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ABSTRACT
The ESA’s X-ray Multi-mirror Mission (XMM–Newton) created a new high-quality version of the XMM–Newton serendipitous
source catalogue, 4XMM-DR9, which provides a wealth of information for observed sources. The 4XMM-DR9 catalogue is
correlated with the Sloan Digital Sky Survey (SDSS) DR12 photometric data base and the AllWISE data base; we then get
X-ray sources with information from the X-ray, optical, and/or infrared bands and obtain the XMM–WISE, XMM–SDSS, and
XMM–WISE–SDSS samples. Based on the large spectroscopic surveys of SDSS and the Large Sky Area Multi-object Fiber
Spectroscopic Telescope (LAMOST), we cross-match the XMM–WISE–SDSS sample with sources of known spectral classes,
and obtain known samples of stars, galaxies, and quasars. The distribution of stars, galaxies, and quasars as well as all spectral
classes of stars in 2D parameter space is presented. Various machine-learning methods are applied to different samples from
different bands. The better classified results are retained. For the sample from the X-ray band, a rotation-forest classifier performs
the best. For the sample from the X-ray and infrared bands, a random-forest algorithm outperforms all other methods. For the
samples from the X-ray, optical, and/or infrared bands, the LogitBoost classifier shows its superiority. Thus, all X-ray sources
in the 4XMM-DR9 catalogue with different input patterns are classified by their respective models that are created by these best
methods. Their membership of and membership probabilities for individual X-ray sources are assigned. The classified result
will be of great value for the further research of X-ray sources in greater detail.

Key words: methods: data analysis – methods: statistical – astronomical data bases: miscellaneous – catalogues – stars: general –
galaxies: general.

1 IN T RO D U C T I O N

Since all X-rays are prevented from entering by the Earth’s at-
mosphere, only a space-based telescope can observe and probe
celestial X-ray sources. Both NASA’s Chandra X-ray Observatory
and the ESA’s X-ray Multi-mirror Mission (XMM–Newton) are space
missions in the X-ray band and are leading X-ray astronomy into a
new era (Brandt & Hasinger 2005). Significant discoveries have
been made with these missions (Santos-Lleo et al. 2009). These
missions may provide answers to other profound cosmic questions
such as the enigmatic black holes, the formation and evolution of
galaxies, dark matter, dark energy, the origins of the Universe,
and so on. They are valuable tools to probe X-ray emission from
various astrophysical systems. Despite the implementation of these
missions, more and more X-ray sources have still not been identified.
Identification of deep X-ray survey sources is a challenging issue
for several reasons (Brandt & Hasinger 2005). Large sky-survey
projects (e.g. the Sloan Digital Sky Survey, SDSS; the Wide-field
Infrared Survey Explorer, WISE; the Large Sky Area Multi-object
Fiber Spectroscopic Telescope, LAMOST) provide multiwavelength
information and spectroscopic classes of X-ray sources. Pineau
et al. (2011) cross-correlated the 2XMMi catalogue with SDSS
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DR7 and studied the high-energy properties of various classes of X-
ray sources. Machine learning can gain knowledge from the known
examples and create a classifier to predict unknown sources. There-
fore machine learning makes it possible to classify X-ray sources
depending on their multiwavelength and spectroscopic information
for known samples. Some work has been done in this direction.
For example, Broos et al. (2011) applied a naive Bayes classifier to
classify X-ray sources from the Chandra Carina Complex Project.
Zhang et al. (2013) ran a random-forest algorithm on the cross-
matched sample between 2XMMi-DR3 and SDSS-DR8. Farrell,
Murphy & Lo (2015) classified the variable 3XMM sources with the
random-forest algorithm. Arnason, Barmby & Vulic (2020) identified
new X-ray binary candidates in M31 also using the random-forest
algorithm.

In this paper, we download the 4XMM-DR9 catalogue, and
obtain the spectroscopic classes of these X-ray sources from SDSS
and LAMOST, X-ray information from XMM–Newton, optical in-
formation from SDSS, and infrared information from AllWISE.
We create classifiers to classify the X-ray sources with known
spectroscopic classes based on only X-ray information; combined
X-ray and optical/infrared information; or combined X-ray, optical,
and infrared information. Section 2 describes the data used and the
distribution of various objects in 2D space. Section 3 presents the
classification methodologies. Section 4 compares the performance of
better classifiers for different samples. Section 5 discusses the results
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of the classifiers and applies the created classifiers to the unknown
sources. Section 6 provides our conclusions for this work.

