, which must not be part of S(s).

5.3.2 Testing the selection function

Beyond this good convergence of S(s), how can we judge if this
selection function is reasonable? The key lies again in the distance
statistics. The bottom panel in Fig. 7 shows 1 + f on the y-axis,
using either a flat S (blue error bars), or the derived S(s) from
equation (21), depicted in green error bars. At the far end of the
sample, where parallaxes are relatively uncertain, a flat selection
function results in a massive overestimate of stellar distances, which
in turn gets signalled by 1 + f � 1 in the blue error bars. The last data
points for the flat S(s) are not shown, because they have 1 + f > 2,
outside the plotting range. The declining parallax precision hence
results in a strong trend in f, while with the (relatively) correct
selection function, we see no such trend. This is direct proof that
the selection function is sound and has to be applied. Note that when
binning in 1/p, the breakdown in the distance statistics for a flat S(s)
would be found in almost all of the sample with p � 5 mas.

The left-hand column of Fig. 8 shows the same results for the
RAVE–TGAS sample when selecting only unflagged stars (left-
hand column). The fitting parameters for the RAVE selection func-
tion (equation 21) are a = 0.21, c1 = 2.19, d1 = 5.43, d2 = 0.86,
and c2 = 1.75 kpc−1. The exponential scalelength is fully degen-
erate with the normalization of the exponential term, and is hence
undetermined by the fit. However, it has a significant impact on
the long-range behaviour of 1 + f: if we would use e � 1.5, i.e.
a scalelength of the selection function larger than about 0.7 kpc,
1 + f would become significantly larger than 1 for s > 0.6 kpc. The
chosen value of e = 1.75 is in the range predicted by population
synthesis models, and a compromise between our distance statistics
and the direct fit for S(s), and leads to a satisfactory result in the
bottom left panel of Fig. 8.

On the right-hand side of Fig. 8, we analyse the selection function
of the LAMOST survey. This selection function is not only limited

Figure 7. Derivation of the RAVE selection function using the entire
RAVE–TGAS sample, the top panel in linear scale, and the middle panel in
log scale. The blue points show the first measurement for S(s) when starting
with a trial flat selection function. The selection function S(s) converges as
shown within less than five iterations to its final value. The red line gives the
smooth fitting function applied. The break down of the selection function
on the right-hand end of the distribution is caused by the quality cuts on the
parallax accuracy, not to be fitted. The bottom panel compares the distance
statistics between using the final S(s) (green) and a flat S(s) (blue) binned
in 〈s〉. The last (blue) data points in the flat S(s) are not shown as they have
1 + f > 2.

by the survey’s magnitude cuts, but also by our applied signal-to-
noise limit of S/N > 30 in the r band. The LAMOST selection
function could not be fitted by the same lognormal distribution as
RAVE, so we choose

SL(s) = as2 exp(−cs), (22)
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3990 R. Schönrich and M. Aumer

Figure 8. Same as Fig. 7, for RAVE–TGAS stars that are unflagged (left-hand column) and LAMOST (right-hand column). When calculating the distance
statistics (bottom row), we apply all bias corrections in RAVE, but no bias corrections in LAMOST. The last data points in the flat S(s) are not shown because
they are far above the range of this plot.

where the free-fit parameters are determined as a = 2230 kpc−2

and c = 12.6 kpc−1. The fit is not good for small s < 0.1 kpc,
since we made no attempt to fit the distribution in that range. As
detailed above, S plays a negligible role for determining distances
at s < 0.1 kpc due to the high quality of TGAS parallaxes. On the
right-hand side, there is a small bump in both the RAVE unflagged
sample and in the LAMOST sample compared to our fits. Since
the selection function only has to capture the rough shape of the
distribution, this is acceptable. Also, the distance statistics in the
bottom panel indicate that we cannot allow for a steeper decline in
S(s) at s > 0.5 kpc, since this would make the distance underestimate
in this region significant.

5.3.3 Nature’s bad joke: the simple parallax estimator

Fig. 9 shows the estimated 1 + f distance estimator versus s′ for
the RAVE–TGAS sample (top panel) and the LAMOST sample
(middle panel), when we use the naive estimate s′ = 1/p instead
of the full distance estimate from equation (3). These statistics
look surprisingly good. While the general distance underestimate
in RAVE gets slightly worse and there is a trend towards small 1 + f
at large s′, but the naive estimate obviously avoids the catastrophic
failure we registered when neglecting the selection function, as
shown in Figs 7 and 8.

