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ABSTRACT
Over 30 per cent of the ∼4000 known exoplanets to date have been discovered using ‘validation’, where the statistical likelihood
of a transit arising from a false positive (FP), non-planetary scenario is calculated. For the large majority of these validated
planets calculations were performed using the VESPA algorithm. Regardless of the strengths and weaknesses of VESPA, it is
highly desirable for the catalogue of known planets not to be dependent on a single method. We demonstrate the use of machine
learning algorithms, specifically a Gaussian process classifier (GPC) reinforced by other models, to perform probabilistic planet
validation incorporating prior probabilities for possible FP scenarios. The GPC can attain a mean log-loss per sample of 0.54
when separating confirmed planets from FPs in the Kepler Threshold-Crossing Event (TCE) catalogue. Our models can validate
thousands of unseen candidates in seconds once applicable vetting metrics are calculated, and can be adapted to work with the
active Transiting Exoplanet Survey Satellite (TESS) mission, where the large number of observed targets necessitate the use
of automated algorithms. We discuss the limitations and caveats of this methodology, and after accounting for possible failure
modes newly validate 50 Kepler candidates as planets, sanity checking the validations by confirming them with VESPA using
up to date stellar information. Concerning discrepancies with VESPA arise for many other candidates, which typically resolve in
favour of our models. Given such issues, we caution against using single-method planet validation with either method until the
discrepancies are fully understood.

Key words: methods: data analysis – methods: statistical – planets and satellites: detection – planets and satellites: general.

1 IN T RO D U C T I O N

Our understanding of exoplanets, their diversity, and population has
been in large part driven by transiting planet surveys. Ground-based
surveys (e.g. Bakos et al. 2002; Pollacco et al. 2006; Pepper et al.
2007; Wheatley et al. 2018) set the scene and discovered many of
the first exoplanets. Planet populations, architecture, and occurrence
rates were exposed by the groundbreaking Kepler mission (Borucki
2016), which to date has discovered over 2300 confirmed or validated
planets, and was succeeded by its follow-on K2 (Howell et al.
2014). Now the Transiting Exoplanet Survey Satellite (TESS) mission
(Ricker et al. 2015) is surveying most of the sky, and is expected to
at least double the number of known exoplanets.

The planet discovery process has a number of distinct steps, which
have evolved with the available data. Surveys typically produce more
candidates than true planets, in some cases by a large factor. False
positive (FP) scenarios produce signals that can mimic that of a true
transiting planet (Santerne et al. 2013; Cabrera et al. 2017). Key
FP scenarios include various configurations of eclipsing binaries,
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both on the target star and on unresolved background stars, which
when blended with light from other stars can produce eclipses
very similar to a planet transit. Systematic variations from the
instrument, cosmic rays, or temperature fluctuations can produce
apparently significant periodicities that are potentially mistaken for
small planets, especially at longer orbital periods (Burke et al. 2015,
2019; Thompson et al. 2018).

Given the problem of separating true planetary signals from FPs,
vetting methods have been developed to select the best candidates to
target with often limited follow-up resources (Kostov et al. 2019).
Such vetting methods look for common signs of FPs, including
secondary eclipses, centroid offsets indicating background contam-
ination, differences between odd and even transits, and diagnostic
information relating to the instrument (Twicken et al. 2018). Ideally,
vetted planetary candidates are observed with other methods to
confirm an exoplanet, often detecting radial velocity variations at
the same orbital period as the candidate transit (e.g. Cloutier et al.
2019).

With the advent of the Kepler data, a large number of generally
high-quality candidates became available, but in the main orbiting
faint host stars, with V magnitude >14. Such faint stars preclude
the use of radial velocities to follow-up most candidates, especially
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for long-period low signal-to-noise cases. At this time vetting
methodologies were expanded to attempt planet ‘validation’, the
statistical confirmation of a planet without necessarily obtaining
extra data (e.g. Morton & Johnson 2011). Statistical confirmation
is not ideal compared to using independent discovery techniques, but
allowed the ‘validation’ of over 1200 planets, over half of the Kepler
discoveries, either through consideration of the ‘multiplicity boost’
or explicit consideration of the probability for each FP scenario.
Once developed, such methods proved useful both for validating
planets and for prioritizing follow-up resources, and are still in use
even for bright stars where follow-up is possible (Quinn et al. 2019;
Vanderburg et al. 2019).

There are several planet validation techniques in the literature:
PASTIS (Dı́az et al. 2014; Santerne et al. 2015), BLENDER (Torres
et al. 2015), VESPA (Morton & Johnson 2011; Morton 2012; Morton
et al. 2016), the newly released TRICERATOPS (Giacalone & Dressing
2020), and a specific consideration of Kepler ’s multiple planetary
systems (Lissauer et al. 2014; Rowe et al. 2014). Each has strengths
and weaknesses, but only VESPA has been applied to a large number
of candidates. This dependence on one method for ∼30 per cent
of the known exoplanets to date introduces risks for all dependent
exoplanet research fields, including in planet formation, evolution,
population synthesis, and occurrence rates. In this work, we aim to
introduce an independent validation method using machine learning
techniques, particularly a Gaussian process classifier (GPC).

Our motivation for creating another validation technique is three-
fold. First, given the importance of designating a candidate planet
as ’true’ or ’validated’, independent methods are desirable to reduce
the risk of algorithm-dependent flaws having an unexpected impact.
Second, we develop a machine learning methodology that allows near
instant probabilistic validation of new candidates, once light curves
and applicable metadata are available. As such our method could be
used for closer to real time target selection and prioritization. Lastly,
much work has been performed recently giving an improved view
of the Kepler satellite target stars through Gaia, and in developing
an improved understanding of the statistical performance and issues
relating to Kepler discoveries (e.g. Bryson & Morton 2017; Mathur
et al. 2017; Berger et al. 2018; Burke et al. 2019). We aim to
incorporate this new knowledge into our algorithm and so potentially
improve the reliability of our results over previous work, in particular
in the incorporation of systematic non-astrophysical FPs.

We initially focus on the Kepler data set with the goal of expanding
to create a general code applicable to TESS data in future work.
Because of the speed of our method we are able to take the entire
Threshold-Crossing Event (TCE) catalogue of Kepler candidates
(Twicken et al. 2016) as our input, as opposed to the typically studied
Kepler objects of interest (KOIs; Thompson et al. 2018), in essence
potentially replacing a large part of the planet detection process from
candidate detection to planet validation.

Past efforts to classify candidates in transit surveys with machine
learning have been made, using primarily random forests (McCauliff
et al. 2015; Armstrong et al. 2018; Caceres et al. 2019; Schanche et al.
2019) and convolutional neural nets (Ansdell et al. 2018; Shallue &
Vanderburg 2018; Chaushev et al. 2019; Dattilo et al. 2019; Yu
et al. 2019; Osborn et al. 2020). To date these have all focused on
identifying FPs or ranking candidates within a survey. We build on
past work by focusing on separating true planets from FPs, rather
than just planetary candidates, and in doing so probabilistically to
allow planet validation.

Section 2 describes the mathematical framework we employ for
planet validation, and the specific machine learning models used.
Section 3 defines the input data we use, how it is represented, and

how we define the training set of data used to train our models.
Section 4 describes our model selection and optimization process.
Section 5 describes how the outputs of those models are converted
into posterior probabilities, and combined with a priori probabilities
for each FP scenario to produce a robust determination of the
probability that a given candidate is a real planet. Section 6 shows
the results of applying our methodology to the Kepler data set, and
Section 7 discusses the applicability and limitations of our method,
as well as its potential for other data sets.

2 FR A M E WO R K

2.1 Overview

Consider training data set D = {xn, sn}N
n=1 containing N TCEs and

xn ∈ Rd the feature vector of vetting metrics and parameters derived
from the Kepler pipeline. Let p(X, s) be the joint density, of the
feature array X , and the generative hypothesis labels s, where s is
the array of labels (i.e. planet, or FPs such as an eclipsing binary
or hierarchical eclipsing binary). Generative modelling of the joint
density has been the approach taken in the previous literature for
exoplanet validation, see for example PASTIS (Dı́az et al. 2014;
Santerne et al. 2015) where the generative probability for hypothesis
label s has been explicitly calculated using Bayes formula.

The scenarios in question represent the full set of potential
astrophysical and non-astrophysical causes of the observed candidate
signal. Let P(s|I) represent the empirical prior probability that a given
scenario s has to occur, where s = 1 represents a confirmed planet and
s = 0 refers to the FP hypothesis, including all astrophysical and non-
astrophysical FP situations that could generate the observed signal.
I refers to a priori available information on the various scenarios.

We implement several machine learning classification models
M discussed in Section 4, with their respective parameters wM.
The approaches we take typically estimate the posterior predictive
probability p(s = 1|x∗,D,M) for an unseen feature vector x∗

directly as the result of the classification algorithm. We then obtain
the scenario posterior probability p(s = 1|x∗, I ) by reweighting
using the estimated empirical priors:

p(s = 1|x∗, I ) = p(s = 1|x∗,D,M)P (s = 1|I )∑
s p(s|x∗,D,M)P (s|I )

, (1)

where the posterior predictive probability of interest p(s =
1|x∗,D,M) is given by∫

p(s = 1|x∗, wM,M)p(wM|D,M) dwM, (2)

and p(wM|D,M) is the parameter posterior for parametric models
that is typically approximated in Bayesian classification models with
an approximating family. Going forwards D,M will be dropped
from our notation for clarity.