2 TH E DATA

The European Space Agency’s (ESA) X-ray Multi-mirror Mission
(XMM–Newton) was launched on 1999 December 10, performing
in the X-ray, ultraviolet, and optical bands. XMM–Newton is ESA’s
second cornerstone of the Horizon 2000 Science Programme. It car-
ries three high-throughput X-ray telescopes with an unprecedented
effective area and an optical monitor, the first flown on an X-ray
observatory. This mission has released a new high-quality version
of the XMM–Newton serendipitous source catalogue 4XMM-DR9.
This catalogue includes 810 795 detections of 550 124 unique sources
drawn from 11 204 XMM–Newton EPIC observations, covering 1152
degrees2 of the sky in the energy band from 0.2–12 keV (Webb
et al. 2020). For the total photon energy band from 0.2–12 keV, the
median flux of the catalogue detections is ∼2.3 × 10−14 erg cm−2

s−1; it is ∼5.3 × 10−15 erg cm−2 s−1 in the soft energy band
(0.2–2 keV), and ∼1.2 × 10−14 erg cm−2 s−1 in the hard band
(2–12 keV). About 23 per cent of the sources have total fluxes
below 1 × 10−14 erg cm−2 s−1. The typical positional accuracy is
about 2 arcsec. For the astrometric quality, the mean RA and Dec.
offsets between the XMM sources and the SDSS optical quasars are
−0.01 and 0.005 arcsec respectively with corresponding standard
deviations of 0.70 and 0.64 arcsec (see fig. 10 in Webb et al.
2020).

The Wide-field Infrared Survey Explorer (WISE; Wright et al.
2010) is an entire mid-infrared sky survey with simultaneous pho-
tometry in four filters at 3.4, 4.6, 12, and 22 μm (W1, W2, W3, and
W4). It obtained over a million images and observed hundreds of
millions of celestial objects. The WISE survey provides mid-infrared
information about the Solar system, the Milky Way, and the Universe.
On the basis of the WISE work, the AllWISE programme has created
new products with better photometric sensitivity and accuracy as
well as better astrometric precision. The limiting magnitudes of W1
and W2 are brighter than 19.8 and 19.0 (Vega: 17.1, 15.7) for the
AllWISE source catalogue. Sources brighter than 8, 7 in the W1 and
W2 bands are affected by saturation. Considering the accuracy of
W1, W2, W3, and W4, we only adopt W1 and W2, converting W1 and
W2 in Vega magnitudes to AB magnitudes by W1AB = W1 + 2.699
and W2AB = W2 + 3.339. The average point spread function (PSF)
with full widths at half-maximum (FWHMs) in W1, W2, W3, and
W4 is 6.1, 6.4, 6.5, and 12 arcsec, respectively. For high signal-to-
noise ratios (S/N) (>20) sources, the WISE positions are better than
0.15 arcsec for 1σ and one axis.

The Sloan Digital Sky Survey (SDSS; York et al. 2000) has been
one of the most successful photometric and spectroscopic sky surveys
ever made, providing deep multicolour images of a third of the sky
and spectra for more than 3000 000 celestial objects. Data Release
12 (DR12) is the final data release of SDSS-III, containing all SDSS
observations up to 2014 July (Eisenstein et al. 2011). It includes
the complete data set of the BOSS and APOGEE surveys, and now
also includes stellar radial velocity measurements from MARVELS.
Data Release 16 (DR16) is the fourth SDSS data release (SDSS-IV;
Blanton et al. 2017). SDSS mapped the sky in the five optical band
passes (ugriz) with central wavelengths of 3551, 4686, 6165, 7481,
and 8931 Å. Pixel size is 0.396 arcsec and the astrometry accuracy
is less than 0.1 arcsec rms absolute per coordinate. The limiting
magnitudes of ugriz are 21.6, 22.2, 22.2, 21.3, and 20.7 at 95 per cent
completeness, respectively. For u and z, they are converted to AB
magnitudes by uAB = u − 0.04 mag and zAB = z + 0.02 mag. DR16

contains SDSS observations up to 2018 August, including 880 652
stars, 2616 381 galaxies, and 749 775 quasars when zWarning = 0 in
the DR16 SpecObj data base.

The Large Sky Area Multi-object Fiber Spectroscopic Telescope
(LAMOST; Cui et al. 2012; Luo et al. 2015) may take 4000 spectra
in a single exposure to a limiting magnitude as faint as r = 19 mag at
the resolution R = 1800. It has finished the first five-year survey plan.
The LAMOST survey contains the LAMOST ExtraGAlactic Survey
(LEGAS) and the LAMOST Experiment for Galactic Understanding
and Exploration (LEGUE) survey of Milky Way stellar structure. The
data products of the fifth data release (DR5) include 8183 160 stars
(7540 605 stars with S/N in the g or i bands greater than 10), 152 863
galaxies, 52 453 quasars, and 637 889 unknown objects.

The SDSS Data Release 14 Quasar catalogue (DR14Q; Pâris et al.
2018) contains 526 356 spectroscopically identified quasars. DR14Q
consists of spectroscopically identified quasars from SDSS-I, II, III,
and the latest SDSS-IV eBOSS survey.

