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ABSTRACT
Many asteroids move in the belt between the orbits of Mars and Jupiter under the gravitational attraction of the Sun and planets
in the Solar system. If one of these asteroids does not leave the belt during a period, it is considered to be temporarily stable on
that time-scale. This paper aims to study the time-scales on which asteroids could stay in the main belt. A simplified situation
is studied in which the initial orbital inclinations and the longitudes of the ascending nodes of the asteroids are set to zero.
Numerical integration is used to study the temporal stability of the main-belt asteroids. In the integration, the distribution of the
instability time for randomly generated particles can be fitted with a function. Thus a reasonable method is presented to choose
an integration time-scale based on the percentage of the already unstable particles in relation to all unstable particles. A total
of 151 000 particles are generated and then integrated for 8.09 × 106 yr. The integration data are used to train the probabilistic
neural networks to predict the stability of particles. A temporal stability map in the a-e plane is obtained from the prediction
results of the neural networks.
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1 IN T RO D U C T I O N

Asteroids are minor planets orbiting the Sun, and they are key to our
understanding of the origin and evolution of the Solar system. Nearly
a million asteroids have been detected so far. Most of the asteroids
detected are those with larger diameters. The known asteroid size
distribution implies that there is an undetected population of an
estimated 1013 asteroids with diameters larger than 1 m (Bottke et al.
2005). Except for the interesting near-Earth asteroids (Alessio &
Dario 2018; Jopek 2020), a large proportion of the detected asteroids
move in the main asteroid belt, which is the region between the orbits
of Mars and Jupiter. These are categorized as main-belt asteroids.

The dynamics of the main-belt asteroids are of great interest
to researchers. It was over 150 years ago that Daniel Kirkwood
discovered main-belt gaps at certain values of the semimajor axis.
They clearly show that there is a lack of asteroids in concordance
with the 4/1, 3/1, 5/2, 7/3 and 2/1 mean motion commensurabilities
with Jupiter. The search for an explanation of the Kirkwood gaps
motivates the study of mean motion resonance dynamics (Moons
1997).

In addition to the Kirkwood gaps, the clustering of the asteroids
in the main belt is also a phenomenon worthy of study. Millions of
asteroids move in the belt. If some of them escape from the main
asteroid belt, they could become Earth-crossers, and potentially pose
a great threat to Earth. So it is important to find out how many detected
asteroids will escape from the belt and when they will escape. This
is the goal of this work. There is no analytical method to answer the
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problem. Therefore, at the moment, numerical integration is the only
available method.

With advances in computer performance, numerical methods have
been widely used for problems that cannot be solved analytically.
Numerical work involves a wide range of simulations of the system.
Regarding the general N-body problem, research has been devoted
to determining the minimum of the initial semimajor axis difference
to avoid close encounters. Most studies focused on the three-body
system (Harrington 1972; Donnison & Mikulskis 1992, 1994), while
some tackled the four-body system (Chambers, Wetherill & Boss
1996; Duncan & Lissauer 1997; Faber & Quillen 2007; Smith &
Lissauer 2009; Obertas, Van Laerhoven & Tamayo 2017). In partic-
ular, Tamayo et al. (2016) provided a method to predict the stability of
tightly packed planetary systems using optimized machine-learning
classifiers.

In relation to the main asteroid belt, numerical methods have been
applied to explain the formation of the Kirkwood gaps. Wisdom
(1982, 1983) found that in the planar elliptic restricted three-body
problem, a test particle at the 3/1 resonance can spend 100 000 yr
or longer with e < 0.1 and then jump suddenly to e > 0.3. Thus the
particle becomes a Mars-crosser and could be swept by a collision
with Mars. Gladman et al. (1997) carried out numerical simulations
of particles placed in orbital resonances in the main asteroid belt to
estimate their dynamical lifetimes and the transport mechanism to
the region of the terrestrial planets. Other works have investigated
the transport from the main belt to the near-Earth region or other
regions (Novaković et al. 2015; Hsieh et al. 2020).