For non-Bayesian parametric methods the marginal is completely
replaced by a point estimate ŵM resulting to p(s = 1|x∗, ŵM) and
the scenario conditional as

p(s = 1|x∗, I ) = p(s = 1|x∗, ŵM)P (s = 1|I )∑
s p(s|x∗, ŵM)P (s|I )

. (3)

The prior information I represents the overall probability for
a given scenario to occur in the Kepler data set, as well as the
occurrence rates of planets or binaries as a whole given the Kepler
precision and target stars. In this work, I will also include centroid
information determining the chance of background resolved or
unresolved sources being the source of a signal. This approach allows
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us to easily vary the prior information given centroid information
specific to a target that is not otherwise available to the models. We
discuss the P(s|I) priors in detail in Section 5.4.

Prior factors dependent on an individual candidate’s parameters,
including, for example, the specific occurrence rate of planets at the
implied planet radius, as opposed to that on average for the whole
Kepler sample, as well as the difference in probability of eclipse
for planets or stars at a given orbital period and stellar or planetary
radius, are incorporated directly in the model output p(s = 1|x∗).

2.2 Gaussian process classifier

A commonly used set of machine learning tools is defined through
parametric models such that a function describing the process
belongs to a specific family of functions, i.e. linear or quadratic
linear regression with a finite number of parameters. A more flexible
alternatives are Bayesian non-parametric models (Rasmussen &
Williams 2006) and specifically Gaussian processes (GPs), where
one places a prior distribution over functions f rather than a
distribution over parameters w of a function. We can specify a mean
function value given the inputs and a kernel function that specifies
the covariance of the function between two input instances.

In the classification setting the posterior over these latent functions
p( f ) is not available in closed form and approximations are needed.
The probability of interest can be computed from the approximate
posterior with Monte Carlo estimates of the following integral:

P (s = 1|x∗) =
∫ ∫

p(s = 1|f ∗)p(f ∗| f , x∗)p( f ) d f df ∗, (4)

where f∗ is the evaluation of the latent function f on the test data
point x∗ for which we are predicting the label s. Note that we have
dropped D and M. The first term in the integrand is the predictive
likelihood function, the second term is the latent predictive density,
and the final term is the posterior density over the latent functions.
In classification we resort to specific deterministic approximations
based on stochastic variational inference that are implemented in the
GPFLOW PYTHON package (Matthews et al. 2017). We also utilize
an ‘inducing points’ methodology whereby the large data set is
represented by a smaller number of representative points, which
speeds computation and guards against overfitting. The number of
such points is one of the optimized parameters. For an extensive
introduction to GPs refer to Rasmussen & Williams (2006) and Blei,
Kucukelbir & McAuliffe (2017).

2.3 Random forest and extra trees

Random forests (RF; Breiman 2001) are a well-known machine
learning method with several desirable properties, and history in
performing exoplanet transit candidate vetting (McCauliff et al.
2015). They are robust to uninformative features, allow control of
overfitting, and allow measurement of the feature importance driving
classification decisions. RFs are constructed using a large number of
decision trees, each of which gives a classification decision based
on a random subset of the input data. To keep this work as concise
as possible we direct the interested reader to detailed descriptions
elsewhere (Breiman 2001; Louppe 2014).

Extra trees (ET) also known as extremely randomized trees are
intuitively similar in construction to RF (Geurts, Ernst & Wehenkel
2006). The only fundamental difference from RF is the feature split,
where RFs perform feature splitting based on a deterministic measure
such as the Gini impurity, the feature split in an ET is random.

2.4 Multilayer perceptron

A standard linear regression or classification model is based on a
linear combination of instance features passed through an activation
function, with non-linearity in case of classification or identity in
case of regression. A multilayer perceptron (MLP) on the other hand
is a set of linear transformations followed by an activation function,
where the number of transformations implies the number of hidden
units. Each linear transformation consists of a set number of linear
combinations commonly referred to as neurons, where every neuron
takes as input a linear combination from every other neuron in the
previous hidden unit. The number of hidden units, neurons, and
activation function are hyperparameters to choose. The interested
reader should refer to Bishop (2006) for a more in depth discussion
of neural networks.

3 IN P U T DATA

We use Data Release 25 (DR25) of the Kepler data, covering quarters
1–17 (Twicken et al. 2016; Thompson et al. 2018). The data measure
stellar brightness for near 200 000 stars for a period of 4 yr. Data
and metadata were obtained from the NASA Exoplanet Archive
(Akeson et al. 2013). The Kepler data are passed through the Kepler
data processing pipeline (Jenkins et al. 2010; Jenkins 2017), and
detrended using the Presearch Data Conditioning pipeline (Smith
et al. 2012; Stumpe et al. 2012). Planetary candidates are identified
by the transiting planet search part of the Kepler pipeline, which
produces TCEs where candidate transits appear with a significance
>7.1σ . The recovery rate of planets from this process is investigated
in detail in Christiansen (2017) and Burke & Catanzarite (2017).
These TCEs were then designated as Kepler KOIs if they passed
several vetting checks known as the ‘data validation’ (DV) process
detailed in Twicken et al. (2018). KOIs are further labelled as FPs or
planets based on a combination of methods, typically either individ-
ual follow-up with other planet detection methods, the detection of
transit timing variations (e.g. Panichi, Migaszewski & Goździewski
2019), or statistical validation via a number of published methods
(e.g. Morton et al. 2016).

3.1 Metadata

We utilize the TCE table for Kepler DR25 (Twicken et al. 2016).
This table contains 34 032 TCEs, with information on each TCE and
the results of several diagnostic checks. ‘Rogue’ TCEs that were the
result of a previous bug in the transit search and flagged using the
‘tce rogue flag’ column were removed, leaving 32 534 TCEs for this
study that form the basis of our data set.

We update the TCE table with improved estimates of stellar
temperature, surface gravity, metallicity, and radius derived using
Gaia Data Release 2 (DR2) information (Berger et al. 2018; Gaia
Collaboration et al. 2018). In each case, if no information is available
for a given Kepler target in Berger et al. (2018), we fall back on the
values in Mathur et al. (2017), and in cases with no information in
either use the original values in the TCE table, which are from the
Kepler Input Catalog (KIC; Brown et al. 2011). We also include
Kepler magnitudes from the KIC. The planetary radii are updated in
line with the updated stellar radii. We also recalculate the maximum
ephemeris correlation, a measure of correlation between TCEs on the
same stellar target (McCauliff et al. 2015) and add it to the TCE table.

One element of the TCE table is several χ2 and degrees of freedom
statistics for various models fitted to the TCE signal. To better
represent this test, we convert all such columns into the ratio of
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Table 1. Data features. GPC – Gaussian process classifier; RF – random forest; ET – extra trees; MLP – multilayer perceptron.

Name Description In GPC In RF/ET/MLP

tce period Orbital period of the TCE x x
tce time0bk Centre time of the first detected transit in BJD x x
tce ror Planet radius dived by the stellar radius x x
tce dor Planet–star distance at mid-transit divided by the stellar radius x x
tce duration Duration of the candidate transit (h) x x
tce ingress Ingress duration (h) x x
tce depth Transit depth (ppm) x x
tce model snr Transit depth normalized by the mean flux uncertainty in transit x x
tce robstat A measure of depth variations across all transits x x
tce prad Implied planet radius x x
wst robstat As tce robstat for the most significant secondary transit x x
wst depth Fitted depth of the most significant secondary transit x x
tce mesmedian See Twicken et al. (2018) x x
tce mesmad See Twicken et al. (2018) x x
tce maxmes Multiple event statistic (MES) statistic of most significant secondary transit x x
tce minmes MES statistic of least significant secondary transit x x
tce maxmesd Phase in days of most significant secondary transit x x
tce minmesd Phase in days of least significant secondary transit x x
tce max sngle ev Maximum single event statistic x x
tce max mult ev Maximum MES x x
tce bin oedp stat Odd–even depth comparison statistic x x
tce rmesmad Ratio of MES to median average deviation (MAD) MES x x
tce rsnrmes Ratio of signal-to-noise ratio to MES x x
tce rminmes Ratio of minimum MES to MES x x
tce tce albedostat Significance of geometric albedo derived from secondary x x
tce ptemp stat Significance of effective temperature derived from secondary x x
boot fap Bootstrap false alarm probability x x
tce cap stat Ghost core aperture statistic x x
tce hap stat Ghost halo aperture statistic x x
tce dikco msky Angular offset between event centroids from KIC position x x
max ephem corr Maximum ephemeris correlation x x
Kepler Kepler magnitude x x
Teff Host stellar temperature x x
Radius Host stellar radius from Gaia Collaboration et al. (2018) x x
tce model redchisq Transit fit model reduced χ2 x x
tce chisq1dof1 See Tenenbaum et al. (2013) and Seader et al. (2013) x x
tce chisq1dof2 See Tenenbaum et al. (2013) and Seader et al. (2013) x x
tce chisqgofdofrat See Seader et al. (2015) x x
somstat Self-organizing map (SOM) statistic using new SOM trained on this data x
a17stat SOM statistic using SOM of Armstrong et al. (2017) x
Local View light curve 201 bin local view of the transit light curve x

the χ2 to the degrees of freedom. Missing values are filled with their
column median in the case of stellar magnitudes, or zeros for all
other columns.

The full range of included data is shown in Table 1. This is a subset
of the original TCE table, with several columns removed based on
their contribution to the models as described in Section 3.3. Brief
descriptions of each column are given, readers should refer to the
NASA Exoplanet Archive for further detail.