In order to obtain multiwavelength properties of X-ray sources,
we cross-match the 4XMM-DR9 catalogue with the SDSS and
AllWISE data bases. According to the work of Covey et al. (2008),
we estimate spurious SDSS and AllWISE matches by applying a
30 arcsec offset to the X-ray source declinations and searching the
4XMM-DR9 catalogue for sources with SDSS counterparts within
8 arcsec and AllWISE counterparts within 10 arcsec for each X-ray
source centroid. Fig. 1 shows a normalized cumulative histogram of
separation between the 4XMM-DR9 and SDSS sources as well as the
4XMM-DR9 and AllWISE sources; the solid histogram represents
the cumulative distribution of separation between the X-ray and
optical counterparts for real XMM–SDSS sources within 8 arcsec
(left-hand panel of Fig. 1) and that of separation between the X-
ray and infrared counterparts for real XMM–WISE sources within
10 arcsec (right-hand panel of Fig. 1); the dashed histogram indicates
the upper limit to the fractional contamination of the XMM–SDSS
sample by chance superpositions of independent X-ray and optical
sources (left-hand panel of Fig. 1) and the XMM–WISE sample by
chance superpositions of independent X-ray and infrared sources
(right-hand panel of Fig. 1). In general, high completeness and
low contamination cannot be achieved at the same time; higher
completeness is needed at the expense of contamination; otherwise,
if we pursue low contamination, we must sacrifice completeness.
For XMM matching SDSS at 3, 4, 5, and 6 arcsec, the com-
pleteness versus contamination is respectively 71.68 per cent ver-
sus 9.75 per cent, 79.49 per cent versus 16.53 per cent, 85.55 per cent
versus 24.50 per cent, and 90.78 per cent versus 33.36 per cent; for
XMM matching AllWISE at 3, 6, 7, and 8 arcsec, the com-
pleteness versus contamination is respectively 56.90 per cent ver-
sus 0.89 per cent, 77.66 per cent versus 1.75 per cent, 83.39 per cent
versus 2.01 per cent, and 89.14 per cent versus 2.08 per cent. From
Fig. 1, the fraction of X-ray sources matching SDSS occupies over
90 per cent at 6 arcsec and that matching AllWISE is about 90 per cent
at 8 arcsec. So the cross-match radius between the SDSS and 4XMM-
DR9 sources is set as 6 arcsec while that between AllWISE and
4XMM-DR9 sources is adopted as 8 arcsec. We apply the software
TOPCAT (Taylor 2005) to perform the cross-matching. Finally we
obtain the XMM–WISE sample and the XMM–SDSS sample; the
XMM–WISE–SDSS sample is then derived according to the same ID
(srcid) in the XMM–WISE and XMM–SDSS samples. All photome-
tries throughout this paper are extinction-corrected according to the
work of Schindler et al. (2017) and AB magnitudes are adopted.

In order to construct the known spectral samples, the samples
have been identified spectroscopically by SDSS DR16 and LAMOST
DR5. The known samples are cross-matched with the XMM–WISE–
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Classification of 4XMM-DR9 sources 5265

Figure 1. Histogram of source separation between XMM and SDSS as well as between XMM and AllWISE. Red solid histogram: cumulative distribution
of separation between X-ray and optical counterparts (left) and between X-ray and infrared counterparts (right) for the real X-ray sources; blue dashed line:
distribution of separations returned by matching the faked X-ray sources with coordinates shifted by 30 arcsec to the SDSS (left) and AllWISE (right) data bases.

SDSS sample in a 6 arcsec radius. Keeping the data quality, zWarn-
ing = 0 is set in the DR16 SpecObj data base when downloading
data; sc poserr≤5 and sc sum flag<3 are set in the 4XMM-DR9
data base; records with default values of ugriz, W1, and W2 are
removed; records with W1 < 8 and W2 < 7 are deleted; and stars
in the LAMOST DR5 data base are adopted with S/N in the g or
i bands greater than 10. When the objects are both identified by
SDSS and LAMOST, only the spectral class of objects in SDSS are
retained. If the objects with known spectral class in the XMM–WISE–
SDSS sample have counterparts in DR14Q, the objects are labelled as
QSO. Finally, the known samples include 3558 stars, 7203 galaxies,
and 21 040 quasars with information from the X-ray, optical, and
infrared bands. The spectra were identified as stars, galaxies, and
QSO by the SDSS and LAMOST automated classification pipelines
using template fitting. Detailed information on known samples is
given in Table 1. For the class assigned as galaxies, the subclass Non
is from the LAMOST data base and the subclass’s default value is
from the SDSS data base. The LAMOST pipeline does not provide
subclasses for galaxies, and all the subclasses for galaxies in the
LAMOST data base are labelled as Non. The websites relating to
the above data sets are shown in Table 2. As for the definitions and
abbreviations in Table 1, AGN is short for active galactic nuclus,
AGN BL for broad-line AGN, SB for starburst galaxy, SB BL for
broad-line SB, SF for star-forming galaxy, SF BL for broad-line SF,
BL for BL Lacertae objects, CV for cataclysmic variable star, EM
for emission line star, WD for white dwarf, DB for double or binary
star, sdM1 for subdwarf M1 star, Carbon for carbon star, and O,
B, A, F, G, K, M for stars with spectral types of O, B, A, F, G,
K, M, respectively. All these subclasses are assigned by the SDSS
and LAMOST automated classification pipelines depending on the
spectroscopic characteristics. Bolton et al. (2012) showed that the
galaxy spectra from SDSS by the line-fitting code were grouped
into AGN, SF, and SB; if the spectra meet log10([O III]/H β) >1.2
log10([N II]/H α) + 0.22, the galaxy spectra were identified as AGN,
otherwise, for the equivalent width (EW) of H α, SF if EW(H α)
<50 Å, and SB if EW(H α) >50 Å; galaxies and quasars may be
classified as broad-line (BL) when their line widths are larger than
200 km s−1; and stellar spectra were classified as spectral types
from O to M based on the ELODIE stellar library. The broad-
line classification given by the SDSS pipeline does not necessarily
indicate that an AGN has emission lines broad enough to classify