Already Strömberg (1927) pointed out that one should be careful
not to use s′ = 1/p blindly, but by a mood of nature, or rather the
selection function, the resulting distance bias in these samples is
quite small. We would expect a gradual increase of the bias towards
larger distances, where the parallax quality decreases, just like it
happened with 1 + f versus distance, when we used the flat selec-
tion function S(s) in the previous section. Yet, for RAVE–TGAS,
1 + f is remarkably stable. This is achieved because the selection
function in RAVE almost perfectly cancels the terms from the co-
ordinate transformation and the density distribution (the selection
function falls steeply in distance, acting in the same direction as
the s′ estimate). The LAMOST sample shows good stability out to
about 0.5 kpc.

The cancellation of the distance biases is also evident from the
bottom panel of Fig. 9, where we plot for the full RAVE sample
with parallaxes better than 20 per cent the relative difference in the
distance estimates �s/〈s〉 = (〈s〉 − s′)/〈s〉 for each star. 〈s〉 is the full
distance estimate using equation (3). The data points are coloured
by their galactic latitude |b|. Since the density falls quicker towards
higher latitudes, the distance underestimate by s′ is stronger for
stars at small latitude |b|. To understand the shape of this plot,
we remember the behaviour of the RAVE selection function from
equation (21) and the top panel of Fig. 7. At distances be-
low ∼0.2 kpc, the selection function is rising and s2ρS(s) rises
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Figure 9. Distance statistics when using the simple s′ = 1/p distance
estimator for RAVE (top panel) and LAMOST (middle panel). The
distance statistics for LAMOST are balanced, since we use e‖ = 7 km s−1.
The bottom panel shows for RAVE stars with σ p/p < 20 per cent the rela-
tive difference �s/〈s〉 = (s′ − 〈s〉)/〈s〉 between the full distance estimate
〈s〉 from equation (3) and s′ = 1/p coloured by the absolute |b|.

sharply as well, so that stars with even moderate parallax
uncertainty show a strongly negative �s/〈s〉. However, be-
yond that point, the selection function and the spatial density
fall steeply, bringing s′ closer to the full estimate. As a re-
sult, the average �s/〈s〉 is about −2.4 per cent in the RAVE
sample with parallaxes better than 20 per cent (σ p < 0.2p),
and −1.4 per cent in the sample with parallaxes better than
10 per cent.

Figure 10. Comparison with the distance estimates from AB16. We could
not find expectation values for their data set, so for the statistics f shown
in the top panel, we follow their recommendation to use the mode of the
MW-estimator. In the bottom panel, we show the fractional difference of
their median distances smed, AB16 minus smed, SA17, with smed, SA17 on the
ordinate, coloured in σ p/p.

5.3.4 Comparison with Astraatmadja & Bailer-Jones (2016)

To understand how our distances compare to the estimates by As-
traatmadja & Bailer-Jones (2016) (hereafter AB16), it is useful to
revisit Fig. 3, which demonstrated two things: (i) the use of median
and in particular mode of the distribution will strongly underes-
timate the true expectation value, since the posterior probability
distribution is strongly skewed, and (ii) neglecting the selection
function S(s) will result in very strong distance overestimates.

Fig. 10 examines the distance estimates by AB16 on the full
RAVE sample with parallaxes better than 20 per cent. The top panel
shows our distance statistics applied to the distance mode of AB16,
as they suggest that their comparison to other data suggest using
their mode. The bottom panel directly compares our distances with
theirs. It shows the fractional difference between the two distance
median determinations. Towards large distances, the difference be-
tween the respective distance estimates diverges. We ascribe this to
the lack of a selection function in AB16, which leads to increasing
distance overestimates by them on the far end. Note that according
to Fig. 3, the difference in expectation values would be even larger,
since the shown median is less vulnerable to the long tail of the dis-
tributions. For nearby stars, the bright limit of the survey dominates,
and the selection function rises, which is why their median distances
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are shorter. We colour-coded the relative parallax error σ p/p in the
bottom panel, which shows that this is the main explaining variable
for the scatter in this plot.

On the far end, the neglected selection function (leading to a dis-
tance overestimate), and the use of the mode (leading to a distance
underestimate), thus nearly cancel each other, and so the distance
statistics shown in the top panel of Fig. 10 show only a mild dis-
tance underestimate, just in line with Fig. 3, where for our example
star also the expectation value for the correct posterior distribution
and the mode of the posterior with neglected S(s) coincide. For
short distances/nearby stars, the selection function S(s) rises, and
so the two biases have the same sign, leading to comparably strong
distance underestimates.