3.2 Light curves

We use the DV Kepler light curves, as detailed in Twicken et al.
(2018), which are produced in the same way as light curves used for
the Kepler transiting planet search (TPS). The light-curve data are
phase folded at the TCE ephemeris then binned into 201 equal width
bins in phase covering a region of seven transit durations centred on
the candidate transit. We choose these parameters following Shallue
& Vanderburg (2018), their ‘local’ view, although we use a window
covering one less transit duration to provide better resolution of the

transit event. Example local views are shown in Fig. 1. Empty bins are
filled by interpolating surrounding bins. As in Shallue & Vanderburg
(2018) we also implemented a ‘global’ view using 2001 phase bins
covering the entire phase-folded light curve, but in our case found
no improvement in classifier performance and so dropped this view
to reduce the input feature space. We hypothesize that this is due
to the inclusion of additional metrics measuring the significance of
secondary eclipses.

We consider several machine learning algorithms in Section 4.
Some algorithms are unlikely to deal well with direct light-curve
data, as it would dominate the feature space. For these we create a
summary statistic for the light curves following the self-organizing
map (SOM) method of Armstrong, Pollacco & Santerne (2017),
applying our light curves to their publicly available Kepler SOM. We
create a further SOM statistic using the same methodology but with a
SOM trained on our own data set to encourage discrimination of non-
astrophysical FPs that were not studied in Armstrong et al. (2017).
The resulting SOM is shown in Fig. 2. These SOM statistics are
a form of dimensionality reduction, reducing the light-curve shape
into a single statistic.
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Figure 1. ‘Local view’ 201 bin representation of the transit for a planet (top),
astrophysical FP (middle), and non-astrophysical FP (bottom).

Figure 2. SOM pixel locations of labelled training set light curves, showing
strong clustering. Green – planet; orange – astrophysical FP; blue – non-
astrophysical FP. A random jitter of between −0.5 and 0.5 pixels has been
added in both axes for clarity.

For a given algorithm, either the two SOM statistics are appended
to the TCE table feature set, or the ‘local’ view light curve with 201
bin values is appended. As such we have two data representations:
‘feature+SOM’ and ‘feature+LC’. The used features, and which
models they apply to, are detailed in Table 1.

3.3 Minimally useful attributes

It is desirable to reduce the feature space to the minimum useful set,
so as to simplify the resulting model and reduce the proportion of non-
informative features passed to the models. We drop columns from the
TCE table using a number of criteria. Initially metadata associated
with the table are dropped, including delivery name and Kepler
identifier. Columns associated with the error on another column are
dropped. Columns associated with a trapezoid fit to the light curves
are dropped in favour of the actual planet model fit also performed.
We drop most centroid information, limiting the models to one
column providing the angular offset between event centroids and
the KIC position, finding that this performed better than differential
measures. Columns related to the autovetter (McCauliff et al. 2015)
are dropped, along with limb darkening coefficients, and the planet

Figure 3. Training set distributions of the most important four features after
scaling. Confirmed planets are in green, astrophysical FPs in orange, and
non-astrophysical FPs in blue. The single value peaks occur due to large
numbers of TCEs having identical values for a feature. The vertical axis cuts
off some of the distribution in the top two panels to better show the overall
distributions.

albedo and implied temperature are dropped in favour of their
associated statistics that better represent the relevant information
for planet validation. We further experimented with removing the
remaining features in order to create a minimal set, finding that the
results in fact marginally improved when we reduced the data table
to the 38 features detailed in Table 1, in addition to the SOM features
or the local view light curve.

3.4 Data scaling

Many machine learning algorithms perform better when the input
data are scaled. As such we scale each of our inputs to follow a
normal distribution with a mean of zero and variance of unity for
each feature. The only exceptions are the ‘local’ view light-curve
values, which are already scaled. The most important four feature
distributions as measured by the optimized random forest classifier
(RFC) from Section 4 are plotted in Fig. 3 after scaling.

3.5 Training set dispositions

Information on the disposition of each TCE is extracted from the
DR25 ordinary and supplementary KOI tables (hereafter koi-base
and koi-supp, respectively). koi-base is the KOI table derived exclu-
sively from DR25, whereas koi-supp contains a ‘best-knowledge’
disposition for each KOI. We build our confirmed planet training set
by taking objects labelled as confirmed in the koi-supp table (column
‘koi disposition’), which are in the koi-base table and not labelled as
FPs or indeterminate in either Santerne et al. (2016) or Burke et al.
(2019). This set includes previously validated planets. We remove
a small number of apparently confirmed planets where the Kepler
data have shown them to be FPs, based on the ‘koi pdisposition’
column. We use koi-supp to give the most accurate dispositions
for individual objects, prioritizing training set label accuracy over
uniformly processed dispositions. This leaves 2274 TCEs labelled as
confirmed planets.

We build two FP sets, one each for astrophysical and non-
astrophysical FPs. The astrophysical FP set contains all KOIs labelled
FP in the koi-supp table (column ‘koi pdisposition’), which are in
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Figure 4. Training set planet radius and period distributions. Top: non-
astrophysical FPs. Middle: astrophysical FPs. Bottom: planets. All distri-
butions are normalized to show probability density. Training set members
with apparent planet radii larger than 100 R⊕ are not plotted for clarity (all
are FPs).

the koi-base table, where there is not a flag raised indicating a non-
transiting-like signal, and supplemented by all FPs in Santerne et al.
(2016). The non-astrophysical FP set contains KOIs where a flag was
raised indicating a non-transiting-like signal, supplemented by 2200
randomly drawn TCEs that were not upgraded to KOIs. By utilizing
these random TCEs we are implicitly assuming that the TCEs that
were not made KOIs are in the majority FPs, which is born out by our
results (Section 6.2). The astrophysical FP set then has 3100 TCEs,
and the non-astrophysical FP set has 2959 TCEs. The planet radius
and period distributions of the three sets are shown in Fig. 4.

We combine the two FP sets going forwards, leaving a FP set with
approximately double the number of the confirmed planet set. This
imbalance will be corrected implicitly by some of our models, but
in cases where it is not, or in case the correction is not effective,
this overabundance of FPs ensures that any bias in the models
prefers FP classifications. We do not include additional TCEs to
avoid unbalancing the training sets further, which can impact model
performance.

We split our data into a training set (80 per cent, 6663 TCEs),
a validation set for model selection and optimization (10 per cent,
834 TCEs), and a test set for final analysis of model performance
(10 per cent, 836 TCEs), in each case maintaining the proportions
of planets to FPs. TCEs with no disposition form the ’unknown’ set
(24 201 TCEs).

3.6 Training set scenario distributions

The algorithms we are building fundamentally aim to derive the
probability that a given input is a member of one of the given training
sets. As such the membership, information in, and distributions of
the training sets are crucially important. The overall proportion
of FPs relative to planets is deliberately left to be incorporated as
prior information. We could attempt to include it by changing the
relative numbers within the confirmed planet and FP data sets, but
the number of objects in a training set is not trivially related to the
output probability for most machine learning algorithms.

Another consideration is the relative distributions of object param-
eters within each of the planet and FP data sets. This is where the
effect of, for example, planet radius on the likelihood of a given TCE

being a FP will appear. By taking the confirmed and FP classifications
of the koi-supp table as our input, we are implicitly building in any
biases present in that table into our algorithm. We note that the table
distribution is in part the real distribution of planets and FPs detected
by the Kepler satellite and the detection algorithms that created the
TCE and KOI lists. Incorporating that distribution is in fact desirable,
given we are studying candidates found using the same process, and
in that sense the Kepler set of planets and FPs is the ideal distribution
to use.

The distribution of Kepler detected planets and FPs we use will
however be biased by the methods used to label KOIs as planets and
FPs. In particular the majority of confirmed planets and many FPs
labelled in the KOI list have been validated by the VESPA algorithm
(∼50 per cent of the known KOI planets), and as such biases in that
algorithm may be present in our results. We compare our results
to the VESPA designations in Section 6.5, showing they disagree in
many cases despite this reliance on VESPA designations. The reliance
on past classification of objects as planet or FP is a weakness of
our method that we aim to improve in future work, using simulated
candidates from each scenario.

A further point is the balance of astrophysical to non-astrophysical
FPs in the training set. We can estimate what this should be using
the ratio of KOIs to TCEs, where KOIs are ∼30 per cent of the TCE
list, under the assumption that the majority of non-KOI TCEs are
non-astrophysical FPs. We use a 50 per cent ratio in our training set,
which effectively increases the weighting for the astrophysical FPs.
This ratio improves the representation of astrophysical FPs, which
is desirable given that non-astrophysical FPs are easy to distinguish
given a high enough signal-to-noise ratio. We impose a multiple
event statistic (MES) cut of 10.5 as recommended by Burke et al.
(2019) before validating any candidate to remove the possibility of
low signal-to-noise ratio instrumental FPs complicating our results.

4 MODEL SELECTI ON AND OPTI MI ZATIO N

Many machine learning methods are available, with a range of com-
plexity and properties. We perform empirical model selection using
the two input data sets. For the feature+SOM set, we implement
eight models with a range of parameters, testing a total of 822
combinations, using the SCIKIT-LEARN PYTHON module (Pedregosa
et al. 2011). The best parameters for each algorithm were selected by
comparing scores on the validation set. The trialled model parameters
are shown in Table 2, with the best found parameters highlighted.
The final performances of each model are given in Table 3, with and
without probability calibration that is described in Section 5.1, and
are measured using the log-loss metric (see e.g. Malz et al. 2019)
calculated on the test set. The log-loss is given by

Llog = − 1

N

N−1∑
i=0

(yi log(pi) + (1 − yi) log(1 − pi)), (5)

where yi is the true class label of candidate i, pi is its output classifier
score, and N is the number of test samples.