Table 1. The numbers of each class and subclass for the known samples.

Class Subclass No.

Galaxy AGN 611
AGN BL 107
SB 387
SB BL 8
SF 1008
SF BL 46
BL 281
Non 219

4536
Star O 1

B 5
A 79
F 708
G 869
K 777
M 1062
CV 39
DB 5
EM 1
WD 10
sdM1 1
Carbon 1

QSO 21 040

Table 2. The websites for related catalogues.

4XMM-DR9 catalogue
https://www.cosmos.esa.int/web/xmm-newton/xsa
Spectrally identified stars, galaxies and quasars from SDSS
http://skyserver.sdss.org/dr16/en/tools/search/sql.aspx
Spectrally identified stars, galaxies, and quasars from LAMOST
http://dr5.lamost.org/v3/catalogue
SDSS DR14 Quasar catalogue (DR14Q)
https://www.sdss.org/dr14/algorithms/qso catalog

it as a broad-line (as opposed to a narrow-line) AGN because the
emission line widths are typically more than 2000 km s−1 for broad-
line AGNs (Hao et al. 2005). BL Lacertae objects are a subclass of
AGNs that have fast and large amplitude variability over the whole
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Table 3. The parameters, definition, catalogues, and wavebands.

Parameter Definition Catalogue Waveband

srcid Source ID XMM X-ray band
sc ra Right ascension in decimal degrees XMM X-ray band
sc dec Declination in decimal degrees XMM X-ray band
hr1 Hardness ratio 1 XMM X-ray band

Definition: hr1 = (B − A)/(B + A), where
A = count rate in energy band 0.2–0.5 keV
B = count rate in energy band 0.5–1 keV

hr2 Hardness ratio 2 XMM X-ray band
Definition: hr2 = (C − B)/(C + B), where
B = count rate in energy band 0.5–1 keV
C = count rate in energy band 1–2 keV

hr3 Hardness ratio 3 XMM X-ray band
Definition: hr3 = (D − C)/(D + C), where
C = count rate in energy band 1–2 keV
D = count rate in energy band 2–4.5 keV

hr4 hardness ratio 4 XMM X-ray band
Definition: hr4 = (E − D)/(E + D), where
D = count rate in energy band 2–4.5 keV
E = count rate in energy band 4.5–12 keV

extent Source extent XMM X-ray band
log(fx) X-ray flux XMM X-ray band
log(fx/fr) X-ray-to-optical-flux ratio SDSS, XMM Optical and X-ray bands
u u magnitude SDSS Optical band
g g magnitude SDSS Optical band
r r magnitude SDSS Optical band
i i magnitude SDSS Optical band
z z magnitude SDSS Optical band
W1 W1 magnitude AllWISE Infrared band
W2 W2 magnitude AllWISE Infrared band

spectra, high and variable polarization, and continuous spectra with
no or weak absorption and emission features. Starburst galaxies are
characterized by higher rates of star formation than normal galaxies.
They are either young or rejuvenated galaxies that typically contain
very luminous X-ray sources. Since the separation of subclasses
of galaxies depends on spectral line information, it is difficult to
discriminate them without spectra.

We select the features [log(fx), hr1, hr2, hr3, hr4, extent, r, W1,
u − g, g − r, r − i, i − z, z − W1, W1 − W2, log(fx/fr)] of the
known star, galaxy, and quasar samples used for this study. The
selected features are described in Table 3. The 2D plots between two
attributes from these features are given in Figs 2 and 3. Fig. 2 shows
the differences between stars, galaxies, and quasars, while Fig. 3
indicates the differences between different spectral classes of stars.
The two figures tell us that it is difficult to discriminate stars, galaxies,
and quasars, and different spectral classes of stars depending only
on two attributes. These attributes all contribute more or less to the
classification. As shown in Fig. 2, most quasars obviously have larger
log(fx/fr), r, W1, and W1 − W2 values than stars. It is easy to classify
stars and quasars from galaxies with the attribute extent in the X-ray
band. Nevertheless some AGNs do not appear as X-ray extended if
the emission is nuclear-dominated; thus they are misclassified as stars
or quasars only depending on extent. We check stars and quasars with
large extent in SIMBAD and NED within a 3 arcsec radius, and find
that some of them are galaxies in a group of galaxies, galaxy cluster,
or other kinds of objects. Most galaxies indeed have a relatively larger
extent in the X-ray band. Most galaxies overlap with most quasars in
their X-ray and infrared information while most galaxies overlap with
most stars in their X-ray, optical, and infrared information. In order
to effectively separate stars, galaxies, and quasars, it is necessary

to apply all available information. As indicated in Fig. 3, CV stars
have more strong X-ray emission than other stars, and most CV stars
and M stars have more strong infrared emission than the remainder
of the stars. They can be separated easily from the star sample in
some 2D spaces. Apparently they have obvious differences from the
remainder of the star sample as they are mixed together and are thus
difficult to discriminate.