5.4 A bump in the distance statistics

The top panel of Fig. 11 shows the distance estimator 1 + f when
binning stars in the RAVE sample according to their distance 〈s〉 in
bins of 6000 stars each. Both sample selections of the RAVE–TGAS
sample (red error bars: all stars and green error bars: unflagged stars)
display a marked peak in 1 + f around s ∼ 0.3 kpc. The feature is
very narrow, and mostly limited by the distance accuracy and our
ability to sample around it. It is stronger than we would expect to
be possible for a statistical fluctuation, and we have checked that
changes in the adopted selection function do not alter this result.
In addition, an increase of the parallax accuracy does not remove
the feature, even if we use σ p/p < 10 per cent. We can exclude
that this is a global issue with the parallax measurements, since the
LAMOST survey in the opposite direction of the sky does not show
this signal.

In the middle and bottom panels of Fig. 11, we try to dissect
the sample further to find the origin of this feature. As we have
discussed in Section 4.3, separating the different parts of the dis-
tance estimator, and in particular separating the sample in longitude
or latitude make the analysis more prone to impacts by Galactic
substructure. The middle panel compares the full estimator to its
restricted counterparts from equation (10) which exclusively use
the azimuthal velocity component (fV, blue) or the RV component
(fU, green). The peak around s = 0.3 kpc is stronger in fV than in fU,
though both estimators show a distance overestimate. The bottom
panel attempts to dissect the sample in longitude l. This is not a
safe selection, and likely the general downtrend seen in l is a con-
sequence of the Galactic warp (the warp correlates W and V, since
the sample is mostly at b < 0 and TVW changes sign at l = 180◦,
fV should change sign at this point). However, again the stars be-
tween s = 0.3 and 0.35 kpc show a markedly different behaviour.
Attempts to further narrow the origin of this feature revealed that
the signal is coming from around l ∼ 300◦ and latitudes both above
and below the Galactic plane. This position corresponds roughly to
RA ∼ 185◦ and Dec. = −60◦. Detailed inspection of the kinematics
did not reveal any evident stream at this position. Also, a stream
passing through could correlate W and V motions, but the sign of
TVW changes with the sign change in latitude b, and so f should
reverse sign as well, which it does not. Consistently, kinematic cuts
to remove eventual outliers in W do not remove the feature. We
have checked that the bias corrections are more than an order of
magnitude too small to account for this deviation, i.e. even a large
mistake in our assumptions cannot explain the feature. We have
further drawn exclusion zones of 7◦ around the positions of the
Magellanic clouds and found no difference in the values of f. A
vertical breathing mode in the disc would be the only possibility
that we could currently imagine to give rise to this feature, and the

Figure 11. Top panel: comparing the distance statistics for RAVE stars,
when binning in distance to samples of 6000 stars each, sliding the mask
in steps of 2000 stars. Middle panel: comparing the full distance estimator
1 + f (red) to the restricted estimators using only the radial fU (green), or
the azimuthal fV (blue) velocity components. Bottom panel: dissection of
the distance statistics versus Galactic longitude l in the RAVE sample at
different heliocentric distances s.

reversal of fV to distances of s > 0.4 kpc could be interpreted as the
location of a spiral arm or spur. However, there is no known spiral
arm in this region. The next feature in this direction would be the
Sagittarius/Carina arm, which is more than a kiloparsecs away (see
e.g. Reid et al. 2014). In addition to the distance discrepancy, the
explanation by a spiral arm/spur would also raise the question how
this feature can be so narrow/sharp in distance. Another possible
Galactic substructure in the solar vicinity, which could have a local-
ized effect on stellar kinematics, is the Gould belt (Torra, Fernández
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& Figueras 2000); however, shape, position, and distance distribu-
tion of the Gould belt stars (see e.g. Guillout et al. 1998) do not
agree well with the observed feature.

We also note that all RAVE samples show a distance under-
estimate for stars with s < 0.15 kpc. The parallaxes at this short
distance are nominally too good to allow for such an effect by a
wrong choice of the selection function S(s). We think that this is
either an extreme statistical outlier, or there is a problem in TGAS
with large parallaxes and/or the bias against stars with large proper
motions is significantly more severe than we take from the precau-
tion in Lindegren et al. (2016). A definitive account is not possible
from our side, since the bright limit of TGAS correlates with large
proper motions, and so the fact that some nearby stars with large
proper motions from Hipparcos are missing, can be interpreted in
both ways.

To summarize this: the more likely conclusion is that there is
a problem with TGAS parallaxes near l ∼ 300◦ and distances of
0.32 ± 0.03 kpc (p ∼ 3 mas). This conclusion would be supported by
Arenou et al. (2017), who report a problem possibly coinciding with
the Gaia scanning regime change at a similar position on the sky (cf.
their fig. 28). If it is not a glitch in the data, the feature is unlikely to
be a stream. However, it might be related to disc structure. Since our
estimate correlates azimuthal and vertical velocities, this cannot be
a pure in-plane feature, though the location would rather point to a
not yet established interarm, or spur. This feature warrants tests of
the Gaia pipeline, and it should be investigated as a possible place
for Galactic substructure.