The utilized models are described in Section 2, but readers
interested in the other models are referred to the SCIKIT-LEARN

documentation and references therein (Pedregosa et al. 2011).
We found that while most tested models were highly successful,

the best performance after calibration was shown by a RFC. It is
interesting to see the relative success of even very simple models
such as linear discriminant analysis (LDA), implying the underlying
decision space is not overly complex. The overall success of the
models is not unexpected, as we are providing the classifiers with
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Table 2. Trialled model parameters. All combinations listed
were tested. Best parameters as found on the validation set are
in bold.

Model/parameter Options

GPC
n inducing points [16,32,64,128]
likelihood [bernoulli]
kernel [rbf,linear,matern32,matern52,

polynomial (order 2 and 3)]
ARD weights [True, False]
RFC
n estimators [300,500,1000,2000]
max features [5,6,7]
min samples split [2,3,4,5]
max depth [None,5,10,20]
class weight [balanced]
Extra trees
n estimators [300,500,1000,2000]
max features [5,6,7]
min samples split [2,3,4,5]
max depth [None,5,10,20]
class weight [balanced]
Multilayer perceptron
solver [adam,sgd]
alpha [1,1e-1,1e-2,1e-3,1e-4,1e-5]
hidden layer sizes [(10,),(15,),(20,),(5,5),(5,10)]
learning rate [constant,invscaling,adaptive]
early stopping [True,False]
max iter [2000]
Decision tree
max depth [10,20,30]
class weight [balanced]
Logistic
penalty [l2]
class weight [balanced]
QDA
priors [None]
K-NN
n neighbours [3,5,7,9]
metric

[minkowski,euclidean,manhattan]
weights [uniform,distance]
LDA
priors [None]

very similar information as was often used to classify candidates as
planets or FPs in the first place, and in the case of VESPA validated
candidates, we are adding more detailed light-curve information. We
proceed with the RFC as a versatile robust algorithm, supplementing
the results with classifications from the next two most successful
models, ET and MLP, to guard against overfitting by any one model.

For the feature+LC input data, we utilize a GPC to provide
an independent and naturally probabilistic method for comparison
and to guard against overconfidence in model classifications. We
implement the GPC using GPFLOW. The GPC is optimized varying the
selected kernel function, and final performance is shown in Table 3.
Additionally, we trial the GPC using variations of the input data –
with the feature+SOM data, light curve and a subset of features
(features+LC-light), and with the full feature+LC data set. We find
the results are not strongly dependent on input data set, and hence
use the feature+LC data set to provide a difference to the other
models. Fig. 5 shows the GPC adapting to the input transit data. The
underlying theory of a GPC was summarized in Section 2.2.

5 PLANET VALI DATI ON

5.1 Probability calibration

Although the GPC naturally produces probabilities as output p(s =
1| x∗), the other classifiers are inherently non-probabilistic models
and need to have their ad hoc probabilities calibrated (Zadrozny
& Elkan 2001, 2002; Niculescu-Mizil & Caruana 2005). Classi-
fier probability calibration is typically performed by plotting the
‘calibration curve’, the fraction of class members as a function of
classifier output. The uncalibrated curve is shown in Fig. 6, which
highlights a counterintuitive issue; the better a classifier performs,
the harder it can be to calibrate, due to a lack of objects being
assigned intermediate values. Given our focus is to validate planets,
we focus on accurate and precise calibration at the extreme ends,
where p(s = 1| x∗) < 0.01 or p(s = 1| x∗) > 0.99.

To statistically validate a candidate as a planet, the commonly
accepted threshold is p(s = 1|x∗) > 0.99 (Morton et al. 2016).
Measuring probabilities to this level requires the precision of our
calibration is also at least 1 per cent or better. We use the isotonic
regression calibration technique (Zadrozny & Elkan 2001, 2002),
which calibrates by counting samples in bins of given classifier
scores. To measure the fraction of true planets in the p(s = 1|x∗) >

0.99 bin we therefore require at least N = 10 000 test planets to
reduce the Poisson counting error

√
N/N below 1 per cent. Given

the size of our training set additional test inputs are required for
calibration.

To allow calibration at this precision, we synthesize additional
examples of planets and FPs from our training set, by interpolating
between members of each class. The process is only performed for
the feature+SOM data set, as the GPC does not need calibration. We
select a training set member at random, and then select another
member of the same class that is within the 20th percentile of
all the member-to-member distances within that class. Distances
are calculated by considering the Euclidean distance between the
values of each column for two class members. Restricting the
distances in this way allows for non-trivial class boundaries in the
parameter space. A new synthetic class member is then produced
by interpolating between the two selected real inputs. We generate
10 000 each of planets and FPs from the training set. These synthetic
data sets are used only for calibration, not to train the classifiers. The
calibrated classifier curves are shown in Fig. 7.

It is important to note that by interpolating, we have essentially
weakened the effect of outliers in the training data, at least for
the calibration step. For this and other reasons, candidates that are
outliers to our training set will not get valid classifications, and
should be ignored. We describe our process for flagging outliers in
Section 5.5. Interpolation also means that while we can attain the
desired precision, the accuracy of the calibration may still be subject
to systematic biases in the training set, which were discussed in
Section 3.6.

5.2 Classifier training

The GPC was trained using the training data with no calibration.
We used the GPFLOW (Matthews et al. 2017) PYTHON extension to
TENSORFLOW (Abadi et al. 2016), running on an Nvidia GeForce
GTX Titan XP GPU. On this architecture the GPC takes less than
1 min to train, and seconds to classify new candidates.

For the other classifiers, training and calibration were performed
on a 2017 generation iMac with four 4.2 GHz Intel i7 processors.
Training each model takes a few minutes, with classification of new
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Table 3. Best model performance on test set, ranked by calibrated log-loss. The GPC does not require external
calibration.

Model AUC Precision Recall Log-loss Calibrated log-loss

Gaussian process classifier 0.999 0.984 0.995 0.54 –
Random forest 0.999 0.981 0.997 0.58 0.54
Extra trees 0.999 0.985 0.992 0.58 0.58
Multilayer perceptron 0.997 0.982 0.985 0.83 0.66
K-nearest neighbours 0.997 0.995 0.972 0.83 0.66
Decision tree 0.958 0.979 0.984 0.95 0.74
Logistic regression 0.997 0.988 0.967 1.12 1.03
Quadratic discriminant analysis 0.989 0.983 0.970 1.16 1.20
Linear discriminant analysis 0.993 0.982 0.965 1.32 1.36

Figure 5. Top: local view of a planet light curve. Bottom: GPC automatic
relevance determination (ARD) length scales for each of the input bins in the
local view. Low length scales can be seen at ingress and egress, demonstrating
that the GPC has learned to prioritize those regions of the light curve when
making classifications.
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Figure 6. Top: calibration curve for the uncalibrated non-GP classifiers.
The black dashed line represents perfect calibration. Bottom: histogram of
classifications showing the number of candidates falling in each bin for each
classifier.
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Figure 7. Top: calibration curve for the calibrated non-GP classifiers.
The black dashed line represents perfect calibration. The two insets show
zoomed plots of the low and high ends of the curve. Bottom: histogram of
classifications showing the number of candidates falling in each bin for each
classifier. Synthetic training set members are included in this plot.

objects possible in seconds. To create calibrated versions of the other
classifiers, we employ a cross-validation strategy to ensure that the
training data can be used for training and calibration. The training set
and synthetic data set are split into 10-folds, and on each iteration a
classifier is trained on 90 per cent of the training data, then calibrated
on the remaining 10 per cent of training data plus 10 per cent of
the synthetic data. The process is repeated for each fold to create 10
separate classifiers, with the classifier results averaged to produce
final classifications.

The above steps suffice to give results on the validation, test, and
unknown data sets. We also aim to classify the training data set
independently, as a sanity check and to confirm previous validations.
To get results for the training data set we introduce a further layer of
cross-validation, with 20-folds. For the GPC this is the only cross-
validation, where the GPC is trained on 95 per cent of the training
data to give a result for the remaining 5 per cent, and the process
repeated to classify the whole training set. For the other classifiers
we separate 5 per cent of the training data before performing the
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above training and calibration steps using the remaining 95 per cent,
and repeat.

5.3 Positional probabilities

Part of the prior probability for an object to be a planet or FP, P(s|I),
is the probability that the signal arises from the target star, a known
blended star in the aperture, or an unresolved background star. We
derive these values using the positional probabilities calculated in
Bryson & Morton (2017), which provide the probability that the
signal arises from the target star Ptarget, the probability arises from a
known secondary source Psecondsource, typically another KIC target or
a star in the Kepler United Kingdom InfraRed Telescope (UKIRT)
survey,1 and the probability the signal arises from an unresolved
background star Pbackground. Bryson & Morton (2017) also considered
a small number of sources detected through high-resolution imaging;
we ignore these and instead take the most up to date results from the
robo-AO survey from Ziegler et al. (2018). The given positional
probabilities have an associated score representing the quality of the
determination; where this is below the accepted threshold of 0.3 we
continue with the a priori values given by Bryson & Morton (2017),
but do not validate planets where this occurs.