Secular resonances with and perturbations by the major planets
or massive asteroids also play an important role in the dynamics of
the main-belt asteroids (Carruba, Vokrouhlický & Novaković 2018;
Milani et al. 2010; Minton & Malhotra 2010; Novaković et al. 2015).
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Todorović & Novaković (2015) used the fast Lyapunov indicator
(FLI) to produce a stability map in the part of the main-belt region
where the Pallas asteroid family is located.

The formation of the main asteroid belt is also an interesting topic
that has been intensively studied. The work of Minton & Malhotra
(2009, 2011) shows that it is impossible to reproduce the current
situation in the asteroid belt within the current architecture of the
Solar system. The simulated asteroid belt after integration for 4 × 109

yr does not match the observed main-belt asteroids in the semimajor
axis distribution. On the other hand, once the migration of the giant
planets is taken into account, the distribution of the simulated asteroid
belt matches that of the observed belt well. Other studies have been
carried out to investigate the orbital distribution of the main asteroid
belt (Roig & Nesvorný 2015; Deienno et al. 2016; Malhotra & Wang
2016; Clement et al. 2018, 2019).

Granvik et al. (2017) investigated the escape routes from the
main belt, and more than 10 obvious escape routes have been
found. Beyond that, few works have focused on the evolution of the
main-belt asteroids within the current structure of the Solar system.
Moreover, there is no criterion for choosing the time-scale of an
integration. In previous numerical works, the time-scale was usually
chosen based on the computing capacity at the time, for example
10–20 revolutions of the outer orbit (Harrington 1972), 1000 inner
orbits (Donnison & Mikulskis 1992), 104 binary periods (Holman &
Wiegert 1996), or 107 inner orbits (Tamayo et al. 2016). These time-
scales cannot guarantee that the systems (or particles) that are stable
during the integrations will still be stable when it comes to a longer
simulation. As in the numerical work, an asteroid could behave stably
in the integration of a short time-scale but unstably on a longer time-
scale. However, the time at which the asteroid begins to be unstable
is unknown, and it is impossible to integrate for infinite time. Thus
a reasonable time-scale is one of the keys to obtaining a reliable
result. The criterion to determine the integration time-scale needs to
be established first.

On the one hand, it is very difficult to integrate all the main-
belt asteroids with a long time-scale. Even if this were done, the
integration would need to be carried out again for newly detected
asteroids. On the other hand, if we follow the traditional numerical
methods, our work can be carried out by integrating many asteroids
and sketching the border of the stable region. There are six degrees
of freedom of the asteroids. If each degree is divided into 20 parts,
206 asteroids need to be integrated to obtain a rough border. This
is much higher than the number of detected main-belt asteroids.
Otherwise, many simplifications have to be made, such as setting the
initial orbital elements except the semi-major axes and eccentricities
of the asteroids to be zero. This makes the result poorly applicable.
The stable and unstable regions are mixed up because of the complex
dynamics of the main-belt asteroids. Thus the mixed regionsincreases
the difficulty of sketching the border and then makes the application
more difficult.

Machine learning provides a valid method to handle these prob-
lems. Smirnov, Dovgalev & Popova (2018) used an improved
automatic identification algorithm to identify all asteroids in three-
body mean motion resonances. Tamayo et al. (2016) were the first to
present a new machine-learning approach to predict the stability of
tightly packed planetary systems. The use of a neural network means
that few simplifications need to be made. In addition, the neural
network can be trained with relatively fewer data. After the training,
the stability of a given asteroidcan be predicted by the neural network
immediately.

This paper is devoted to studying the temporal stability of the main-
belt asteroids using numerical integration. First of all, a reasonable

method is presented to choose the time-scale of an integration. The
time-scale is determined based on the percentage of the already
unstable particles in relation to all unstable particles. After that,
a simulation of 151 000 particles is carried out, and the results are
applied to training the probabilistic neural network. Thus the stability
of asteroids in the belt can be predicted rapidly and accurately.

2 A SSUMPTION O F TEMPORAL STA BILITY

The main asteroid belt is a region in our Solar system located
roughly between the orbits of the planets Mars and Jupiter. How
long an asteroid will stay in the belt is the quantity to be determined.
In the model, the Sun and eight planets move under their mutual
gravitational attraction. All the massive bodies are considered to
be point masses, and the gravitational effects from bodies out of
the model are ignored. Forces of non-gravitational origin are also
ignored, such as the Yarkovsky effect (Bottke et al. 2006; Delbo’
et al. 2007; Yan & Li 2019), because of the very long periods of such
effects.