5.5 Assessing the source vlos dispersion: LAMOST

We now return back to the question of the source vlos dispersion e‖
and ways to differentiate it from parallax errors. As discussed above,
the bias term in equations (13) and (16) can be used to measure e2

‖ ,
if the distance bias f in a sample is sufficiently well constrained.

This works very well e.g. for the LAMOST data set. In this case,
the parallaxes and our method to retrieve the selection function and
distance priors have been validated on the RAVE sample to an ac-
curacy better than 2 per cent. The source vlos dispersion e‖ can now
be determined by plotting the corrected distance bias estimate 1 + f,
while varying the source vlos dispersion e‖. This is done in Fig. 12,
where the green lines show this variation for the LAMOST sample,
dashed lines represent the 1σ error intervals. We use the quality
cuts derived in Section 5.2, S/N > 30 and σ los,LAM < 27 km s−1,
however, do not use σ los,LAM in the bias correction of 1 + f. Under
the assumption that the distance estimates from TGAS parallaxes
are unbiased, we obtain e‖ = 7 ± 1.0 km s−1. This estimate contains
a generous allowance for uncertainties in the velocity ellipsoid and
proper motions. The systematic uncertainty from the distances is
difficult to estimate, but from the previous indications it should be
of order 2 km s−1. e‖ consists of the σ los and additional source dis-
persion from binary systems. However, the latter should be of order
σ bin � 3 km s−1, so according to equation (17), their contribution to
e‖ is small.

5.5.1 Separating distance bias and line-of-sight velocity errors

Can we separate the line-of-sight velocity errors from a true distance
error? In a larger sample, we can. The idea behind this is tested with
the red and blue lines in Fig. 12. These lines show a separation
of the LAMOST sample into subsamples with large and small Vg

(top panel), or subsamples with large and small Ug (bottom panel).

Figure 12. Both panels show the distance estimator 1 + f against the
assumed vlos source dispersion e‖ for the LAMOST sample. In these plots, e‖
can be determined by demanding an unbiased distance estimator 1 + f ∼ 1.
The full sample is shown with green lines, dashed lines show the 1σ error
interval. The right combination of f and e‖ can be tested by cutting the
sample into stars with a large versus small baseline in VTVW or UTUW and
demanding mutual agreement. In the top panel, we cut in galactocentric
azimuthal velocity Vg, and in the bottom panel, we cut in the RV Ug. These
subsamples are shown with red and blue lines in each panel.

We recall that f is estimated based on the correlation of vertical
velocities W with the baseline (y) components TVWV and TUWU,
measured by the covariance Cov(W, y) in equation (9). The selection
in this plot target subsamples with a larger or smaller baseline y,
i.e. while f is similar, both the covariance terms and the variance
in the denominator of equation (9) vary. In contrast, the bias on
the covariance from the vlos source dispersion is approximately the
same, since it only depends on the sample geometry and e2

‖ . If
the bias from e‖ dominates the distance statistics, we hence expect
the different sample selections in Fig. 12 to have the same 1 + f
close to 1 at the correct value of e‖, but the sample chosen to be
closer to the Sun’s velocity (blue lines in Fig. 12) should have a
steeper relationship of 1 + f against e‖ with larger curvature than
its counterpart with larger heliocentric velocities (red lines). As a
consequence, the low-velocity selection (blue) should also have a
larger deviation of 1 + f from 1 at e‖ = 0, exactly what is observed
in Fig. 12. In contrast, if the measured deviation is a distance error,
1 + f of the subsamples should be in agreement at small values
of e‖. In Fig. 12, both ways to separate the sample agree perfectly
on 1 + f ∼ 1 at an e‖ ∼ 7 km s−1. However, we also note that
the still moderate sample size limits the statistical significance:
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3994 R. Schönrich and M. Aumer

Figure 13. Distance bias 1 + f versus vlos source dispersion e‖ in RAVE for the entire sample (left-hand column) and for the subsample carrying binary flags
(right-hand column). The plots are organized as in Fig. 12, the green lines show the full sample, blue lines the subsample with smaller heliocentric velocities,
and red lines the subsample with larger heliocentric velocities. Here, the top panels show a separation at Vg = 200 km s−1, the bottom row shows a separation
in metallicity, selecting once stars with [Fe/H] < −0.7 dex and once with [Fe/H] > −0.4 dex. The top right plot should be taken with some caution, since the
low-Vg binary sample only contains ∼400 stars.

the discrimination on LAMOST without our prior knowledge from
RAVE only barely excludes e‖ ∼ 0.