The calculation in Bryson & Morton (2017) was performed
without Gaia DR2 (Gaia Collaboration et al. 2018) information,
and so we update the positional probabilities using the new available
information. We first search the Gaia DR2 data base for any detected
sources within 25 arcsec of each TCE host star. We chose 25 arcsec
as this is the limit considered for contaminating background sources
in Bryson & Morton (2017). Gaia sources that are in the KIC
(identified in Berger et al. 2018), in the Kepler UKIRT survey, or in
the new robo-AO companion source list are discarded as these were
either accounted for in Bryson & Morton (2017) or are considered
separately in the case of robo-AO.

We then check for each TCE whether any new Gaia or robo-AO
sources are bright enough to cause the observed signal, conserva-
tively assuming a total eclipse of the blended background source.
If there are such sources, we flag the TCE in our results and adjust
the probability of a background source causing the signal Pbackground

to account for the extra source, by increasing the local density of
unresolved background stars appropriately and normalizing the set
of positional probabilities given the new value of Pbackground. It would
be ideal to treat the Gaia source as a known second source, but
without access to the centroid ellipses for each candidate we cannot
make that calculation. We do not validate TCEs with a flag raised for
a detected Gaia or robo-AO companion, although we still provide
results in Section 6.

5.4 Prior probabilities

To satisfy equation (1) we need the prior probability of a given
candidate being a planet or FP, P(s|I), independently of the candidate
parameters. This prior probability for the planet scenario is given by

P (s = 1|I ) = Ptargetfplanetftransit, (6)

where Ptarget is the probability of a signal arising from the host star and
was calculated in Section 5.3, fplanet is the probability of a randomly
chosen star hosting a planet that Kepler could detect, and ftransit

represents the probability of that planet transiting, on average over
the Kepler candidate distribution. The product fplanetftransit represents

1https://keplerscience.arc.nasa.gov/community-products.html

the probability that a randomly chosen Kepler target star hosts a
planet that could have been detected by the Kepler pipeline. We
derive the product fplanetftransit using the occurrence rates calculated
by Hsu et al. (2018), for planets with periods less than 320 d and
radii between 2 and 12 R⊕. We take each occurrence rate bin in their
paper, calculate the eclipse probability for a planet in the centre of
the bin to transit a solar host star, and sum the resulting probabilities
to get a final product fplanetftransit = 0.0308. The effect of specific
planet radius, period, and host star is included in the classification
models.

We consider several FP scenarios and sum their probabilities to
give the overall prior for FPs. We take

P (s = 0|I ) = P (FP-EB) + P (FP-HEB) + P (FP-HTP)

+P (FPresolved) + P (FP-BEB) + P (FP-BTP)

+P (FPnon-astro), (7)

where P(FP-EB) is the prior for an eclipsing binary on the target
star, P(FP-HEB) is the prior for a hierarchical eclipsing binary,
i.e. a triple system where the target star has an eclipsing binary
companion causing the signal, and P(FP-HTP) is the prior for
a hierarchical transiting planet, i.e. a planet transiting the fainter
companion in a binary system. P(FPresolved) is the prior for a
transiting planet, eclipsing binary, or hierarchical eclipsing binary on
a resolved non-target star. We disregard hierarchical transiting planets
on second known sources as contributing insignificantly towards the
FP probability. P(FP-BEB) and P(FP-BTP) are the priors for an
eclipsing binary or a transiting planet on an unresolved background
star. P(FPnon-astro) is the prior for an instrumental or otherwise
non-astrophysical source of the signal. We do not consider planets
transiting the target star to be FPs even in the case where other stars,
bound or otherwise, are diluting the signal. In our methodology
these priors are independent of the actual orbital period of the
contaminating binary, and so TCE FPs where the FP is an eclipsing
binary with half the actual binary orbital period, as seen in Morton
et al. (e.g. 2016), are covered by the same priors.

For the scenario-specific priors,

P (FP-EB) = Ptargetfclose-binaryfeclipse, (8)

P (FP-HEB) = Ptargetfclose-triplefeclipse, (9)

P (FP-HTP) = Ptargetfbinaryfplanetftransit, (10)

P (FPresolved) = Psecondsource(fclose-binaryfeclipse

+ fclose-triplefeclipse + fplanetftransit), (11)

P (FP-BEB) = Pbackground(fclose-binaryfeclipse), (12)

P (FP-BTP) = Pbackground(fplanetftransit), (13)

where Ptarget, Psecondsource, and Pbackground were derived in Section 5.3.
We discuss each prior in turn.

5.4.1 P(FP-EB)

To calculate P(FP-EB) we need the probability of a randomly
chosen star being an eclipsing binary with an orbital period P
that Kepler could detect. We calculate the product fclose-binaryfeclipse

using the results of Moe & Di Stefano (2017). We integrate their
occurrence rate for companion stars to main-sequence solar-like
hosts as a function of log P (their equation 23) multiplied by the
eclipse probability at that period for a solar host star. We consider
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companions with log P < 2.5 (P < 320 d) and mass ratio q >

0.1, correcting from the q > 0.3 equation using a factor of 1.3 as
suggested. The integration gives fclose-binaryfeclipse = 0.0048, which is
strikingly lower than the planet prior, primarily due to the much lower
occurrence rate for close binaries. Ignoring eclipse probability, we
find the frequency of solar-like stars with companions within 320 d
to be 0.055 from Moe & Di Stefano (2017). It is often stated that
∼50 per cent of stars are in multiple systems, but this fraction is
dominated by wide companions with orbital periods longer than
320 d. This calculation implicitly assumes that any eclipsing binary
in this period range with mass ratio greater than 0.1 would lead to a
detectable eclipse in the Kepler data.

5.4.2 P(FP-HEB)

The probability that a star is a hierarchical eclipsing binary depends
on the triple star fraction. In our context the product fclose-triplefeclipse

is the probability for a star to be in a triple system, where the close
binary component is in the background, has an orbital period short
enough for Kepler to detect, and eclipses. The statistics for triple
systems of this type (A-(Ba,Bb)) are extremely poor (Moe & Di
Stefano 2017) due to the difficulty of reliably detecting additional
companions to already lower mass companion stars. If we assume
that one of the B components is near solar mass, then we can
use the general close companion frequency, which is the same as
fclose-binaryfeclipse, multiplied by an additional factor to account for an
additional wider companion. We use the fraction of stars with any
companion from Moe & Di Stefano (2017), which is fmultiple = 0.48.
As such we take fclose-triplefeclipse = fmultiplefclose-binaryfeclipse. Again this
calculation implicitly assumes that any such triple with mass ratios
greater than 0.1 to the primary star would lead to a detectable eclipse
in the Kepler data.

5.4.3 P(FP-HTP)

Unlike the stellar multiple cases it is unlikely that all background
transiting planets would produce a detectable signal in the Kepler
data. Estimating the fraction that do is complex and would require an
estimate of the transit depth distribution for the full set of background
transiting planets. Instead we proceed with the assumption that all
such planets would produce a detectable signal if in a binary system,
but not in systems of higher order multiplicity. fbinary = 0.27 from
Moe & Di Stefano (2017) for solar-like primary components, which
is largely informed by Raghavan et al. (2010). fplanetftransit = 0.0308
as calculated above. Note that we do not include any effect of
multiplicity on the planet occurrence rate.

All necessary components for the remaining priors have now been
discussed, although we again note that the implicit assumption that
all scenarios could produce a detectable transit.

5.4.4 P(FPnon-astro)

P(FPnon-astro) is difficult to calculate, and so we follow Morton
et al. (2016) in setting it to 5e-5. Recent work has suggested that
the systematic false alarm rate is highly important when considering
long-period small planetary candidates (Burke et al. 2019) and can
be the most likely source of FPs for such candidates. The low prior
rate for non-astrophysical FPs used here is justified because we apply
a cut on the MES of 10.5 as recommended by Burke et al. (2019),
allowing only significant candidates to be validated. At such an MES,
the ratio of the systematic to planet prior is less than 10−3 (Burke

et al. 2019, their fig. 3), which translates to a prior of order 10−5

when applied to our planet scenario prior.

5.4.5 Prior information in the training set

Note that the probability of the signal arising from the target star is
included in our scenario prior as Ptarget. As some centroid information
is included in the training data the classifiers may incorporate the
probability of the signal arising from the target star internally. As
such we are at risk of double counting this information in our
posterior probabilities. We include positional probabilities in P(s|I)
because the probabilities available from Bryson & Morton (2017)
include information on nearby stars and their compatibility with the
centroid ellipses derived for each TCE. This is more information
than we can easily make available to the classifiers, and additionally
improves interpretability by exposing the positional probabilities
directly in the calculation. Removing centroid information from
the classifiers would artificially reduce their performance. Including
prior information on the target in both the classifiers and external
prior is the conservative approach, because a significant centroid
offset, or low target star positional probability, can only reduce the
derived probability of a TCE being a planet.

5.5 Outlier testing

Our method is only valid for ‘inliers’, candidates that are well
represented by the training set and that are not rare or unusual. We
perform two tests to flag outlier TCEs, using different methodologies
for independence.

The first considers outliers from the entire set of TCEs, to avoid
mistakenly validating a candidate that is a unique case and hence
might be misinterpreted. We implement the local outlier factor
method (Breunig et al. 2000), which measures the local density of
an entry in the data set with respect to its neighbours. The result is
a factor that decreases as the local density drops. If that factor is
particularly low, the entry is flagged as an outlier. We use a default
threshold of −1.5 that labels 391 (1.2 per cent) of TCEs as outliers,
108 of which were KOIs. The local outlier factor is well suited to
studying the whole data set as it is an unsupervised method that
requires no separate training set.