3 TH E M E T H O D

WEKA (the Waikato Environment for Knowledge Analysis; Witten &
Frank 2005) is a piece of open-source software that is effectively
used for various machine-learning tasks. It is implemented through
a graphical user interface, standard terminal applications, or through
a JAVA API. It is widely used for teaching, research, and industrial
applications, and contains a plethora of built-in tools for standard
machine-learning tasks. These tasks include data pre-processing,
classification, regression, clustering, association rules, attribute se-
lection, and visualization realized by different algorithms. This
software makes it easy to work with large amounts of data and
to run and compare various machine-learning algorithms. It has been
successfully applied in astronomy (Zhao & Zhang 2008; Zhang,
Zhao & Gao 2008; Zheng & Zhang 2008).

We try various classification algorithms provided by WEKA on
our samples and only keep the better classification results. When
running the software, we all adopt the default setting by 10-fold
validation while training a model. 10-fold validation refers to a data
set that is randomly divided into 10 parts, nine parts of which are
used for training with one part remaining for testing; this procedure
is repeated 10 times.
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Figure 2. The distribution of stars, galaxies, and quasars in 2D space; red open circles represent galaxies, blue open diamonds represent quasars, and green
crosses represent stars.

The metrics commonly used to evaluate the performance of a
classifier include accuracy, precision, recall, and F-measure. For
a data set, accuracy is the ratio of the total number of correct
predictions to the total number of predictions, precision (also called

efficiency) is the fraction of true positive predictions among all
true positive examples, recall (also called completeness) is the
fraction of true positive predictions among all predicted positive
examples, and F-measure is the weighted average of precision and

MNRAS 503, 5263–5273 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/503/4/5263/6232150 by guest on 10 April 2024



5268 Y. Zhang, Y. Zhao and X.-B. Wu

Figure 3. The distribution of different spectral classes of stars in 2D space; red filled circles for A stars, blue filled squares for B stars, purple open diamonds
for F stars, green pluses for G stars, purple filled diamonds for K stars, black open squares for M stars, blue filled down triangles for CV stars, yellow crosses
for double stars (DB), and light-green open up triangles for white dwarf stars (WD).
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recall:

accuracy = TP + TN

TP + TN + FP + FN
. (1)

Here TP is the true positive sample, TN is the true negative sample,
FP is the false positive sample, FN is the false negative sample:

precison = TP

TP + FP
, recall = TP

TP + FN
(2)

F-measure = 2 × precision × recall

precision + recall
. (3)

3.1 Random forest

Random forest is a supervised learning algorithm that builds a
randomized decision tree in each iteration of the bagging algorithm
and gives impressive results with very large ensembles (Breiman
2001). The bagging algorithm is applied to improve accuracy by
reducing the variance to make the model more general and avoiding
overfitting. For bagging, multiple subsets is taken as the training
set. For each subset, a model created by the same algorithm is used
to predict the output for the same test set. Averaging predictions is
considered as the final prediction output. To further understand how
the bagging algorithm works, we assume that there are N models and
a data set. This data set is split into training and test sets. Taking a
sample of records from the training set, we train the first model with it.
Then, taking another sample from the training set, we train the second
model with it. A similar process will be repeated for N number of
models. Based on all predictions of N models on the same test set, we
adopt a model-averaging technique like weighted average, variance,
or max voting to obtain the final prediction. Ensembles are a divide-
and-conquer approach used to improve performance. For ensemble
methods, ‘weak learners’ are grouped to form a ‘strong learner’. Each
classifier individually is a ‘weak learner’ (base learner) while all the
classifiers taken together are a ‘strong learner’. In a decision tree, the
input data are separated into smaller and smaller sets from the tree
root to its leaves. A random forest creates many decision trees. When
classifying a new object, each decision tree provides a classification.
The final class of this object depends on the most votes among all the
trees in the forest. This simplified random forest is shown in Fig. 4.
The advantage of using random forest is that it is able to deal with
unbalanced and missing data and runs relatively fast.