Asteroids in the main asteroid belt are assumed to be massless and
only to be perturbed by and interact with massive bodies during the
simulation. Hence, asteroids do not perturb one another, nor collide
with each other, but collisions between an asteroid and the massive
bodies are allowed.

If the asteroid does not leave the main asteroid belt during a period,
it is considered to be temporarily stable on this time-scale. For the
benefit of discussion, the assumption of temporal stability is given
as follows.

In the Solar system, there is a belt between the planets Mars and
Jupiter in the range of (rmin, rmax) with respect to the distance from
the Sun. Here

rmin = aM(1 + eM), rmax = aJ(1 − eJ), (1)

where aM and aJ are the semimajor axes of Mars and Jupiter
respectively, and eM and eJ are the eccentricities. An asteroid moves
in the belt under the gravitation of the Sun and eight planets. During
a period of time, T, if it does not escape, the asteroid is considered to
be temporarily stable on the time-scale T. If it escapes from the belt,
the asteroid is unstable on the time-scale T. The longest time that an
asteroid can stay in the belt is termed its instability time.

3 TI ME-SCALE O F INTEGRATI ONS

Numerical simulations are carried out using the Hybrid symplectic
integrator in the MERCURY integrator package (Chambers & Miglior-
ini 1997). The symplectic integrator is very fast but moderately
accurate. Because neural network training requires a lot of data,
it is more appropriate to use the Hybrid symplectic integrator.

After defining the temporal stability and selecting the integrator,
the time-scale needs to be determined before the integration. It is
mostly computational costs that limit the number of test particles and
the time-scale of integration. In previous works, different magnitudes
of the time-scale were chosen based on the computing capacity at the
time. These time-scales cannot guarantee that the particles behaving
stably during the integration will still be stable when it comes to
a longer simulation. At the end of the integration, the surviving
particles could be unstable, and the proportion of unstable particles
in these surviving particles is uncertain.

Our method to determine an appropriate integration times-span
is as follows. First, we randomly generate a set of asteroids with
initial orbits in the belt. The motions of these asteroids are then
integrated for 106 yr. Next, the integrations are divided into equal
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Figure 1. The distribution of the asteroid instability time.

time intervals, and for each interval the number of unstable asteroids
is counted. Finally, the time distribution of the unstable asteroids is
fitted with an appropriate function. This function predicts the number
of unstable asteroids in an extended time interval and can be used to
set the desired integration time-scale.

3.1 Distribution of instability time

For simplicity, the particles are generated with initial orbits in the
same plane. The orbital inclinations of the particles are set to zero,
as are the longitudes of the ascending nodes. Thus the six degrees of
freedom for the initial orbital parameters are reduced to four degrees.
It should be noted that because the orbits of the eight massive planets
are spatial, the particle motions are spatial, too.

The initial time is set at Julian Day 2 458 600, and the initial orbits
of the eight planets are given as the orbits at that time. A total of
20 000 particles are generated randomly with initial orbits in the belt.
The integrations are carried out for 106 yr. During the integrations,
some of the particles stay in the belt, so they are considered to be
temporarily stable for this integration duration. For the others, the
first time at which a particle leaves the belt is recorded as its instability
time.

The number of unstable particles in this integration is denoted as
Nu. The results show that Nu = 9669. The time-scale of the integration
is divided into 100 equal intervals, and each interval is 104 yr. Then,
in each interval, we count the particles whose instability time is
located in the interval and denote the numbers as Ni, i = 1, 2, ..., 100.
Thus the distribution of the asteroid instability time can be obtained,
as shown in Fig. 1. In the first interval, N1 = 5550, which means
that more than half of the unstable particles become unstable within
10 000 yr. The value of Ni rapidly decreases with increasing time.
This phenomenon will be discussed in Section 4, where there are
more data on test particles.