The second outlier detection method aims to find objects that
are not well represented in the training set specifically. In this case
we implement an isolation forest (Liu, Ting & Zhou 2008) with
500 trees, which is trained on the training set then applied to the
remaining data. Fig. 8 shows the distribution of scores produced
from the isolation forest, where lower scores indicate outliers. The
majority of candidates show a normal distribution, with a tail of
more outlying candidates. We set our threshold as −0.55 based on
this distribution, which flags 1979 (6.1 per cent) of TCEs as outliers,
932 of which were KOIs.

5.6 External flags

Some information is only available for a small fraction of the sample,
and hence is hard to include directly in the models. In these cases, we
create external flags along with our model scores, and conservatively
withhold validation from planets where a warning flag is raised.

As described in Section 5.3, we flag TCEs where either Gaia DR2
or robo-AO has detected a previously unresolved companion in the
aperture bright enough to cause the observed TCE. The robo-AO flag
supersedes the gaia flag, in that if a source is seen in robo-AO we
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Figure 8. Top: isolation forest outlier score for all TCEs in blue and KOIs
in orange. The red dashed line represents the threshold for outlier flagging.
Bottom: as top for local outlier factor. In both case outliers have more negative
scores.

will not raise the Gaia flag for the same source. We also flag TCEs
where the host star has been shown to be evolved in Berger et al.
(2018) using the Gaia DR2 data, and include the Berger et al. (2018)
binarity flag that indicates evidence for a binary companion from
either the Gaia parallax or alternate high-resolution imaging.

5.7 Training set coverage

It is crucial to be aware of the content of our training set: planet types
or FP scenarios that are not represented will not be well distinguished
by the models. The training set here is drawn from the real detected
Kepler distribution of planets and FPs, but potential biases exist for
situations that are hard to disposition confidently. For example, small
planets at low signal-to-noise ratio will typically remain as candidates
rather than being confirmed or validated, and certain difficult FP
scenarios such as transiting brown dwarfs are unlikely to be routinely
recognized. In each case, such objects are likely to be more heavily
represented in the unknown, non-dispositioned set.

For planets, we have good coverage of the planet set as a whole, as
this is the entire confirmed planet training set, but planets in regions of
parameter space where Kepler has poor sensitivity should be viewed
with suspicion.

For FPs, our training set includes a large number of non-
astrophysical TCEs, giving good coverage of that scenario. For astro-
physical FPs, we first make sure our training set is as representative
as possible by including externally flagged FPs from Santerne et al.
(2016). These cases use additional spectroscopic observations to
mark candidates as FPs. However the bulk of small Kepler candidates
are not amenable to spectroscopic follow-up due to their stellar
brightness. Utilizing the FP flags in the archive as an indicator of the
FP scenario, we have 2147 FPs showing evidence of stellar eclipses,
and 1779 showing evidence of centroid offset and hence background
eclipsing sources. 1087 show ephemeris matches, an indicator of a
visible secondary eclipse and hence a stellar source. As such we have
a wide coverage of key FP scenarios.

It would be ideal to probe scenario by scenario and test the models
in this fashion. Future work using specific simulated data sets will be
able to explore this in more detail. Rare and difficult scenarios such as
background transiting planets and transiting brown dwarfs are likely
to be poorly distinguished by our or indeed any comparable method.
In rare cases such as background transiting planets, which typically

have transits too shallow to be detected, the effect on our overall
results will be minimal. We note that these issues are equally present
for currently utilized validation methods, and VESPA, for example,
cannot distinguish transiting brown dwarfs from planets (Morton
et al. 2016).

6 R ESULTS

Our classification results are given in Table 4. The table contains
the classifier outputs for each TCE, calibrated if appropriate, as well
as the relevant priors and final posterior probabilities adjusted by
the priors. Several warning flags are included representing outliers,
evolved host stars, and detected close companions. Table A1 shows
the subset of Table 4 for KOIs, and includes KOI specific information
and VESPA probabilities calculated for DR25.

6.1 Previously dispositioned objects

To sanity check our method we consider the results of already
dispositioned TCEs. For this testing we focus on the GPC results.
There are two planets in the confirmed training set that score
<0.01 in the GPC after applying the prior information. These are
KOI 2708.01 and KOI 00697.01. Despite being labelled as confirmed
in the NASA Exoplanet Archive KOI 2708.01 is actually a certified
FP, due a high level period match. This status is reflected in the
positional probabilities, which give a relative probability of zero that
the TCE originates from the host star. KOI 00697.01 also has a
positional probability indicating that the transit actually arises from
a background star with high confidence, >0.9999. It is clear that both
KOIs should be labelled FP.

There is also one KOI labelled as a FP that gains a score of >0.99
in the GPC, KOI 3226.01. This KOI has a flag raised for having a
‘not-transit-like’ signal. Visual inspection of the KOI shows stellar
variability on a similar level to the transit signal, which may be
distorting the transit signal on a quarter-by-quarter basis. The transits
are however still evident in the light curve, and do not otherwise
appear suspicious. We do not validate KOI 03226.01, but our results
indicate that its disposition may need to be reconsidered.

6.2 Non-KOI TCEs

We additionally consider high-scoring TCEs that are not in the KOI
list to see if any merit further consideration. Nine TCEs score >0.99
in the GPC while passing our other checks. In each case the TCE
was associated with the secondary eclipse of another TCE. For these
TCEs, the Kepler transiting planet search found the first TCE that
was removed and the light curve searched again. In these cases the
secondary eclipse of the original TCE remained in the light curve,
and was ‘discovered’ as an additional TCE. It appears metrics such as
secondary eclipse depth were calculated after removing the primary
eclipse, and so these ‘secondary’ TCEs give all the indications of
being planetary candidates. Such TCEs do not become KOIs and
so would not be in danger of being mislabelled as validated planets.
They highlight the dangers of poor information, in this case erroneous
secondary eclipse measurements, both to our and other validation
methods.

Overall the non-KOI TCEs have a mean GPC derived planet
probability of 0.018, and a median of 0.002, as expected given these
were not considered viable KOIs.
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Table 4. Classification results. This table describes the available columns. Full table available online.

Column Description

tce id Identifier composed by (KIC ID) (TCE planet number)
GPC score Score from the GPC before priors are applied
MLP score Calibrated score from the MLP model before priors are applied
RFC score Calibrated score from the RFC before priors are applied
ET score Calibrated score from the ET model before priors are applied
PP GPC Planet probability from the GPC including priors
PP RFC Planet probability from the RFC including priors
PP MLP Planet probability from the MLP model including priors
PP ET Planet probability from the ET model including priors
planet Normalized prior probability for the planet scenario
targetEB Normalized prior probability for the eclipsing binary on target scenario
targetHEB Normalized prior probability for the hierarchical eclipsing binary scenario
targetHTP Normalized prior probability for the hierarchical transiting planet scenario
backgroundBEB Normalized prior probability for the background eclipsing binary scenario
backgroundBTP Normalized prior probability for the background transiting planet scenario
secondsource Normalized prior probability for any FP scenario on a known other stellar source
nonastro Normalized prior probability for the non-astrophysical/systematic scenario
Binary Berger et al. (2018) binarity flag (0 = no evidence of binarity)
State Berger et al. (2018) evolutionary state flag (0 = main sequence, 1 = subgiant, 2 = red giant)
gaia Flag for new Gaia DR2 sources within 25 arcsec bright enough to cause the signal (Section 5.3)
roboAO Flag for robo-AO detected sources from Ziegler et al. (2018) bright enough to cause the signal
MES Multiple event statistic (MES) for the TCE. Results are valid for MES > 10.5
outlier score LOF Outlier score using local outlier factor on whole data set (Section 5.5)
outlier score IF Outlier score using isolation forest focused on training set (Section 5.5)
class Training set class, if any. 0 = confirmed planets, 1 = astrophysical FPs, 2 = non-astrophysical FPs

Table 5. GPC scores by KOI radius and multiplicity.

Selection Number GPC P Planet
Mean Median

All 7048 0.474 0.379
KOI singles 6148 0.296 0.013
KOIs in multiple systems 1906 0.825 0.994
Rp ≥ 15 R⊕ 1558 0.029 0.006
10 ≤ Rp < 15 R⊕ 323 0.295 0.063
4 ≤ Rp < 10 R⊕ 824 0.351 0.029
2 ≤ Rp < 4 R⊕ 2482 0.666 0.982
Rp < 2 R⊕ 2867 0.456 0.360

6.3 Dependence on candidate parameters

We investigate our model dependence on candidate parameters using
the KOI list, discounting outliers as described in Section 5.5 but
including KOIs with other warning flags. We focus on the planet
probability as calculated by the GPC.

Table 5 shows the average planet probability including priors for
KOIs based on planet radius and multiplicity, and demonstrates that
KOIs in multiple systems score highly as would be expected from
past studies of the effect of multiplicity on Kepler FP occurrence
rates. The high score of KOIs in multiple systems occurs despite no
information on multiplicity being passed to the models. Table 5 also
shows that the GPC planet probability decreases for giant planets,
in agreement with previous studies showing the rate of FPs is larger
for giant planet candidates (Santerne et al. 2016). Fig. 9 shows the
median scores for KOIs of different radii and orbital period.

