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ABSTRACT
A previous analysis of starburst-dominated H II galaxies and H II regions has demonstrated
a statistically significant preference for the Friedmann–Robertson–Walker cosmology with
zero active mass, known as the Rh = ct universe, over �cold dark matter (�CDM) and its
related dark-matter parametrizations. In this paper, we employ a two-point diagnostic with
these data to present a complementary statistical comparison of Rh = ct with Planck �CDM.
Our two-point diagnostic compares, in a pairwise fashion, the difference between the distance
modulus measured at two redshifts with that predicted by each cosmology. Our results support
the conclusion drawn by a previous comparative analysis demonstrating that Rh = ct is
statistically preferred over Planck �CDM. But we also find that the reported errors in the
H II measurements may not be purely Gaussian, perhaps due to a partial contamination by
non-Gaussian systematic effects. The use of H II galaxies and H II regions as standard candles
may be improved even further with a better handling of the systematics in these sources.

Key words: galaxies: general – distance scale – large-scale structure of Universe – cosmology:
observations – cosmology: theory.

1 IN T RO D U C T I O N

Starbursts dominate the total luminosity of massive, compact galax-
ies known as HIIGx. The closely related giant extragalactic H II re-
gions (GEHRs) also undergo massive bursts of star formation, but
tend to be located predominantly at the periphery of late-type galax-
ies. In both environments, the ionized hydrogen is characterized by
physically similar conditions (Melnick et al. 1987), producing op-
tical spectra with strong Balmer Hα and Hβ emission lines that are
indistinguishable between these two groups of sources (Searle &
Sargent 1972; Bergeron 1977; Terlevich & Melnick 1981; Kunth &
Östlin 2000).

Since both the number of ionizing photons and the turbulent ve-
locity of the gas in these objects increase as the starburst becomes
more massive, HIIGx and GEHR have been recognized as possi-
ble standard candles, a rather exciting prospect given that the very
high starburst luminosity facilitates their detection up to a redshift
z ∼ 3 or higher (e.g. Melnick, Terlevich & Terlevich 2000; Siegel
et al. 2005). The exact cause of the correlation between the luminos-
ity L(Hβ) in Hβ and the ionized gas velocity dispersion σ is not yet
fully understood, though an explanation may be found in the fact
that the gas dynamics is almost certainly dominated by the gravita-
tional potential of the ionizing star and its surrounding environment
(Terlevich & Melnick 1981). These sources may therefore function
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as standard candles because the scatter in the L(Hβ) versus σ re-
lation appears to be small enough for HIIGx and GEHRs to probe
the cosmic distance scale independently of z (Melnick et al. 1987;
Melnick, Terlevich & Moles 1988; Fuentes-Masip et al. 2000;
Melnick, Terlevich & Terlevich 2000; Bosch, Terlevich & Ter-
levich 2002; Telles 2003; Siegel et al. 2005; Bordalo & Telles 2011;
Plionis et al. 2011; Mania & Ratra 2012; Chávez et al. 2012, 2014;
Terlevich et al. 2015).

Over the past several decades, HIIGx and GEHRs have been
used to measure the local Hubble constant H0 (Melnick, Terlevich
& Moles 1988; Chávez et al. 2012), and to sample the expansion
rate at intermediate redshifts (Melnick, Terlevich & Terlevich 2000;
Siegel et al. 2005). More recently, Plionis et al. (2011) and Terlevich
et al. (2015) demonstrated that the L(Hβ)–σ correlation is a viable
high-z tracer, and used a compilation of 156 combined sources,
including 24 GEHRs, 107 local HIIGx, and 25 high-z HIIGx, to
constrain the parameters in �cold dark matter (�CDM), produc-
ing results consistent with Type Ia SNe. Most recently, we (Wei
et al. 2017) extended this very promising work even further by
demonstrating that GEHRs and HIIGx may be utilized, not only
to refine and confirm the parameters in the standard model but,
perhaps more importantly, to compare and test the predictions of
competing cosmologies, such as �CDM and the Rh = ct universe
(Melia 2003, 2007, 2013a, 2016, 2017a; Melia & Abdelqader 2009;
Melia & Shevchuk 2012).