The cut can be done either in Vg (top) or Ug (bottom panel), but
it has to be done in galactocentric velocities, since a heliocentric
selection would slice through the velocity ellipsoid at an angle and
hence correlate W and the horizontal components. Another strategy
would be to select the sample at different values of TVW and TUW,
since the bias term has a quadratic dependence on these, or to use
e.g. a metallicity cut to select kinematically hotter stars that have a
larger baseline y by their larger velocities.

Each of these options has their caveats: the kinematic cuts in Ug

or Vg select to some extent for the errors we are measuring. Stars
with larger velocity errors (either from distance or from velocity un-
certainties) are pushed towards the tails of the velocity distribution.
A good position to cut in a larger sample are hence the points in the
velocity distribution where it has a small or vanishing slope. If one
selects in metallicity, the major caveats are a possible difference in
the binary fraction, or also a correlation of σ los with the metallicity
(typically σ los increases for metal-poor, hot stars).

5.6 Assessing the line-of-sight velocity uncertainty in RAVE

While the main measurement for the LAMOST sample is the line-
of-sight velocity errors, the situation in the RAVE sample is far less

clear. RAVE line-of-sight velocities have typically errors smaller
than σ los,RAVE � 2 km s−1, i.e. an order of magnitude smaller than
the LAMOST uncertainties. Consequently, we get a precise mea-
surement on LAMOST line-of-sight velocity errors, but we just
see that something is wrong with the RAVE sample, either stellar
distances being too short, or some contamination with larger vlos

errors, or binary systems contaminating the data.
Fig. 13 gives an overview of the trade-off between paral-

lax/distance bias and e‖, similar to Fig. 12. From the earlier analysis,
we know that a major part of the problems can be ascribed to the
suspected binary systems, so we show the full RAVE sample on the
left-hand side and the suspected binary stars on the right-hand side.
Note that the subsample of suspected binary stars with <6000 stars
is very small, so the further separations (which have only 400 stars
in the low-Vg component) should be taken with caution due to small
number statistics.

As we can see from the entire sample printed in green on the
left-hand column, the full sample has a significant average distance
underestimate (1 + f < 1) if we assume e‖ � 1 km s−1 as suggested
by the σ los,RAVE estimates of the RAVE pipeline, which tested fine
in the statistics of Section 5.2. If we assumed that Gaia–TGAS
and our distance derivation were completely bias-free, we would
conclude that e‖ ∼ 5 km s−1. It would be very unlikely that this is
caused by large vlos measurement error in light of our findings in
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Section 5.2. Just like in LAMOST, we attempt to break the degen-
eracy by separating the sample in Vg (top panel) and in metallicity
(bottom panel). This sample, however, is biased towards younger
stars with small velocity dispersions and disc populations, so we
have few useful halo stars. Both separations barely scratch statis-
tical significance in the region of interest. Demanding agreement
between the subsamples, we can only conclude that e‖ < 5 km s−1,
and that the statistics favour a problem with the stellar distances.
We note that the values for e‖ are at least at the upper end of what
might be achievable by binary systems (Hargreaves et al. 1996;
Olszewski et al. 1996). We tested that a change of the parallax
quality to σ p/p < 10 per cent yields no significant difference.

The two panels on the right-hand side of Fig. 13 attempt the
same dissection on the subsample of suspected binary stars. While
assuming unbiased distances for this subsample would yield a vlos

source dispersion e‖ ∼ 14 ± 2 km s−1, slicing the sample into sub-
sets of either low and high azimuthal velocity (top panel) or low
and high metallicity (bottom panel) fails to convince that a velocity
dispersion σ bin caused by binary stars is the sole explanation. As dis-
cussed above, the samples with large intrinsic baselines in VTVW and
UTUW (i.e. the low-Vg sample, or the metal-poor subsample) should
then start at a value of 1 + f closer to 1 at e‖ = 0, and intersect with
their small-baseline counterpart at near-zero distance bias f. Here,
we observe the opposite. The low-Vg subsamples (red lines) start al-
ready at more extreme 1 + f than the high-Vg subsample (blue lines).
There is no agreement between the subsamples anywhere near the
region of 1 + f ∼ 1. Both the top and the bottom panel suffer from
the same discrepancy, though the bottom panel shows a milder ver-
sion, while having different potential biases: the top panel possibly
suffers from a potential direct kinematic bias, whereas the bottom
panel could be impacted by binaries being wrongly evaluated as
particularly metal-poor. This would be a reasonable suspicion in
a low-resolution spectroscopic survey like RAVE. The unresolved
binary broadens the lines, and while the equivalent width should
not be strongly lowered, different line shapes might have this ef-
fect. In addition, the more metal-poor stars could have unaccounted
vlos determination errors affecting both separations. A potential way
out would be to claim that the Matijevič et al. (2012) classification
strongly depends on metallicity, but the most straightforward expla-
nation is that TGAS astrometry fails for binary systems, in addition
to some contribution by e‖.