6.4 Comparison to Santerne et al. (2016)

Santerne et al. (2016) provided dispositions of some Kepler candi-
dates using independent data. The mean and median planet probabil-

Figure 9. Mean GPC planet probability for KOIs binned in log planet radius
and orbital period. Bins with no TCEs are white. Giant planets, and those
at particularly long or short periods, are more likely to be classed as FPs.
The GPC has more confidence in candidates in well-populated regions of
parameter space, and loses confidence on average in KOIs that are near the
limits of the Kepler sensitivity in the lower right section of the figure.

ities from the GPC are shown for each disposition type in Santerne
et al. (2016) in Table 6, including planets, brown dwarfs (BDs),
eclipsing binaries (EBs), contaminating eclipsing binaries (CEBs),
and unknowns.

We achieve a high score for planets and low scores for EBs and
CEBs. BDs are also scored highly, indicating we are insensitive to
that FP scenario similarly to VESPA (Morton et al. 2016), although in
our case the BDs score lower and well below the validation threshold.
Typically our model is less confident of giant planets (Table 5) and
this guards against the inaccurate validation of brown dwarfs. We
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Table 6. GPC planet probabilities for Santerne et al.
(2016) dispositioned KOIs.

Selection Number GPC P Planet
Mean Median

Planets 44 0.711 0.808
EBs 48 0.166 0.100
CEBs 15 0.163 0.045
BDs 3 0.908 0.910
Unknown 18 0.688 0.717

Figure 10. Comparison of GPC scores before application of priors and VESPA

false positive probabilities (FPPs). We plot 1 − FPPVESPA to allow direct
comparison. Confirmed planets are orange circles, FPs are blue tringles, and
undispositioned candidates are green stars. Significant divergence is seen,
although the GPC and VESPA agree in 73 per cent of cases.

hypothesis that this is also why the Santerne et al. (2016) planets
score relatively lower than the general confirmed planet case, as they
are larger than the average KOI.

6.5 Comparison to VESPA

Fig. 10 shows the GPC scores as compared to the false positive
probability (FPP) calculated by VESPA (Morton et al. 2016). We
use the updated VESPA FPPs available at the NASA Exoplanet
Archive for DR25, and consider only KOIs that pass our outlier
checks. The DR25 VESPA FPP scores have not been published in
their own paper and hence have not been used to update planet
dispositions in the Exoplanet Archive, despite being available there.
GPC scores are plotted before application of prior information to
allow a more direct comparison, as the VESPA probabilities available
on the NASA Exoplanet Archive appear not to include updated posi-
tional probability information. Although the plot appears remarkably
divergent we highlight that in 73 per cent of cases the classification
is the same using a threshold of 50 per cent. Both methods tend to
confidently classify candidates as planets or FPs, with intermediate
values sparsely populated. Furthermore, candidates that do receive
intermediate scores show no correlation between the methods. As
such we caution against using such intermediate candidates for
occurrence rate studies, even if weighting by the GPC score or VESPA

FPP would appear to be statistically valid.
The methods also strongly disagree in a small but significant

number of cases. Fig. 11 shows a zoom of each corner of Fig. 10. The
GPC gives 31 non-outlier KOIs a probability ≥0.99 of being a planet
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Figure 11. As Fig. 10 showing a zoom of each corner. The banding in the
lower left-hand panel is due to the reported precision of VESPA results.

Figure 12. GPC scores as compared to the RFC (blue), ET (orange), and
MLP (green). The median scores of 20 evenly distributed bins are overplotted.
The GPC is typically more conservative when making classifications than the
other models, leading to the visible trend.

where the VESPA FPP shows a false positive probability of ≥0.99, 24
of which are confirmed planets. In the other corner, the GPC classifies
399 non-outlier KOIs as strong FPs (probability ≤0.01) where the
VESPA FPP shows a false positive probability ≤0.01, apparently
validating them. 375 of these KOIs are designated FPs. For these
cases our GPC appears to be more reliable, potentially as it is trained
on the full Kepler set of FPs rather than limited to specific scenarios
that may not fully explore unusual cases, or reliably account for the
candidate distributions in the Kepler candidate list. A study of some
of these discrepant cases in detail did not reveal any typical mode
for these VESPA failures, and included clear stellar eclipses, centroid
offsets, ghost halo pixel-level systematics, and ephemeris matches.
Overall the comparison highlights the value of independent methods
for planet validation, and we recommend extreme caution is used
when validating planets, ideally avoiding using a single method.

6.6 Intermodel comparison

As our framework considers four separate models we can compare
the results of these. Fig. 12 shows the output classifier scores
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Table 7. New validated planets. Full table available online.

Planet KOI KIC Period Rp GPC RFC MLP ET vespa fppa P targetb Pos. scoreb

(d) (R⊕)

Kepler-1663b K00252.01 11187837 17.605 3.30 0.9985 1.0000 0.9994 1.0000 0.00001 1.0 1.0
Kepler-1664b K00349.01 11394027 14.387 3.03 0.9985 1.0000 0.9971 1.0000 0.00492 1.0 1.0
Kepler-598c K00555.02 5709725 86.494 3.02 0.9994 0.9986 1.0000 1.0000 0.00989 1.0 1.0
Kepler-1665b K00650.01 5786676 11.955 2.84 0.9985 1.0000 0.9990 1.0000 0.00288 1.0 1.0
Kepler-647c K00691.01 8480285 29.666 4.00 0.9995 1.0000 1.0000 1.0000 0.00000 1.0 1.0
Kepler-716c K00892.02 7678434 3.970 1.39 0.9904 0.9916 0.9993 0.9980 0.00574 1.0 0.44
...

...
...

...
...

...
...

...
...

...
...

...

aNew VESPA FPP values calculated using the Gaia parallax and our photometry. Validated planets should have a low value, unlike the other columns.
bProbability on target and positional score from Bryson & Morton (2017).

Table 8. KOIs with >0.99 probability of being a planet from our models where an updated VESPA calculation does not agree. Full table available online.

KOI KIC Period Rp GPC RFC MLP ET vespa fppa P targetb Pos. scoreb

(d) (R⊕)

K00092.01 7941200 65.705 3.13 0.9933 0.9991 0.9979 1.0000 0.19300 1.0 1.0
K00247.01 11852982 13.815 2.29 0.9988 1.0000 0.9984 1.0000 0.02470 1.0 1.0
K00427.01 10189546 24.615 3.81 0.9917 1.0000 0.9968 1.0000 0.10000 1.0 0.5
K00599.01 10676824 6.454 2.72 0.9985 1.0000 0.9981 1.0000 0.05210 1.0 1.0
K00704.01 9266431 18.396 2.50 0.9986 0.9997 0.9984 0.9998 0.01210 1.0 1.0
K00810.01 3940418 4.783 2.89 0.9994 0.9966 0.9999 1.0000 0.03300 1.0 1.0
...

...
...

...
...

...
...

...
...

...
...

aNew VESPA FPP values calculated using the Gaia parallax and our photometry. Validated planets should have a low value, unlike the other columns.
bProbability on target and positional score from Bryson & Morton (2017).

before applying prior probabilities for KOIs that pass our outlier
checks. Although the models typically agree on a classification,
there is still significant spread in the exact values, and the GPC
in particular tends to be more conservative in its classifications than
the other classifiers, as it is an inherently probabilistic framework
and so more comprehensively considers probabilities across the
range. Spread in intermediate values is expected, as the probability
calibration is known to be poorly determined there due to a small
number of samples. The observed spread highlights the importance
of only validating planets where all models agree, and the dangers
in building machine learning planet validation tools relying on only
one classifier.

6.7 Newly validated planets

We set stringent criteria to validate additional TCEs as planets. We
require each of the four classifiers to cross the standard validation
threshold of 0.99, representing a less than 1 per cent chance of being
a FP. The TCE must also be a KOI, the evolutionary state flag from
Berger et al. (2018) must not show a subgiant or giant host star, both
outlier flags must not be set, the binary flag from Berger et al. (2018)
derived from Gaia DR2 and robo-AO must not show evidence for a
binary, there must be no sufficiently bright new detected Gaia DR2
or robo-AO companions as described in Section 5.3, the MES of
the TCE must be greater than 10.5 to avoid a high systematic false
alarm chance, and the score representing the quality of the positional
probabilities calculated in Bryson & Morton (2017) must be higher
than 0.3 indicating a good positional fit. Although the positional
probability that the host star is the source of the transit signal is
incorporated in our priors, we additionally require validated KOIs
to have a relative probability of being on the target star of at least
0.95.

83 KOIs passed these criteria and were not already validated or
confirmed. As a sanity check we reran VESPA on these objects using
our transit photometry and Gaia parallax information. 50 of the
83 KOIs obtained a less than 1 per cent chance of being a FP
using these updated VESPA results. Given the above discrepancies
between our models and VESPA, we take the cautious approach of
only newly validating planets that agree between both methods, at
least until the discrepancies are more fully understood. We do note
that in Section 6.5, serious discrepancies between our models and
VESPA were almost entirely resolved in favour of our models by the
independent Kepler pipeline designations. The 50 validated planets
are listed in Table 7, and the 33 candidates for which there is still
disagreement in Table 8. 15 of the 83 high-probability candidates are
in systems that already host a confirmed or validated planet. We plot
the 83 planets in Fig. 13 against the context of known Kepler planets
and candidates.