These two models have been examined critically using di-
verse sets of data, including high-z quasars (e.g. Kauffmann &
Haehnelt 2000; Wyithe & Loeb 2003; Melia 2013b, 2014; Melia
& McClintock 2015b), cosmic chronometers (e.g. Jimenez &
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Loeb 2002; Simon, Verde & Jimenez 2005; Melia & Maier 2013;
Melia & McClintock 2015a), gamma-ray bursts (e.g. Dai, Liang &
Xu 2004; Ghirlanda et al. 2004; Wei, Wu & Melia 2013), Type Ia
supernovae (e.g. Perlmutter et al. 1998; Riess et al. 1998; Schmidt
et al. 1998; Melia 2012; Wei, Wu & Melia 2015b), and Type Ic
superluminous supernovae (e.g. Inserra & Smart 2014; Wei, Wu &
Melia 2015a). Their predictions have also been compared using the
age measurements of passively evolving galaxies (e.g. Alcaniz &
Lima 1999; Lima & Alcaniz 2000; Wei, Wu & Melia 2015c). A
more complete summary of these comparisons, now based on over
20 different types of observations, may be found in table 1 of Melia
(2017b).

The application of HIIGx and GEHRs as standard candles has
provided one of the more compelling outcomes of this comparative
study involving �CDM and Rh = ct (Wei, Wu & Melia 2016). Using
the combined sample of Chávez et al. (2014) and Terlevich et al.
(2015), we constructed the Hubble diagram extending to redshifts
z ∼ 3, beyond the current reach of Type Ia SNe, and confirmed
that the proposed correlation between L(Hβ) and σ is a viable
luminosity indicator in both models. This sample is already large
enough to demonstrate that Rh = ct is favoured over �CDM with a
likelihood �99 per cent versus only �1 per cent, corresponding to
a confidence level approaching 3σ .

These results, however, come with two important caveats, which
partially motivate the complementary approach we are taking in this
paper. Not surprisingly, the cosmological parameters are most sen-
sitive to the high-z data, so the constraints resulting from this work
are heavily weighted by the high-z sample of only 25 HIIGx. Given
how sensitive the results are to the sub-sample of high-z HIIGx data,
one would want to increase the significance of this analysis by in-
creasing the number of HIIGx-related measurements. Indeed, with
the K-band Multi Object Spectrograph at the Very Large Telescope,
a larger sample of high-z HIIGx high-quality measurements may be
available soon (Terlevich et al. 2015).

The second caveat attached to the analysis of Wei et al. (2017) is
that we do not yet have a full grasp of the systematic uncertainties in
the L(Hβ)–σ correlation; these, no doubt, impact the use of HIIGx
as cosmological probes. They include the burst size, its age, the
oxygen abundance of HIIGx, and the internal extinction correction
(Chávez et al. 2016). An example of a non-ignorable systematic
uncertainty arises from the fact that the L(Hβ)–σ relation correlates
the ionizing flux from massive stars with random velocities in the
potential well created by all the stars and the surrounding gas. Thus,
any systematic variation in the initial mass function would alter the
mass–luminosity ratio, and therefore also the zero-point and slope
of the relation (Chávez et al. 2014).

In spite of the fact that the high-z sample of HIIGx is still rel-
atively small, we can nonetheless further test the previous results
by probing this compilation more deeply (than has been attempted
before) using a two-point diagnostic, �μ(zi, zj), defined in equa-
tion (9) below. Quite generally, two-point diagnostics such as this
differ from parametric fitting approaches in several distinct ways.
They facilitate the comparative analysis of measurements in a pair-
wise fashion. One may use them with n measurements of a particular
variable to generate n(n−1)/2 comparisons for each pair of data.
The benefits are twofold: (1) one can test how well each pair of
data fits the models, and (2) assess how closely the published error
bars fit a normal distribution, thereby providing some indication
of possible contamination by correlated systematic uncertainties.
Zheng et al. (2016) recently used such an approach to conclude
that the stated errors in cosmic chronometer data are strongly non-
Gaussian, suggesting that the quoted measurement uncertainties

are almost certainly not based exclusively on statistical randomness
(see also Leaf & Melia 2017).

