Erratum: X-ray properties of $z \gtrsim 6.5$ quasars

by E. Pons¹, 1,2★ R. G. McMahon, 1,2★ M. Banerji 1,2 and S. L. Reed 1,3

Key words: errata, addenda – galaxies: active – galaxies: high-redshift – dark ages, reionization, first stars – X-rays: galaxies.

Table 1. Corrected values of α_{ox} after converting the 2500 Å; flux in the rest-frame.

Object	$\alpha_{ m ox}$
VDES J0020-3653	-1.72 ± 0.14
VDES J0244-5008	-1.55
VDES J0224-4711	-1.61 ± 0.07
VIK J0109-3047	-1.28
PSO J338+29	-1.54
PSO J159-02	-1.54 ± 0.06
VIK J0305-3150	-1.56
PSO J036+03	-1.80 ± 0.13
CFHQS J0210-0456	-1.16

The paper 'X-ray properties of $z\gtrsim 6.5$ quasars' was published in MNRAS, 491, 3884–3890 (2020). After publication of the paper, an error on the computation of the optical to X-ray slope ($\alpha_{\rm ox}=0.3838\times\log{(f_{\rm 2\,keV}/f_{\rm 2500\,\mathring{A}})}$) presented in table 4, right panel of figs 4 and 5 was discovered. The values of $\alpha_{\rm ox}$ were underestimated due to the fact that the UV flux $f_{\rm 2500\,\mathring{A}}$ was not converted to the rest-frame.

This correction do not change the conclusion of the paper but the new values of α_{ox} (listed in Table 1) are in better agreement with the known $\alpha_{ox} - L_{2500}$ anti-correlation (see Fig. 1), strengthening the conclusion. Also as find before in the original paper we do not observe any obvious evolution of α_{ox} with redshift (see Fig. 2; top panel), especially when correcting for the effect of the luminosity (see Fig. 2; bottom panel).

Figure 1. Correlation between the optical-to-X-ray slope $\alpha_{\rm ox}$ and the luminosity at the rest-frame $\lambda=2500$ Å (L_{2500 Å). The dashed line corresponds to the best fit relation from Nanni et al. (2017), and the quasars from this work are completely consistent with this expectation.

¹Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK

²Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK

³Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, NJ 08544, USA

^{*} E-mail: epons@ast.cam.ac.uk (EP); rgm@ast.cam.ac.uk (RGM)

Figure 2. Top panel: Optical-to-X-ray slope $\alpha_{\rm ox}$ versus redshift. Bottom panel: Difference between the computed $\alpha_{\rm ox}$ and the predicted $\alpha_{\rm ox}$ from $L_{2500~{\rm \AA}}$ using the correlation by Nanni et al. (2017) ($\Delta\alpha_{\rm ox}$). We do not observe obvious correlation between $\alpha_{\rm ox}$ and the redshift as stated by previous works.

ACKNOWLEDGEMENT

We thank Fabio Vito and W. Niel Brandt for pointing out these issues.

REFERENCE

Nanni R., Vignali C., Gilli R., Moretti A., Brandt W. N., 2017, A&A, 603, A128

This paper has been typeset from a TEX/IATEX file prepared by the author.