In order to establish a procedure to determine a suitable time-span
for the numerical integration, we define Pi as Pi = ∑i

j=1 Nj/Nu.
The values of Pi as a function of time are shown in Fig. 2. The scatter
plot of Pi can be fitted with a function. According to the figure, when
i ≤ 5, Pi increases exponentially; when i > 5, Pi increases in the form
of a power function with oscillation. The form of the fitted function
is determined as

p(t) = mntn−1e−mtn + a

(t + b)c
[1 + d sin(ηt + φ)] + k, (2)

Figure 2. The vertical coordinate Pi = ∑i
j=1 Nj/Nu, where Nu is the total

number of unstable particles.

where e is the Napierian base, and m, n, a, b, c, d, η, φ and k are the
parameters waiting for fitting. The unit of t is 104 yr.

The first term of p(t) is called the 2-parameter Weibull function,
one of the most widely used lifetime distributions in reliability
engineering. Here, the Weibull function performs well in fitting the
early part of the particles’ lifetime distribution too. The fitting result
is shown in Table 1. The value of the residual sum of squares for these
parameters is 6.9435 × 10−4, which means that the fitted function
matches the scatters of Pi well.

It should be noted that for particles generated randomly with no
simplifications made about the inclinations and longitude ascending
nodes, the corresponding distribution of Pi can be fitted in the same
form as p(t).

3.2 The ratio of instability

As discussed above, although the time-scale of the integration is
106 yr, there are still unstable particles, whose instability times are
longer than the time-scale, hidden in the surviving particles. The total
number of the particles that will eventually escape from the belt and
become unstable is denoted as Nac. Of course, Nac is unknown.

For a better description, we introduce a new concept, which is
defined as follows.

Nac is the total number of particles that eventually will escape from
the belt. At time T, if NT particles have escaped from the belt, the
ratio α, where α = NT/Nac, is termed the ratio of instability at time
T.

If the ratio of instability at any time is known, it provides a
reference to choose the time-scale. In this problem, at T = 106 yr,
we have αu = Nu/Nac. Thus the distribution of the ratio of instability
within 106 yr can be obtained as

α(t) = αup(t), (3)

where p(t) is given by equation (2). It is reasonable to assume that at
the time beyond 106 yr, the fitted function (3) of the ratio of instability
still works. Therefore, when the time goes to infinity, the value of
α(t) should go to 1, which means that

lim
t→+∞

α(t) = 1. (4)

In addition, from equation (2) and the parameters given in Table 1,
it can be found that

lim
t→+∞

p(t) = k = 1.116301. (5)
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Table 1. Parameters of the fitted function.

m n a b c d η φ k

17.135703 −1.172267 −0.609276 0.367441 0.358465 −0.011397 1.079268 −0.694983 1.116301

Figure 3. The ratio of instability following the change with time.

Table 2. The value of T for selected values of α.

α T (104 yr)

0.70 8
0.80 20
0.90 117
0.92 216
0.95 809
0.96 1508
0.97 3371
0.98 10456
0.99 72335
0.995 499992

According to equations (3), (4) and (5), we have αu = 1/k. Then Nac =
Nu/αu = 10 794, which means that 53.97 per cent of the particles are
unstable.

Then the distribution of the ratio of instability can be rewritten as

α(t) = p(t)

k
. (6)

The ratio of instability against time is shown in Fig. 3. The values
of T for selected values of α are listed in Table 2. Now the time-
scale of integration can be chosen based on the ratio of instability.
If we need the integration results to be more reliable, we can choose
a large α such as 0.98, and then the time-scale can be determined
according to equation (6).

4 N U M E R I C A L I N T E G R AT I O N S A N D T H E
T R A I N I N G O F N E U R A L N E T WO R K S

Considering the ratio of instability and the computational cost, we
chose the time-scale of 8.09 × 106 yr, at which time α = 0.95. A
total of 151 000 particles are generated in the belt with initial orbits
in the same plane, which means that their inclinations are set to zero,
as are the longitudes of the ascending nodes.

Figure 4. The temporarily stable particles in the a-e plane. Here ‘au’ denotes
astronomical units. The solid line is the border of the belt in the a-e plane.

Based on the conclusion drawn in Section 3.2, we can predict
the number of particles that will leave the belt during integration.
When time goes to infinity, 53.97 per cent of the particles, i.e. 81 495
particles, will escape from the belt. As α = 0.95, 95 per cent of them,
i.e. 77 420 particles, will become unstable during the integration
within 8.09 × 106 yr.