As we shall see, the diagnostic �μ(zi, zj) is expected to be zero
if the model being tested is the correct cosmology. To allow for
possible non-Gaussianity in the published errors, we shall use both
weighted-mean and median statistics to determine the degree to
which each model’s distribution of �μ(zi, zj) values is consistent
with this null result. So while Wei, Wu & Melia (2016) optimized
the overall �CDM and Rh = ct parametric fits to the H II galaxy
Hubble diagram, here we will test the consistency of each fit with
individual pairs of data. We will begin with a brief description of
the data in Section 2, and then define and apply the diagnostic
�μ(zi, zj) in Section 3. The outcome of our analysis will be dis-
cussed in Section 4, followed by our conclusions in Section 5.

2 O B S E RVAT I O NA L DATA
A N D M E T H O D O L O G Y

We base our analysis on the methodology described in Chávez et al.
(2012, 2014) and Terlevich et al. (2015), using their total sample
of 156 sources, including 107 local H II galaxies, 24 GEHRs, and
25 high-z H II galaxies. The correlation between the emission-line
luminosity and the ionized gas velocity dispersion may be written
as (Chávez et al. 2012; Chávez et al. 2014; Terlevich et al. 2015)

log L(Hβ) = α log σ (Hβ) + κ , (1)

where α is the slope and the constant κ represents the logarithmic
luminosity at log σ (Hβ) = 0. As noted, previous applications of
this relation have produced a very small scatter in the correlation
for L(Hβ), making it a viable luminosity indicator for cosmology.
But one cannot completely avoid its cosmology dependence because
the Hβ luminosity is calculated using the expression

L(Hβ) = 4πD2
L(z)F (Hβ) , (2)

where DL is the model-dependent luminosity distance at redshift z
and F(Hβ) is the reddening corrected Hβ flux.

From equation (1), we may then obtain the distance modulus of
an H II galaxy according to

μobs = 2.5
[
κ + α log σ (Hβ) − log F (Hβ)

] − 100.2 , (3)

with an associated error

σμobs = 2.5
[(

ασlog σ

)2 + (
σlog F

)2
]1/2

, (4)

in terms of σ log σ and σ log F, these being the 1σ uncertainties in
log σ (Hβ) and log F(Hβ), respectively. This is to be compared with
the theoretical distance modulus

μth ≡ 5 log

[
DL(z)

Mpc

]
+ 25 , (5)

as a function of the cosmology-dependent luminosity distance DL.
In �CDM, the luminosity distance may be written

D�CDM
L (z) = c

H0

(1 + z)√|	k|
sinn

{
|	k|1/2

×
∫ z

0

dz√
	m(1 + z)3 + 	k(1 + z)2 + 	de(1 + z)3(1+wde)

}
,

(6)

where pde = wdeρde is the dark-energy equation of state; radiation
is ignored in the local Universe. Also, 	i ≡ ρ i/ρc, for matter (m),
radiation (r), and dark energy (de), while 	k = 1 − 	m − 	de

MNRAS 474, 4507–4513 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/474/4/4507/4683268 by guest on 24 April 2024



H II galaxy Hubble diagram 4509

Table 1. Parameters optimized via maximization of the likelihood function.