What we should take from this section is: Once we have a larger
sample with certainly clean astrometry and a vlos determination at
the quality level of RAVE and later Gaia, this method will be able to
constrain even the binary velocity dispersion for different samples,
and to differentiate well between e‖ and distance uncertainties. The
sizes of the current samples are just at the boundary of offering a
full solution which breaks the degeneracy. And, we can clearly see
from these statistics that stars with binary flags should be excluded
from any analysis.

6 C O N C L U S I O N S

In this work, we have derived distance expectations and kinematics
for stars in the RAVE–TGAS and LAMOST–TGAS samples.4 We
have applied the statistical methods developed by SBA to estimate
the distance bias f in the RAVE–TGAS and the LAMOST–TGAS

4 Please find the data sets with distances and kinematics and our source
code at http://www-thphys.physics.ox.ac.uk/people/RalphSchoenrich/data/
tgasdist/data.tar.gz, or request them directly from the authors.

samples, and provide a set of validated stellar distances and kinemat-
ics. While there are several papers testing the accuracy and precision
of parallaxes from Gaia–TGAS, even perfectly unbiased parallaxes
do not guarantee unbiased distances, since there is a large uncer-
tainty in estimating the right priors and selection functions, which
enter a Bayesian distance estimate. Our method uses correlations
of derived velocities with position in the sky, and hence directly
tests the derived distances. We have validated this method using a
realistic Galaxy simulation, for which we know the exact distances,
as shown in Appendix A.

We find that the entire RAVE–TGAS sample shows statistically
a global distance underestimate by of order 2–3 per cent. However,
more than half of this signal disappears when we restrict the sample
to a subset of stars that are flagged as fully normal objects according
to the classifications of Matijevič et al. (2012), which detect binaries
or peculiar stars, e.g. with emission lines. We have demonstrated
that the objects with at least one binary flag show distance statistics
equivalent to distance underestimates in excess of 15 per cent.

While it would be tempting to put all the blame of the distance
bias on TGAS parallaxes, we have shown that distance statistics f
are biased proportional to the source vlos variance e2

‖ . This comprises
vlos measurement errors and contamination with binary stars, which
act like a distance underestimate on f. On the one hand, this requires
that we find a way to differentiate e‖ from a true distance bias. On
the other hand, it is a useful way to measure e‖ and hence determine
σ los on samples where parallaxes are good and the e‖ dominates the
f estimates. We can use this dependence of f on e‖ in two ways: (i)
we can vary e‖ with the condition f ∼ 0, and thus measure e‖; (ii) we
can probe the accuracy of σ los estimates in a pipeline by separating
each sample in σ los and looking for trends in f.

We have also examined the distances provided by Astraatmadja &
Bailer-Jones (2016). The comparison underlines the importance
of applying the right selection function. Neglecting this selection
function leads to a relative distance overestimate in AB16. How-
ever, their choice to use the mode of their distributions (over-
)compensates this effect, which leads to mildly short distance
estimates. We advise to use expectation values, which are well-
defined statistical quantities.

The LAMOST sample demonstrates this capability. Our method
has revealed that the uncertainties given by the LAMOST pipeline
have no detectable information content for uncertainties below
σ los,LAM < 27 km s−1, while stars with larger σ los,LAM show a sudden
increase in e‖. More importantly, when comparing the full distance
estimator f with its counterpart fV that uses only the azimuthal V
velocity versus the vertical motion W, these two estimators yield
highly inconsistent results. We also find that the LAMOST sample
shows a near-perfect relationship between W and sin (b), indicating
a 5 km s−1 offset in the vlos measurements (a similar offset has been
suggested in Tian et al. 2015), while RAVE has no significant cor-
relation. When we correct LAMOST for this δvlos = 5 km s−1, we
measure e‖ = 7.1 ± 1 km s−1 with a systematic uncertainty of about
2 km s−1, i.e. the LAMOST vlos measurements are far more precise
than indicated by their nominal errors.

In RAVE, the full sample starts showing signs of increased e‖
above σ los,RAVE ≥ 1.5 km s−1, and these reach an unacceptable level
above 5 km s−1. This behaviour is not detectable when we restrict
the sample to unflagged/normal stars, i.e. the flags indicate the most
problematic vlos determinations.