3.2 Rotation forest

Rotation forest is a powerful tree-based ensemble method based
on feature extraction and is designed to work with a smaller
number of ensembles; it focuses on building accurate and diverse
classifiers (Rodriguez, Kuncheva & Alonso 2006). Feature extraction
by principal component analysis (PCA) is performed on K subsets
randomly split from the feature set in turn; here K is a rotation-forest
parameter. All principal components are kept for each subset. The
original data are handled by the principal component transformation
and then used for training each base classifier. Its diversity is realized
by the feature extraction carried out on each base classifier and its
accuracy is ensured by the keeping of all principal components and
the use of all of the data as a training sample for each base classifier.
Decision trees are usually selected because they are easily influenced
by rotation of the feature axes. The difference between random forest
and rotation forest is that rotation forest performs PCA on the feature

Figure 4. The simplified random forest.

subset to rebuild full feature space and achieves similar or better
performance with fewer trees than random forest does. For detailed
information on rotation forest refer to Rodriguez et al. (2006).

3.3 LogitBoost

LogitBoost is a boosting classification algorithm, based on the
logistic regression method by minimizing the logistic loss (Friedman,
Hastie & Tibshirani 2000). Because noise and outliers exist in data
and an exponential loss function is used in LogitBoost, issues like
overfitting will reduce the model accuracy. However classification
errors are changed linearly instead of exponentially; thus this
may improve the model accuracy and noise immunity. Here the
LogitBoost classification algorithm is trained using random forests
as weak learners.

4 PE R F O R M A N C E O F T H E A L G O R I T H M S

We classify the X-ray sources into some subclasses of galaxies,
stars, and quasars, based on the input pattern of log(fx), hr1, hr2,
hr3, hr4, extent, r, W1, u − g, g − r, r − i, i − z, z − W1,
W1 − W2, log(fx/fr). Since the LAMOST data base does not give
the subclassification of galaxies, we do not consider galaxies from
LAMOST when performing multiclassification. The subclasses of
AGN and AGN BL are labelled as AGN; SB and SB BL as SB; SF
and SF BL as SF; and the default value as galaxies. LogitBoost is
applied to the known sample without the galaxies from LAMOST
by 10-fold validation. The classified result is described in Table 4.
As shown in Table 4, the total accuracy adds up to 90.04 per cent;
the metrics of stars and quasars are above 92.7 per cent while those
of galaxies are unsatisfactory. The subclasses of galaxies are easily
confused. The subclass of default value for galaxies assigned as
galaxy belongs to normal galaxies, while the subclasses of AGN, SF,
SB, and BL belong to active galaxies. All metrics of normal galaxies
are larger than 77.0 per cent while those of active galaxies range
from 7.8 per cent to 76.6 per cent. Active galaxies are likely to be
classified as normal galaxies or quasars. Obviously it is very difficult
to discriminate active galaxies from the whole sample. Therefore we
use the known samples from LAMOST and SDSS, and only classify
the sample into galaxies, stars, and quasars in the following work.
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Table 4. The performance of LogitBoost for multiclassification.

Known↓Classified→ AGN BL SB SF Galaxy QSO Star Precision Recall F-measure

AGN 149 8 7 98 269 177 10 50.0% 20.8% 29.3%
BL 12 22 1 9 193 34 10 44.9% 7.8% 13.3%
SB 4 0 141 68 23 141 18 76.6% 35.7% 48.7%
SF 53 3 28 472 251 205 42 58.9% 44.8% 50.9%
Galaxy 45 14 4 100 3698 605 70 77.0% 81.5% 79.2%
QSO 35 0 0 50 268 20 657 30 94.0% 98.2% 96.1%
Star 0 2 3 4 103 148 3298 94.8% 92.7% 93.7%
Total accuracy 90.04%

For the sample from the X-ray band only, the classification
performance of random forest and rotation forest is shown in Table 5.
The input pattern for this sample is log(fx), hr1, hr2, hr3, hr4,
extent. As shown in Table 5, for galaxies only, recall and F-measure
decrease, but for stars and quasars, all metrics increase, comparing
the performance of rotation forest with random forest. Rotation
forest outperforms random forest in terms of accuracy (77.80 per cent
versus 77.46 per cent). With information from the X-ray band only,
the classification metrics of quasars are satisfying while those of
galaxies and stars are not good when considering precision, recall,
and F-measure.

For the sample from the X-ray and optical bands, the classification
performance of random forest and LogitBoost is indicated in Table 6.
The input pattern is log(fx), hr1, hr2, hr3, hr4, extent, r, u − g, g
− r, r − i, i − z, log(fx/fr). As indicated in Table 6, all metrics for
LogitBoost are better than those for random forest, and all of them
are higher than 84.8 per cent. Only touching on quasars and stars,
the metrics are above 87.5 per cent. LogitBoost is superior to random
forest for this case, as its accuracy amounts to 92.82 per cent.

For the sample from the X-ray and infrared bands, the classification
performance of random forest and LogitBoost is described in Table 7.
The input pattern is log(fx), hr1, hr2, hr3, hr4, extent, W1, W1 −
W2. As depicted in Table 7, the performance of random forest is a
little better than LogitBoost in terms of total accuracy. All metrics
for random forest are near to those of LogitBoost. The accuracy of
galaxies is still worse than that of quasars and stars. Nevertheless, all
metrics are better than 76.1 per cent. The total accuracy of random
forest is 89.42 per cent.