Model α δ 	m 	de wde

Rh = ct 4.78+0.07
−0.09 32.01+0.32

−0.30 – – –

Planck �CDM 4.86+0.08
−0.08 32.27+0.22

−0.31 0.3089 1.0 − 	m −1

�CDM 4.86+0.09
−0.10 32.27+0.34

−0.36 0.32+0.09
−0.06 1.0 − 	m −1

incorporates the spatial curvature of the Universe, and sinn is
sinh when 	k > 0 and sin when 	k < 0. Today’s critical density is
ρc ≡ 3c2H 2

0 /8πG. Since we are here assuming a flat Universe, (i.e.
	k = 0), the right side of this equation becomes (1 + z)c/H0 times
the integral. For the Rh = ct cosmology (Melia 2003, 2007, 2013a,
2016a,b; Melia & Abdelqader 2009; Melia & Shevchuk 2012), the
luminosity distance is given by the much simpler expression

D
Rh=ct
L (z) = c

H0
(1 + z) ln(1 + z) . (7)

Here, we follow Wei, Wu & Melia (2015b, 2016) approach and
circumvent circularity issues by optimizing the coefficients α and
κ individually for each model, via maximization of the likelihood
function. With this approach, H0 and κ are not independent of each
other; one may vary either H0 or κ , but not both. For the purpose of
maximizing the likelihood function, it is therefore useful to define
a combined parameter

δ ≡ −2.5κ − 5 log H0 + 125.2 , (8)

where δ is the ‘H0-free’ logarithmic luminosity and the Hubble
constant H0 is in units of km s−1 Mpc−1. The constants α and δ

are statistical ‘nuisance’ parameters, analogous to the adjustable
coefficients characterizing the light curve in Type Ia SNe. The best-
fitting parameters obtained in this fashion are shown in Table 1, for
three models we will compare: Planck �CDM (Planck Collabora-
tion XI 2016), �CDM with a re-optimized matter density 	m, and
the Rh = ct universe.

A quick inspection of equations (3) and (5) shows that the two-
point diagnostic

�μ(zi, zj ) ≡ −δ + 2.5α log σi − 2.5 log Fi

5 log
[

DL(zi )
1 Mpc

]

− −δ + 2.5α log σj − 2.5 log Fj

5 log
[

DL(zj )
1 Mpc

] (9)

is expected to be zero for any pair of H II data at redshifts zi and zj if
the cosmology used to calculate DL is correct. As one can see, the
value of H0 does not affect this constraint and is absorbed into the op-
timized coefficient δ. For the sake of normalizing the various quan-
tities, however, we simply use the Planck value 67.74 km s−1 Mpc−1

throughout this analysis.
Notice in passing that α and δ are similar between the differ-

ent cosmologies, varying between them by �4 per cent, i.e. well
within 1σ . Thus, since H0 is also not a factor in �μ(zi, zj), equa-
tion (9) represents a powerful diagnostic for comparing the viabil-
ity of different models. The application of this two-point diagnostic
will be described in the next section.

Finally, to improve the statistics even further, we have removed
17 points (including one GEHR source at z = 0.000 01) from
our complete sample whose measurement places them more than
3σ away from the best-fitting curves. We have also chosen to
remove the other GEHR source at z = 0.000 01. While this point
is only 2σ from the best-fitting curve, it is the lowest redshift
measurement in the catalogue, which, by the nature of two-point

diagnostics, causes it to drastically alter the statistical results.
These anomalous points are identical for all three models, so their
removal does not bias either of them. The final reduced sample
therefore contains 138 measurements that are used to determine
the best fits reported in Table 1. The 18 eliminated sources are
the two GEHRs at z = 0.000 01, and J162152+151855, J132347-
013252, J211527-075951, J002339-094848, J094000+203122,
J142342+225728, J094252+354725, J094254+340411, J001647-
104742, J002425+140410, J103509+094516, J003218+150014,
J105032+153806, WISP173-205, J084000+180531, and
Q2343-BM133.

3 A P P L I C AT I O N O F T H E T WO - P O I N T
DI AG NOSTI C

As discussed in more detail in Leaf & Melia (2017), the use of
two-point diagnostics necessitates special care when analysing the
statistics they produce. First, the weighted mean of all n(n−1)/2
�μ(zi, zj) values may be calculated using the expression

μ =
�n−1

i=1 �n
j=i+1�μ(zi, zj )/σ 2

�μi,j

�n−1
i=1 �n

j=i+11/σ 2
�μi,j

, (10)

in which σ�μi,j
is the error for a single application of equa-

tion (9), found using standard error propagation. The error in the
mean, however, must be calculated by carefully considering the
correlation introduced from the repeated use of individual points in
different pairs. For this purpose, we rewrite the weighted mean in
the equivalent form