The numerical results show that 81 022 particles become unstable
during the integration. The error of the number of the unstable
particles between the numerical results and the prediction is about
|77420 − 81022|/77420 = 4.65 per cent. The stable particles are
scattered in the a-e plane, as shown in Fig. 4.

Fig. 3 shows that over half of the unstable particles leave the
belt in 104 yr. These unstable particles are plotted in Fig. 5(a).
They are located close to the borders of the belt or to the most
powerful mean motion resonances. The perturbations of the planets
drive them to leave the belt in a short time. Of course, some of them
just leave temporarily as short-period oscillations of orbits, but they
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Figure 5. The unstable particles with initial orbital elements in the a-e plane.
The solid line is the border of the belt in the a-e plane.

are also considered to be unstable because collisions may occur. The
numerical results also prove that no asteroid near the border survives
at the end of the integration.

Compared with Fig. 5(b), the particles near the orbits of Jupiter
will be swept up quickly. Most of the particles near the orbits of Mars
could survive for a long time but will eventually be swept up.

4.1 Probabilistic neural network

The goal is to train a neural network to predict the stability of the
asteroids in the belt. There are four inputs for the neural network,
namely the semimajor axis a, eccentricity e, argument of perihelion
ω, and mean anomaly M. The only output is ‘1’ or ‘2’, where ‘1’
means temporarily stable, and ‘2’ means unstable.

Here we use the probabilistic neural network (PNN), a supervised
non-parametric classification algorithm as opposed to the Gaussian
maximum likelihood classifier. The network architecture is shown in
Fig. 6. There are four layers of the PNN, namely the input layer,
pattern layer, summation layer, and output layer. 98 per cent of
the 151 000 data are taken as the training set, while the others are
the testing set. The neural network is trained in MATLAB using the
function newpnn().

Figure 6. The architecture of the probabilistic neural network.

Figure 7. The accuracy of the neural network with different values of spread.

The accuracy of the neural network is related to the radial basis
function spread, which is shown in Fig. 7. Thus spread is set to 0.20,
and the accuracy of PNN is 87.05 per cent.

If the stability prediction of a particle does not match the numerical
result, it is called an error prediction. The error predictions of the
testing set are scattered in the a-e plane, as shown in Fig. 8. Few error
predictions are located near the border of the belt in the a-e plane.
Most of the error predictions are located at the positions where the
mean motion resonance with Jupiter occurs. To improve the accuracy
of predictions, the neural network in the region where the resonance
may occur must be trained separately.

4.2 Separately trained neural network

As the error predictions are related to the mean motion resonance, the
belt is divided into several parts with respect to the semimajor axis.
The ranges of each part are shown in the second and third columns
of Table. 3.

Similar to the work in Section 4.1, nine probabilistic neural
networks are trained separately in the nine regions listed in Table. 3.
The corresponding parameter spread and the accuracy of each neural
network are shown in columns 4 and 5. The accuracy becomes much
better than the result in Section 4.1, and it could be further improved
if there are more training data.
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Figure 8. The error predictions of the testing set in the a-e plane. The vertical
dashed lines are the positions of the corresponding resonances. The solid line
is the border of the belt in the a-e plane.

Table 3. The belt is divided into six parts with respect to the semimajor axis.
The first column is the mean motion resonance in each part. The last row
is the rest regions of the belt. Column 4 gives the value of spread of each
probabilistic neural network, and column 5 gives their accuracies.

Region amin (au) amax (au) spread Accuracy

4/1 2.00 2.10 0.11 1
3/1 2.45 2.55 0.15 0.9271
5/2 2.77 2.87 0.16 0.9467
7/3 2.90 2.99 0.20 0.9355
2/1 3.18 3.38 0.10 0.8631
5/3 3.60 3.80 0.12 0.9386
3/2 3.87 4.07 0.13 0.9183
4/3 4.19 4.39 0.14 0.9676
Rest regions of the belt – – 0.06 0.9477