We have demonstrated how to measure the selection function
S(s) and distance prior of each sample from the data directly in Sec-
tion 5.3.1. We start from a flat S0(s), measure a new S1(s) by com-
paring the stellar distance distribution to the expectation in the prior,
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and then iteratively insert this selection function into the distance
determinations. This procedure converges within five iterations. By
separating the sample in distance, we can show that neglect of this
selection function [i.e. a flat S(s)] results in catastrophic distance
bias towards larger distances, while the derived selection function
provides unbiased distances within the measurement accuracy.

It is generally inadvisable to use the naive parallax estimator
s′ = 1/p for stellar distances, because it neglects the proper trans-
formation of the parallax error distribution into s, which gives a
large distance underestimate against the true expectation value 〈s〉.
However, to our surprise, we find that on both RAVE and LAMOST–
TGAS, this estimator results only in a mild distance underestimate.
The reason for this is that the selection function/distance prior falls
steeply towards larger s, compensating partly for the missing trans-
formation.

We note that the distance estimator f for RAVE stars with very
short distances (〈s〉 � 0.15 kpc) consistently indicate distance un-
derestimates. This can either be an extreme statistical fluctuation, or
it might indicate either a problem with the largest TGAS parallaxes,
or a stronger selection against stars with large proper motions than
indicated in Lindegren et al. (2016).

We have detected an anomaly either in the stellar kinematics or
in the parallaxes for the RAVE–TGAS sample around a galactic
longitude l ∼ 300◦, and at a distance of 0.3 < s/kpc < 0.35. The
feature is found on both sides of the Galactic plane, and the corre-
lation between vertical and azimuthal velocities is neither found in
its foreground nor in its background. The same sign on both sides
of the plane argues strongly against a (halo) stellar stream as source
of this. The feature is also robust against outliers, and cannot be
explained by eventual anomalies in the selection function. A likely
explanation is substructure at this position in the Galaxy, e.g. a
breathing mode near a spiral arm or spur, though we are not aware
of such a feature at this position. Further analysis will be required to
understand if this is a possible localized failure of TGAS astrometry,
or in the other case, to unravel the exact nature of this structure.

We have further shown that the degeneracy between vlos source
dispersion e‖ and a true distance bias can be broken by selecting
subsamples with different lengths of baseline in VTVW or UTUW.
This is achieved by splitting the sample either with a metallicity se-
lection or directly in stellar kinematics. The larger upcoming Gaia
data releases will be sufficient to make this method work. In the
current samples, this ability is just borderline significant. It shows
that while we have a consistent picture for LAMOST being dom-
inated by line-of-sight velocity uncertainties, the statistics suggest
that the deviations in the RAVE survey, in particular on the binary
subsample, derive from a combination of astrometric problems and
intrinsic vlos dispersion.
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A P P E N D I X A : VA L I DATI O N O N G A L A X Y
SIMULATIONS

To perform a sanity check on our method and to confirm its robust-
ness against galactic substructure, we employ galaxy simulations
that resemble the MW. The simulations are described in detail in
Aumer, Binney & Schönrich (2016) and Aumer & Binney (2017).
They feature a reasonable bar having appropriate thin and thick disc
components and an active spiral pattern.

We focus on model Vα9s8λζ . To build this model, we continu-
ously add stellar particles on disc orbits to a model galaxy within a
live dark matter halo over the course of 12 Gyr. The birth velocity
dispersions of the stellar populations decline continuously in this
model, from >40 km s−1 during the first 1.5 Gyr to essentially near-
circular orbits after 4 Gyr. This creates a disc galaxy with reasonable
thin and thick disc components.

Moreover, the model grows inside–out with a declining
star formation history. Vα9s8λζ has a final baryonic mass
Mbaryons = 6 × 1010 M�, and a live dark matter halo with mass
Mdm = 1 × 1012 M�, which is set up with an initial concentration
parameter of c = 6.5.

At our evaluation time 12 Gyr, the vertical profile is double-
exponential. At R = 8 kpc, it can be fitted with exponential scale-
heights hz, thin ≈ 285 pc and hz, thick ≈ 990 pc. The thick disc con-
tributes ∼20 per cent to the local surface density. The final model
has a bar of length ∼4 kpc. Its R = 8 kpc circular speed, dark mat-
ter density and baryonic surface density compare reasonably with
observational constraints for the Solar neighbourhood. The level
of radial migration in the model agrees with constraints from MW
chemical evolution and its Solar neighbourhood velocity distribu-
tions show good agreement with RAVE+TGAS data if one corrects
for selection effects. Overall, the model is well suited to create mock
Solar neighbourhood samples.