μ = �n
i=1βiM(zi)

�n−1
i=1 �n

j=i+11/σ 2
�μi,j

, (11)

with each β value given by the expression

βi = �i−1
j=1

1

σ 2
�μi,j

− �N
k=1+i

1

σ 2
�μi,k

. (12)

In addition, we have defined the quantity

M(zi) = −δ + 2.5α log σi − 2.5 log Fi

5 log
[

DL(zi )
1 Mpc

] . (13)

With the values of β thus calculated, the variance then follows and
is given as

�σ 2
w.m. = �n

i=1β
2
i σ

2
M (zi)(

�n−1
i=1 �n

j=i+11/σ 2
�μi,j

)2 . (14)

Knowing the standard deviation of the mean, we now have a measure
of the consistency of the measurements with a given model. In the
case of the �μ diagnostic, we expect the weighted mean to be
statistically consistent with zero if the applied model is the correct
cosmology. Note that we do not introduce the errors in the fitted
parameters in this analysis. This is due to the error affecting both
halves of the two-point diagnostics in a very similar manner. That
is, if the value of α is slightly too low, it would have the effect of
reducing both ‘single-points’, the net effect of which ends up being
statistically insignificant.

When non-Gaussian errors are suspected, however, such situa-
tions motivate the use of ‘median statistics’, pioneered by Gott et al.
(2001), in which error propagation is neither required nor assumed.
This approach takes advantage of the fact that for any measurement
based on some distribution function, there is a 50 per cent chance of
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Table 2. Statistical analysis of the two-point diagnostic �μ(zi, zj).

Model Weighted mean 1σ error |Mean| / σ |Nσ | < 1 Median Std. Dev. of the median |Median| / Std. Dev.

Rh = ct −0.00242 0.00218 1.11 51.3 per cent −0.00425 0.00336 1.26
Planck �CDM −0.00340 0.00221 1.54 52.3 per cent −0.00483 0.00363 1.33
�CDM −0.00330 0.00220 1.50 52.2 per cent −0.00476 0.00342 1.39

it being above the true median of the underlying distribution, with-
out any need to know its form. Thus, for N ranked measurements,
the true median has a probability

Pi = 2−NN !

i!(N − i)!
(15)

(i.e. the binomial distribution) of being found between measure-
ments i and i + 1. One can use this to construct confidence regions
about the median of the data, analogous to a standard deviation
in Gaussian statistics, and assign to them a formal probability of
finding the true median of the underlying distribution. However, it
would be incorrect to apply this to, say all n(n−1)/2 diagnostics at
once, for the same reasons noted in Leaf & Melia (2017). The fact
that each measurement contributes to N − 1 diagnostics means that
the data are correlated; as a result, a single measurement can move
the median farther than in the case where the two-point values are
truly randomly distributed.

We propose a remedy that takes advantage of the binomial prop-
erties of the median, but instead of considering all the diagnostics
simultaneously, we construct a random sub-sample, in which each
realization of the diagnostic is used exactly once, except for the
one that was omitted. Therefore, none of the diagnostic values is
used more than once, completely avoiding any possible correla-
tion. Following this, we record the median of the diagnostics of
this uncorrelated sample, as well as the standard deviation of the
realization. Next, we generate a large number (here, one million) of
these realizations, and report the overall median of all the individual
medians in Table 2.

In Table 2, we also report the standard deviation of the median.
This value is different from the overall standard deviation of the set
of all one million medians. It is fundamentally related to the error in
the mean of any set of data, in that it is some distinct factor smaller
than the standard deviation of the data, dependent on the size of
the data set. However, the exact relationship that exists between the
standard deviation of the medians and the number of sources used
to determine the median of all the realizations is not empirically
known.