5 A PPLICATION O F THE PROBABILISTIC
N E U R A L N E T WO R K S

The trained neural networks can be used to predict the stability
of the particles based on their initial orbital elements. Of course,
the inclinations and the longitudes of the ascending nodes of the
particles must be zero. Otherwise, the neural network does not work.
The trained neural networks make the prediction faster and easier.
There are four dimensions of the initial orbits, so it is difficult to show
the stable regions directly. Therefore, the particles’ stable regions are
projected onto the a-e plane, where a is the semimajor axis, and e
is the eccentricity. To reflect the differences for a particular set of a
and e with different ω and M, we make the following definitions:

(1) Absolutely stable region: for a point in the (a, e) plane, if
all of the particles at that point with different values of ω and M
are region-stable, that point in the a-e plane is termed an absolutely
stable point. All of the absolutely stable points constitute absolutely
stable regions.

(2) Absolutely unstable region: for a point in the (a, e) plane, if all
of the particles at that point with different values of ω and M are not
stable, that point in the a-e plane is termed an absolutely unstable
point. All of the absolutely unstable points constitute absolutely
unstable regions.

(3) Mixed region: for a point in the (a, e) plane, if some of the
particles at that point are temporarily stable, while others are not,
that point in the a-e plane is termed a mixed point. All of the mixed
points constitute the mixed regions.

A large number of particles are generated as follows.

(1) The semimajor axis of the particle in the belt is in the range of
[rmin, rmax]. Divide the range of the semimajor axis into 1024 equal
intervals. The eccentricity, in the range of [0, emax], is divided into
1024 equal intervals too. Here, emax is the maximum eccentricity of
the asteroids in the belt.

(2) For each group of (a, e), if the orbit with the semimajor axis
and eccentricity is located in the belt, the corresponding argument
of perigee, in the range of [0, 2π ], is divided into 20 equal intervals,
as is the mean anomaly. Thus, for each combination of (a, e), 400
particles are generated with different ω or M.
Therefore, over 108 particles are generated, and every 400 of them
can determine the stability of one point in the a-e plane.

The distribution of these three kinds of regions is shown in Fig. 9.
The particles near the border of the belt are probably unstable. The
regions show poor stability where the particles are in concordance
with 4/1, 3/1, 5/2, 7/3, 2/1 and 5/3 mean motion commensurabilities
with Jupiter. There is no absolutely stable region found if a < 2.1675
au or a > 3.8893 au or e > 0.2989. The 4/1, 3/1 and 5/2 mean motion
commensurabilities enlarge the absolutely unstable regions, while
the 7/3, 2/1, 5/3 and 3/2 ones seem to shrink the regions.

For the particles in the resonant regions: the particles in the black
regions will leave the belt; some of the particles in the blue regions
will survive; and all the particles in the red regions will survive, no
matter if they are resonant with Jupiter or not. Although the temporal
stability map can reflect some properties of resonance, the only thing
the map can tell is whether the particles will leave the belt or not
within the time-scale.

The trained neural networks were also applied to the detected
main-belt asteroids. The main-belt asteroid data were downloaded
from the Jet Propulsion Laboratory Database (https://ssd.jpl.nasa.g
ov). Up to 2020 August 31, 938 255 main-belt asteroids had been
detected: 20 969 are named inner main-belt asteroids, with a < 2.0 au,
and 29 600 of them are outer main-belt asteroids, with a > 3.2 au. In
this work, only four orbital elements are taken into consideration.
Thus the inclinations and the longitude ascending nodes of the
detected asteroids are assumed to be zero. The predictions are shown
in Fig. 10. The red dots denote stable particles, while the black dots
denote unstable ones. A total of 827 619 of the asteroids are predicted
to be temporarily stable, while 110 636 asteroids are not. This means
that about 11.79 per cent of the detected asteroids will leave the belt
in the following 8.09 × 106 yr.

Fig. 10 shows that some of the unstable regions are empty today,
but that others are not. In this respect, an asteroid’s instability only
implies that it should leave the belt, but not necessarily permanently.
Some of the unstable asteroids leave the belt permanently, such as
the asteroids colliding with the Sun or planets. However, many of
them will be outside the borders of the belt only temporarily owing
to the short periodic perturbations. Once they leave the belt, the
planets could clear the planet-crossing objects, but it takes time,
especially for Mars. Therefore, some of the temporarily unstable
asteroids may actually survive for longer times in the vicinity of the
belt’s border. That is why some real asteroids are still present in the
regions predicted to be temporarily unstable.