For the sample from the X-ray, optical, and infrared bands, the
classification performance of random forest and LogitBoost is listed
in Table 8. The input pattern is log(fx), hr1, hr2, hr3, hr4, extent,
r, W1, u − g, g − r, r − i, i − z, z − W1, W1 − W2, log(fx/fr).
As shown in Table 8, even for galaxies, the metrics are greater
than 87.1 per cent; for stars, the metrics are above 90.7 per cent; for
quasars, the metrics are higher than 95.4 per cent. All metrics except
precision for LogitBoost are greater than those of random forest.
Compared to random forest, LogitBoost has a slight advantage and
its total accuracy adds up to 94.26 per cent.

In order to check how the observational errors influence the
performance of a classifier, we take the XMM–SDSS sample as
an example. Setting σ u < 0.3, σ g < 0.3, σ r < 0.3, σ i < 0.3,
and σ z < 0.3, the known sample size changes from 31 800 to
26 428; the performance of random forest and LogitBoost is shown
in Table 9. Comparing the result in Table 9 with that in Table 6, the
performances of random forest and LogitBoost both improve with
higher-quality data (94.73 per cent versus 92.57 per cent for random
forest, 94.93 per cent versus 92.82 per cent for LogitBoost) in terms
of accuracy. Although higher-quality data lead to higher performance

of a classifier, the number of sources with X-ray emission is small in
nature, so we do not set a magnitude error limitation on the samples
in our work.

5 D I SCUSSI ON AND A PPLI CATI ON

Comparing Tables 5–8, the worst result belongs to the sample from
the X-ray band only, as expected. Adding the information from the
optical and/or infrared bands, the classification accuracy increases for
any classifier; nevertheless the accuracy with the X-ray and optical
bands is better than that with the X-ray and infrared bands. The
best performance is obtained with all information from the X-ray,
optical, and infrared bands. There is no algorithm that shows the best
performance for every data set. For the sample from the X-ray band,
the rotation-forest classifier is the best; for the sample from the X-ray
and infrared bands, random forest is superior to all other algorithms;
and for another two samples, LogitBoost shows its superiority.

In reality, some X-ray sources have information from the X-
ray, optical, and infrared bands, some have information from the
X-ray and infrared bands, some have information from the X-
ray and optical bands, and some even have X-ray information
only. Based on the known samples with spectral classes, we need
to construct four classifiers for the four situations to predict the
unknown X-ray sources. For the sources with X-ray information
only, a rotation-forest classifier is built with the known samples
with spectral classes to predict their classes and probability. For the
sources with X-ray and infrared bands, a random-forest classifier
is created with the known samples with spectral classes to predict
their classes and probability. For the sources from the X-ray and
optical bands or from the X-ray, optical, and infrared bands, Log-
itBoost classifiers are constructed with the corresponding known
samples with spectral classes to predict their classes and probability,
respectively. For the 4XMM-DR9 sources, all predicted results are
shown in Table 10. Table 10 provides classification information for
the 4XMM-DR9 sources. The information gained will be of great
value for further research into the characteristics and physics of X-ray
sources.

6 C O N C L U S I O N S

Based on the distribution of stars, galaxies, and quasars in 2D
space, it is difficult to discriminate them and their subclasses clearly.
Similarly, given the distribution of all spectral classes of stars in
2D space, it is also not so easy to separate them, but CV stars
and M stars stand out clearly in some 2D spaces. Of the entire
X-ray sample, quasars occupy the majority while stars and galaxies
only cover a minority. With X-ray information and spectral classes
of known X-ray sources, we create a rotation-forest classifier to
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Table 5. The performance of random forest and rotation forest with log(fx), hr1, hr2, hr3, hr4, extent.

Method
Random

forest
Rotation

forest

Class Precision Recall F-measure Precision Recall F-measure
QSO 82.1% 93.4% 87.4% 81.4% 94.9% 87.6%
Galaxy 63.0% 43.4% 51.4% 66.0% 40.4% 50.1%
Star 64.0% 52.4% 57.6% 65.1% 52.7% 58.3%
Total accuracy 77.46% 77.80%

Table 6. The performance of random forest and LogitBoost with log(fx), hr1, hr2, hr3, hr4, extent, r,
u − g, g − r, r − i, i − z, log(fx/fr).

Method
Random

forest LogitBoost
Class Precision Recall F-measure Precision Recall F-measure

QSO 94.4% 96.1% 95.2% 94.5% 96.2% 95.4%
Galaxy 85.6% 84.8% 85.2% 86.1% 85.3% 85.7%
Star 95.9% 87.5% 91.5% 96.2% 88.1% 92.0%
Total accuracy 92.57% 92.82%

Table 7. The performance of random forest and LogitBoost with log(fx), hr1, hr2, hr3, hr4, extent,
W1, W1 − W2.