In order to address this deficiency, we have used the following
approach, based on Monte Carlo simulations with mock data to
find this relationship to reasonable accuracy. We construct a mock
data set by drawing at random from some probability distribution
function, with the same number (i.e. 138) of points as in the real
data set. Then, we construct a random set of two-point diagnos-
tics following the same method used with the real data. We record
the median and standard deviation of the realization, repeating this
process a sufficiently large number of times (say, 20 000). Then,
we repeat the process with a new random set of mock data drawn
from the same distribution, and repeat this 5000 times. Next, we
determine the standard deviation of the set of 5000 medians, as well
as the mean of the 5000 standard deviations. Finally, we compare
the actual standard deviation of the median of all realizations with
the mean of the standard deviations of each realization. We run this
simulation with three different probability density functions: a nor-
mal distribution, a skew normal distribution with shape parameter

Figure 1. Unweighted histogram of all 9453 �μ diagnostic values for the
Rh = ct universe (see equation 9). The y-axis gives the number of diagnostic
values per bin.

α = 4, and a flat distribution over an interval. In all three cases, the
relationship between the standard deviation of the median and the
mean standard deviation of each realization is found to be statisti-
cally consistent, and apparently dependent only on the number of
sources chosen.

For a sample of 138, the multiplicative factor is 1.822, always
yielding a standard deviation of the medians smaller than the mean
of the standard deviations by this factor. The values reported in
Table 2 for the standard deviation of the median are therefore de-
termined by taking the standard deviations of the million medians
and dividing them by the corresponding factor. While this does
technically include an implicit assumption that all data are sampled
from a single underlying statistical distribution, we argue that by
focusing on the median of these (instead of the mean), and the fact
that there must certainly exist a single true cosmological model, this
assumption is reasonable.

The two-point diagnostic we have introduced in equation (9)
is expected to be zero for the correct cosmology. The degree by
which a given model’s median is consistent with zero is therefore
a measure of its consistency with the observations. We discuss the
results of this analysis in the next section.

4 D I SCUSSI ON

In Table 2 and Figs 1–6, we report the results of both our weighted-
mean and median statistical analyses, described in Sections 2 and 3
above. One of the principal benefits of two-point diagnostics con-
structed with regard to redshift ordering lies not only in determining
how well a set of data fits a model, as revealed, e.g. with the use
of information criteria but, also in providing insight into whether
or not the low-z sources are consistent with the same model as that
preferred by the higher-z sources.

Our complete sample of 138 sources constitutes the original 156
minus the 18 outliers, as detailed in Section 2. As one can see
from Table 1, the optimized value of α is about 4.8 in every case,
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Figure 2. Same as Fig. 1, except now for Planck �CDM.

Figure 3. Same as Fig. 1, except now for �CDM with a re-optimized value
of 	m (see Table 1).

Figure 4. Histogram of the medians found in one million random realiza-
tions of the two-point diagnostic for the Rh = ct universe. The y-axis denotes
the number of times (×1000) that the median of a realization falls within
the range given on the x-axis.

statistically consistent with the results of previous analyses by
Chávez et al. (2012, 2014), Terlevich et al. (2015), and Wei, Wu
& Melia (2016). For these 138 measurements, we constructed for
each model the 9453 unique two-point diagnostics and calculated
the weighted mean and corresponding 1σ error based on the re-
ported uncertainties (see Figs 1–3 for the complete unweighted
histograms). For the Rh = ct universe (Fig. 4), the weighted mean is
found to be consistent with zero at about 1σ . There is mild tension

Figure 5. Same as Fig. 4, except for Planck �CDM.

Figure 6. Same as Fig. 4, except for �CDM with a re-optimized 	m, as
indicated in Table 1.

for Planck �CDM (Fig. 5) and the best-fitting �CDM cosmology
(Fig. 6), however, in that the weighted mean is inconsistent with zero
at about 1.5σ (compare the entries in columns 2, 3, and 4 of Table 2).
Perhaps more importantly, fewer than the expected 68.3 per cent of
the diagnostics lie within 1σ of the weighted mean (column 5) for
all three models, implying that the reported errors are probably not
purely Gaussian and that there may be an additional source of error
not accounted for in this analysis.