In some unstable regions where the asteroids are still present,
there may be an active resupply mechanism bringing new objects
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Figure 9. The distribution of the three kinds of regions. The red-coloured regions are the absolutely stable regions, while the blue ones are the mixed regions
and the black ones are the absolutely unstable regions.

Figure 10. The temporal stability of the detected main-belt asteroids. The red points are temporarily stable, while the black ones are unstable. The solid black
line is the border of the belt in the a-e plane.

inside these areas, for example non-gravitational effects or collisions
between the asteroids.

The fraction of unstable objects (11.79 per cent) seems to be very
high. However, it should be noted that the fraction of unstable objects
is different from the main-belt asteroid escape rate. The temporarily
unstable asteroids could survive for a time longer than about 8 Myr,
as explained above. The ‘unstable region’ does not mean that the

asteroids in that region will be swept, but that the asteroids will leave
the belt. They may come back and then repeat the process. In addition,
1776 asteroids are initially located outside the borders of the belt,
as shown in Fig. 10, and therefore these objects are by definition
temporarily unstable. Still, even some of them could survive. This
explains the large fraction of 11.79 per cent of the asteroids found to
be unstable in our analysis.
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Finally, it should be noted that the inclinations and the longitudes
of the ascending nodes of the asteroids are assumed to be zero. That
is an additional reason why the prediction did not match the real
situation.

6 C O N C L U S I O N S

This work has studied the temporal stability of the main-belt
asteroids. The fitted function of the distribution of instability time has
been obtained, and a new method has been presented to choose the
time-scale of numerical integration based on the ratio of instability.
The method can be used in other problems to determine the time-
scale of the numerical simulation.

In our work, the time-scale was 8.09 × 106 yr, at which time the
ratio of instability reaches 0.95. With better computational ability, a
longer time-scale with a greater ratio of instability could be chosen.

The numerical integration was parallel-computed using a com-
puter with 20 cores. It took a long time, namely over six months.
The results of the integration give the stability of 151 000 particles.
Nine probabilistic neural networks were trained separately based on
the data and show a good performance for predicting the stability of
the particles. Note that the trained neural network can only tell the
stability of a particle within 8.09 × 106 yr.

A map of the stable region in the a-e plane was derived after the
simulation of over 108 particles using the trained neural networks.
It depicts three kinds of regions: the absolutely stable region, the
absolutely unstable region, and the mixed region. This proves an
advantage of the method, namely that with no integration, the stability
of a particle can be determined immediately.

The trained neural networks were also applied to the detected
main-belt asteroids. As their inclinations and the longitudes of the
ascending nodes were assumed to be zero, the neural networks may
only provide a reasonable prediction compared with the real situation.

The limitations of the approach need to be pointed out. First,
to reduce the computational cost, here we have studied only the
simplified situation, where the initial orbital inclinations and the
longitudes of the ascending nodes of the particles are set to zero.
The method as a whole still works if there is no restriction on the
initial orbits of the particles. In that case, the distribution of instability
time needs to be fitted again. The following steps are similar to the
planar case shown in this work, but many more particles need to be
integrated to train the neural network.

Secondly, the neural networks can only tell whether an asteroid
is temporarily stable on this time-scale. The instability time of each
asteroid is still unknown.

Thirdly, despite being reasonably reliable, the predictions of the
PNN are less accurate than the numerical integrations. Therefore, the
results obtained using the PNN could be useful as a fast preliminary
indication of stability. A much more in-depth analysis is needed to
fully assess the dynamical stability of individual asteroids.
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Science, 157, 72
Chambers J., Migliorini F., 1997, Bull. Am. Astron. Soc., 29, 1024
Chambers J., Wetherill G., Boss A., 1996, Icarus, 119, 261
Clement M., Kaib N. A., Raymond S. N., Walsh K. J., 2018, Icarus, 311, 340
Clement M. S., Morbidelli A., Raymond S. N., Kaib N. A., 2019, MNRAS,

492, L56
Deienno R., Gomes R. S., Walsh K. J., Morbidelli A., Nesvorný D., 2016,
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