Method
Random

forest LogitBoost
Class Precision Recall F-measure Precision Recall F-measure

QSO 93.4% 95.9% 94.6% 93.4% 96.8% 95.9%
Galaxy 79.1% 76.1% 77.5% 78.9% 76.1% 76.1%
Star 85.1% 78.2% 81.5% 85.1% 82.3% 77.9%
Total accuracy 89.42% 89.38%

Table 8. The performance of random forest and LogitBoost with log(fx), hr1, hr2, hr3, hr4, extent, r,
W1, u − g, g − r, r − i, i − z, z − W1, W1 − W2, log(fx/fr).

Method
Random

forest LogitBoost
Class Precision Recall F-measure Precision Recall F-measure

QSO 95.4% 97.0% 96.2% 95.6% 97.1% 96.3%
Galaxy 88.4% 87.1% 87.7% 89.1% 87.5% 88.3%
Star 96.9% 90.7% 93.7% 96.8% 91.2% 93.9%
Total accuracy 94.03% 94.26%

Table 9. The performance of random forest and LogitBoost with log(fx), hr1, hr2, hr3, hr4, extent, r,
u − g, g − r, r − i, i − z, log(fx/fr) when σ u < 0.3, σ g < 0.3, σ r < 0.3, σ i < 0.3, and σz < 0.3.

Method
Random

forest LogitBoost
Class Precision Recall F-measure Precision Recall F-measure

QSO 95.7% 98.1% 96.9% 95.9% 98.1% 97.0%
Galaxy 88.8% 83.7% 86.2% 89.3% 84.1% 86.6%
Star 96.4% 89.8% 93.0% 96.5% 90.9% 93.6%
Total accuracy 94.73% 94.93%

assign classification results and their probabilities for all 4XMM-
DR9 sources. Based on information from the X-ray and infrared
bands as well as spectral classes of known X-ray sources, a random-
forest classifier is used to discriminate X-ray sources. By means of
properties from the X-ray, optical, and/or infrared bands and spectral

classes of known X-ray sources, we build LogitBoost classifiers to
predict X-ray sources. The predicted results from different methods
with different input properties are listed in full in a table, which may
be used for further study of the X-ray properties of various kinds of
objects in detail.
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Table 10. Classification of 4XMM-DR9 sources.

srcid sc ra sc dec Class x Px Class xo Pxo Class xi Pxi Class xio Pxio

200001101010001 64.9255899382624 55.9993455276706 galaxy 0.718 star 1.0
200001101010002 64.9714038006107 55.8049026564271 galaxy 0.427 QSO 0.996 galaxy 0.894 QSO 0.998
200001101010003 65.0767247976311 55.9307646652894 galaxy 0.456 QSO 0.963 galaxy 1.0 star 0.722
200001101010004 65.1112285547752 55.9955363739078 galaxy 0.746 galaxy 1.0 galaxy 0.993 galaxy 1.0
200001101010005 64.996228987918 56.2248168838265 star 0.653 star 1.0 star 1.0 star 1.0
200001101010006 64.9348515102436 55.9291776566485 galaxy 0.506
200001101010007 64.8232313435949 55.9849189955416 galaxy 0.485 QSO 1.0 galaxy 1.0 QSO 0.999
200001101010008 65.0734121719342 55.9823011754657 QSO 0.491 star 1.0 star 0.939 star 1.0
200001101010009 65.0167233356568 55.9421102139164 QSO 0.537 QSO 0.997
200001101010010 64.9101008917805 56.0710218248335 QSO 0.502
200001101010011 64.9050705152553 56.0644078750126 QSO 0.539 galaxy 0.955 galaxy 0.999 galaxy 0.943
200001101010012 65.2336693528087 55.8993466831422 galaxy 0.479 star 0.986
200001101010013 64.8914247247132 55.9585111145714 QSO 0.523
200001101010014 64.6507013015166 56.0418886508129 QSO 0.517 star 0.999 galaxy 0.986 star 1.0
200001101010015 64.7925428495702 55.896051166999 star 0.572 star 1.0 star 1.0 star 1.0
200001101010016 65.1527613793266 55.9300031359814 QSO 0.489 galaxy 0.999
200001101010017 65.0424438892887 56.1513807784794 QSO 0.488 QSO 1.0
200001101010018 64.725085117142 55.891398599223 galaxy 0.579 star 1.0 galaxy 1.0 star 0.996
200001101010019 65.1553866221519 55.8977634034868 galaxy 0.452 galaxy 1.0 star 0.654 star 0.702
200001101010020 64.9468670845107 55.9626521430764 galaxy 0.657 galaxy 0.981 galaxy 0.998 galaxy 0.98

Notes. Class x means classification and Px shows their classification probabilities from the X-ray band; Class xo means classification and Pxo shows their
classification probabilities from the X-ray and optical bands; Class xi means classification and Pxi shows their classification probabilities from the X-ray and
infrared bands; Class xio means classification and Pxio shows their classification probabilities from the X-ray, infrared, and optical bands.
This whole table is available at http://paperdata.china-vo.org/zyx/table10.csv. Part of it is shown here to demonstrate its form and content.
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