7 D ISCUSSION

Statistical exoplanet validation remains a key part of the exoplanet
discovery process, originally to accommodate faint Kepler host stars
where the potential for independent follow-up was low but continuing
with TESS to aid discovery for difficult or time consuming candidates
(Quinn et al. 2019; Vanderburg et al. 2019). The planet validation
literature is dominated by a small number of methods, only one of
which, VESPA, is regularly used, relatively fast to run and available
publicly. An accurate set of confirmed and validated exoplanets is
crucial for many fields of research, including planet architecture,
formation, and population synthesis. As such, alternative validation
methods that are fast to run are highly valuable. Our methodology
has been demonstrated on the Kepler data set and will be developed
to work more generally, particularly with TESS data.

MNRAS 504, 5327–5344 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/504/4/5327/5894933 by guest on 24 April 2024



Machine-learned planet validation 5341

Figure 13. KOIs that pass our validation steps (orange stars) in the context
of Kepler candidate and confirmed planets (blue dots). Known FPs are not
plotted.

7.1 Caveats and limitations

There are several implicit assumptions and limitations to our method-
ology, which we summarize here.

(i) Training set coverage. A fundamental part of the machine
learning models we are using is the use of a training set. By
using this set, we are implicitly assuming that candidates are not
overwhelmingly members of a scenario not represented in the FP
training set, or some other rare case that is not expected or understood.
The coverage of the training set for typical scenarios is discussed in
Section 5.7.

(ii) Quality of input data and parameter accuracy. All inputs to the
models are treated in the same way, and hence systematic biases in the
input data are not critically important where they affect all candidates
equally. Biases associated with one particular scenario are similarly
not critical if they affect all instances of that scenario equally. Issues
with single candidates are however a potential problem, and an
individual tested candidate with bad input values may lead to bad
scores.

(iii) Reliance on previous dispositions. Our method builds on
previous efforts to disposition Kepler candidates as planets or FPs.
In particular a large fraction of the known Kepler planets come
from VESPA validations, which means we are potentially building in
the same biases. This effect is mitigated by also using non-VESPA

dispositions and updating our inputs with the latest Gaia, Kepler,
and positional probability results, and Section 6.5 shows we are
producing independent results to VESPA. Further, we are implicitly
assuming that the majority of confirmed planets really are planets,
and the same for FPs.

(iv) Outlier or anomalous candidates. Our models are only valid
for candidates that lie in well-represented parts of the input parameter
space. Scores for outliers are potentially invalid. This is a clear but
well-understood limitation, and outliers are flagged in Section 5.5.

(v) Calibration precision. Three of our four models require a
probability calibration step, which is only as precise as the number
of samples used for calibration allows. We have reached theoretical
precisions of 1 per cent in the 0–0.01 and 0.99–1 probability ranges,
but intermediate values should be treated with caution, as most tested
candidates are given scores at the extreme ends of the scale. Any
reader looking to use intermediate scores for their work should use

the GPC results only that do not depend on calibration, and should
take care in any case given the discussion in Section 6.5.

(vi) Planet multiplicity. No adjustment has been made for can-
didates in multiple systems, due to the complexity of the resulting
probabilities and the difficulty of ascertaining how many TCEs on
a given star are likely planets, and hence should be counted in any
multiplicity effects. However, the models do find higher scores for
candidates in multiple systems, even without applying a ‘multiplicity
boost’.

(vii) Specificity to Kepler. This work is built and tested for Kepler,
and we warn against casual application to other data sets such as
TESS. The method should work in principle but detailed care needs
to be taken to work with the above limitations, and build a suitable
training set. In this work, we can use the actual distribution of
Kepler discoveries; for future less mature missions care must be
taken when simulating training sets to use appropriate distributions.
We also use outputs of the Kepler pipeline, which would be hard
to exactly recreate. None the less, it should be relatively simple to
create statistics containing the same information, such as tests of the
secondary eclipse depth, for other missions, and such statistics are
standard outputs of most current vetting procedures (Kostov et al.
2019).

(viii) Intermodel divergence. Section 6.6 showed that our four
models show a significant spread in output probabilities for a given
KOI. It is important in future similar work to use multiple models
to confirm a validation decision and guard against overreliance on a
single model. The divergence also highlights that intermediate FPP
values should be treated with caution, as already evident by the
comparison with VESPA and the calibration issues discussed above.

7.2 Comparison to other methods

There are two lines of past work relevant to our method. The first is
previous efforts at planet validation, the key comparable example
of which is the VESPA algorithm. Our results were compared to
VESPA in Section 6.5, but we discuss the methodological differences
here. In particular, VESPA uses a least-squares fit of a trapezoid
model to the TCE light curve to perform scenario model comparison
between several defined planet and FP scenarios, in combination
with stellar parameters and other auxiliary information. In our
method the model comparison is performed by the machine learning
algorithms, with the models defined by the input training set. Our
light-curve representation is more complex, being either a SOM-
based dimensional reduction of the light curve or a direct binned view
of the transit, depending on the model used. We use the same auxiliary
data, bolstered by other outputs of the Kepler transiting planet search
as detailed in Section 3. Particular additions over VESPA include pixel
level diagnostics such as ghost halo issues, detailed information on
transit shape capable of identifying known systematic shapes, and
ephemeris matches.

Our method incorporates several improvements available due to
recently released data sets or new understanding of the key issues. In
particular we incorporate the non-astrophysical FP scenario directly
in the model comparison by including a large group in our training
set, accounting for systematic false alarms as warned in Burke et al.
(2019). VESPA as described in Morton et al. (2016) accounted for non-
astrophysical false alarms using a statistic calculated on the transit
shape that was applied separately. Our models also run extremely
quickly, and can classify the entire TCE catalogue of ∼34 000
candidates in minutes on a typical desktop once trained and auxiliary
data calculated. We have included the latest Gaia DR2 information
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on the host stars and blended companions, and the latest catalogue
of robo-AO detected companions (Ziegler et al. 2018).

The other less common but still actively used planet validation
algorithm is PASTIS (Dı́az et al. 2014; Santerne et al. 2015). PASTIS

performs model comparison via direct Markov chain Monte Carlo
(MCMC) fits to potentially multicolour light-curve data and the
stellar spectral energy distribution considering each FP scenario in
turn, and as such is the gold standard. The downside is that PASTIS is
slow to run and can only be applied to individual candidates in some
cases. Our model is much faster to run, although simplified.

The second line of comparison is previous attempts to classify
planet candidates as FPs using machine learning methods. With
the advent of large data sets such work is increasingly common,
and classifiers have been built for Kepler (McCauliff et al. 2015;
Ansdell et al. 2018; Shallue & Vanderburg 2018; Caceres et al.
2019), K2 (Armstrong et al. 2017; Dattilo et al. 2019), TESS (Yu
et al. 2019; Osborn et al. 2020), Next Generation Transit Survey
(NGTS; Armstrong et al. 2018; Chaushev et al. 2019), and Wide
Angle Search for Planets (WASP; Schanche et al. 2019). For the
Kepler data set, Caceres et al. (2019) built a random forest model
to find good candidates among the results from their ‘autoregressive
planet search’ algorithm, achieving an area-under-curve (AUC) of
0.997 in classifying planet candidates against FPs. Shallue & Van-
derburg (2018) used a convolutional neural net for a similar purpose,
achieving an AUC of 0.988 and again aiming to separate candidates
from FPs using a different planet search method. Measured by AUC,
the best past performance on Kepler candidates was in McCauliff
et al. (2015), who achieved an AUC of 0.998 using an RFC when
separating planets from FPs of any type. The key step we take in
this work beyond those or other previous attempts to identify planets
among candidate signals is to focus on separating true planets, as
opposed to just planetary candidates, from FPs in the candidate set
probabilistically. We also introduce a GPC for exoplanet candidate
vetting for the first time. Although our goals are different and so not
strictly comparable, the AUC metrics from our GPC, RFC, ET, and
MLP models are 0.999, 0.999, 0.999, and 0.998, respectively, when
separating confirmed planets from FPs.

7.3 Future work

For both planets and FPs, we hypothesize that a rigorous set of
simulated objects will allow detailed model testing and improved
training with increased training set size and coverage, and intend
to introduce these improvements in a later work. Such a sample
will allow detailed scenario by scenario comparison and give a
deeper understanding of the strengths and weaknesses with respect
to specific scenarios. Utilizing the direct distribution of discovered
Kepler planets and FPs does however have the advantage that the
distribution is available to inform our models, implying that difficult
to distinguish FP scenarios that are none the less intrinsically rare
will not bias the results.

In line with utilizing simulated training sets, we intend to build a
codebase to make the method publicly accessible. We have not made
the code from this work public as it is specific to the Kepler pipeline
and DR25 data release, the results for which we publish here. We aim
to release a more general code applicable to TESS or other mission
data in future.

8 C O N C L U S I O N

We have developed a new planet validation framework utilizing
several machine learning models. Our method has proved successful

and able to validate planets rapidly. The potential use cases extend
beyond planet validation to candidate vetting and prioritization,
crucial given the data rate of current and upcoming surveys.

This work represents the first time to our knowledge that a large-
scale comparison of validation methods, specifically to the popular
VESPA algorithm, has been attempted. The resulting discrepancies
seen in Section 6.5 are concerning given the high fraction of known
planets discovered using validation techniques. As a consequence,
we strongly caution against validating planets in future with only
one method, be it ours, VESPA, or any other technique that is not a
full Bayesian model of all the available information such as PASTIS.
This caution should be taken extremely seriously when considering
validation of multiple planets simultaneously, given the potential to
distort the confirmed planet population if unrecognized biases exist.
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