It is therefore helpful to circumvent this possible non-Gaussianity
by also analysing the two-point diagnostics using median statistics,
as described above. With this approach, the three models show
a similar inconsistency with a zero median (columns 5 and 6 of
Table 2), with a negative value in every case, roughly 1.3σ different
from zero. The fact that both the weighted mean and the median
are negative for all the models suggests that the luminosity distance
at low-z is generally greater than that predicted by these cosmolo-
gies, or that it is smaller than expected at high-z. The implication
is that either (i) none of the models are completely correct, or (ii)
there may be some systematic problems with the data at high-z
or (more likely) at low-z. Thus, while a discrepancy smaller than
2σ may not be definitive, it nonetheless motivates further analy-
sis involving a possible contamination by non-Gaussian systematic
errors.

Along these lines, we point out that some authors have speculated
on the possibility that a local ‘Hubble bubble’ (Shi 1997; Keenan,
Barger & Cowie 2013; Romano 2017) might be influencing the
local dynamics within a distance ∼300 Mpc (i.e. z � 0.07). If true,
such a fluctuation might lead to anomalous velocities within this
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region, causing the nearby expansion to deviate somewhat from a
pure Hubble flow. This effect could be the reason we are seeing a
slight negative bias for the weighted mean and median of the two-
point diagnostic for every model, since nearby velocities would be
slightly larger than Hubble, implying larger than expected lumi-
nosity distances at redshifts smaller than ∼0.07. In addition, the
existence of local peculiar velocities would imply that the errors
associated with low-z measurements should be bigger than quoted,
increasing the number of two-point diagnostics that fall within 1σ

of the expected dispersion, possibly ‘filling’ the distributions in
Figs 1–3 sufficiently to produce entries in column 5 of Table 2
closer to the value (∼68.3 per cent) expected of a true Gaussian
distribution.

5 C O N C L U S I O N S

The totality of the results shown in Tables 1 and 2, and illustrated
in Figs 1–6, supports the use of HIIGx and GEHR sources as stan-
dard candles for cosmological testing, though the analysis based
on two-point diagnostics has probed the measurement errors in
greater detail than was possible solely via parametric fits to the
data, the subject of our previous paper on this subject (Wei, Wu &
Melia 2016).

In this paper, we have proposed a new two-point diagnostic for
analysing HIIGx and GEHR data with the inclusion of median statis-
tics, which circumvents the need for assuming Gaussian errors in
the measurements. This approach may be used alongside, and com-
pared, with the better understood weighted mean method. We have
shown that these two types of analyses give generally consistent re-
sults, insofar as the H II data are concerned. Broadly speaking, one
of the principal conclusions of this analysis is that employing the
entire compilation of HIIGx and GEHR sources (with the exception
of several outliers) produces slight tension between the cosmolog-
ical parameters favoured by the data at low and high redshifts. We
believe this is circumstantial evidence in support of the proposal by
Shi (1997), Keenan, Barger & Cowie (2013) and Romano (2017) of
a dynamical influence due to a local Hubble bubble extending out
to z ∼ 0.07, which produces local peculiar velocities comparable to
those in the Hubble flow at low redshifts.

Nonetheless, probing the HIIGx and GEHR data with two-point
diagnostics has not changed the essential conclusions drawn by
Wei, Wu & Melia (2016), whose cosmological tests based on these
sources favoured the Rh = ct model over �CDM. Our comparison
using the H II sample has shown that Rh = ct is favoured over both
Planck �CDM and �CDM with a variable 	m, at least when viewed
in terms of weighted mean statistics. The caveat, however, is that
an approach based on median statistics produces less differentiation
between the three models.

In addition, we have found in all cases that our two-point diag-
nostic with the weighted mean approach yields fewer values within
individual 1σ error regions than the 68.3 per cent required of a true
Gaussian distribution. This may be an indication that the reported
errors are not purely statistical, which may happen, e.g. when the
uncertainties are contaminated by systematic effects, including at
least a partially non-Gaussian component, or when there is an addi-
tional source of uncertainty, other than what we considered in this
analysis.
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