To create these samples, we place the observer at (R, z) = (8.3,
0) kpc choosing 25 different positions, which are equally distributed
in galactocentric azimuth �gal. We then select all stars with distances
s < 1 kpc, obtaining samples of about 15–20 000 stars each. In these
samples, we calculate the stellar positions, proper motions, and
line-of-sight velocities using a solar motion of (U�,υ�,W�) =
(11, 250, 7) km s−1 (we note that the only effect of the set solar
motion is to alter the length of the baseline component TVWV and
thus the precision of f). Fig. A1 shows the tests of our distance
statistics on these quite realistic samples. The top panel shows the
full distance estimator 1 + f for each of the 25 observer positions
in �gal. The test statistics are consistent with a perfectly unbiased
estimator. There are nine data points beyond 1σ , which is just the
expected number of outliers.

Figure A1. Testing the distance estimator on N-body galaxy model
Vα9s8λζ . The top panel shows the distance statistics for 1 kpc sized sam-
ples taken around simulated solar positions at (R, z) = (8.3, 0) kpc, equally
spaced in azimuth �gal (x-axis). The bottom panel shows the restricted dis-
tance estimator fV when we bin each sample in Galactic longitude l (x-axis)
and separate the sample into positive (blue) and negative (green) galactic
latitude b.

Table A1. Distance error estimates f in simulations with perfect distances.
Each simulation has 25 samples around R = 8 kpc at equidistantly spaced
positions in azimuth. The first three columns give statistics for the full
distance estimator f. 〈f〉 is the mean value of f from averaging over all 25
samples, σ f is the residual dispersion of f, and σ f,st is the average of the
statistical errors derived with f. If the estimates are true, then σ f should be
close to σ f,st. Systematic biases in f depending on the sample position would
show as σ f significantly larger than σ f,st. The last three columns give the
same statistics for fV.

Model 〈f〉 σ f σ f,st fV σ f,V σ f,V,st

Vα9s8λζ −0.0004 0.014 0.014 0.0015 0.033 0.022
Vα5λ −0.0073 0.018 0.013 −0.0064 0.024 0.019
Mα1ζ* 0.0026 0.019 0.017 −0.0013 0.030 0.027
P2 −0.0064 0.020 0.017 −0.0066 0.035 0.028
EHR2 −0.0072 0.010 0.008 0.0009 0.014 0.013

The mean distance estimator < f > in each sample, the dispersion
of the distance estimates σ f, and the expected dispersion from shot
noise and uncertainty in the correction of the velocity ellipsoid tilt
σ f,st for model Vα9s8λζ are summarized in the first line of Table A1.
We also show the numbers for four additional MW-like models.
Models Vα5λ and Mα1ζ* are of the same type as Vα9s8λζ , but
differ in model parameters and consequently in structural details
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at final time. Models P2 and EHR2 also contain both thin and
thick disc components, but the thick disc components are created as
initial conditions and the thin disc is populated with stars born on
near-circular orbits over 10 Gyr.

The values for all five models included in Table A1 demonstrate
that, on average, the distance statistics show no bias at the levels
needed for this work (generally less than 1 per cent). Moreover, the
statistically expected scatter almost matches the observed scatter in
1 + f, i.e. any impact by unaccounted systematics in the samples is
significantly below 1 per cent. We note that the dispersion values are
lowest in EHR2 as this model has a higher resolution and thus larger
sample sizes than the other four. fV is in principle more vulnerable
to disc structure, but we see no clear indication for a significant
additional scatter in its statistics provided in the three right-hand
columns.

As detailed in Section 4.3, the fits become more risky when we
separate samples in longitude and/or latitude, because effects caused
by galactic structure do not cancel out any more to first order. This
is particularly the case for simulation EHR2, which has a longer bar
than the MW. As the bar thus has a larger impact at R = 8 kpc, in that
simulation, cutting the test samples at l = 180◦ results in a scatter of
∼5 per cent in fV. As expected, most of this gets compensated in the

full estimator f, which has just 2 per cent dispersion (compared to
about 1.2 per cent statistically expected dispersion). This simulation
shows a discernible m = 2 pattern when the fV statistics are plotted
against �gal. However, as we see in Table A1, even this simulation
does not yield a discernible error if we use a full sky coverage.

The bottom panel in Fig. A1 looks for trends in the restricted
distance estimator fV when separating simulation Vα9s8λζ from
the top panel in galactic longitude l, selecting subsamples of 3000
stars each. Before ordering the sample in l, we have additionally cut
it into Northern and Southern hemispheres (b > 0 and b < 0). There
is no detectable systematic deviation, apart from a minor issue with
the error determination near l = 180◦. At that position TVW ∼ 0,
i.e. there is virtually no signal for fV, which also affects the error
determinations in a small region.

Similarly, the increase in uncertainties of fV is due to the vanishing
of TVW. Overall, the statistics of this sample look fine – due to the
cold stellar kinematics, and the small sample sizes, the statistically
expected errors are ∼12 per cent, close to the observed dispersion.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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