FT926WNRAS.”. 87 “T12F!

114 Mr. R. H. Fouler, LXXXVIL 2,

A detailed study of these regions with a large reflector would yield
interesting results as to the development and magnitudes of the stars
in these regions as they emerge from the amorphous nebulosity.

Counts made in the Hubble photograph of regions at the extremity
of the ellipse yield an immense number of small star discs. The scale
of the unenlarged photograph is about the same as the enlarged Yerkes
image already dealt with, and similar squares give as many as 10 times
the number, mostly of about the 20th magnitude. An interesting point
is that the galactic non-nebular squares contain small star discs of
this magnitude, which in all probability have no connection with the
nebula.

On Dense Matter. By R. H. Fowler, F.R.S.

§ 1. Introductory.—The accepted density of matter in stars such as
the companion of Sirius is of the order of 10%gm./c.c. This large density
has already given rise to most interesting theoretical considerations,
largely due to Eddington. We recognise now that matter can exist in
such a dense state if it has sufficient energy, so that the electrons are
not bound in their ordinary atomic orbits of atomic dimensions, but
are in the main free—with sufficient energy to escape from any nucleus
they may be near. The density of such * energetic ”’ matter is then
only limited a priors by the “ sizes ” of electrons and atomic nuclei.
The ““ volumes ”’ of these are perhaps 10714 of the volume of the corre-
sponding atoms, so that densities up to 10'* times that of terrestrial
materials may not be impossible. Since the greatest stellar densities
are of an altogether lower order of magnitude, the limitations imposed
by the ““ sizes ”’ of the nuclei and electrons can be ignored in discussions
of stellar densities, and the structural particles of stellar matter can
be treated as massive charged points.

, Eddington has recently * pointed out a difficulty in the theory of
such matter. Assuming it to behave more or less like a perfect gas,
modified by its electrostatic forces and the sizes of such atomic strue-
tures as remain undissolved, there is a perfectly definite relation between
the energy and the temperature, which depends on the density only to
a minor degree. This assumption even here is not so unreasonable as
appears at first sight. But even without it we naturally expect a
perfectly definite relation between energy and temperature, in which
there is a close correlation between large energies and large temperatures,
small energies and small temperatures. The emission of energy by the
star will proceed in the usual way at a rate depending on the surface
temperature, and the internal temperatures must provide the gradient
necessary to drive the radiation out. So long as the star contains
matter at a high temperature, radiation of energy must presumably go
on. But then, according to Eddington, there may come a time when -
a very curious state of affairs is set up. The stellar material will have

* Eddington, The Internal Constitution of the Stars, § 117, Cambridge Univ.
Press (1926).
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radiated so much energy that it has less energy than the same matter
in normal atoms expanded at the absolute zero of temperature. If part
of it were removed from the star, and the pressure taken off, what
coulditdo?

The present note is devoted to a further consideration of this paradox
It is clear that the crucial point is the connection between the energy
and the temperature. In a sense the temperature measures the * loose-
ness ”’ of the system, the number of possible configurations which it
can assume, and therefore its radiation. These depend directly on the
temperature, and only on the energy in so far as the energy determines
the temperature. The excessive densities involved suggest that the
most exact form of statistical mechanics must be. used to discuss the
relationship between the energy, temperature,and density of the material.
This 1s a form suggested by the properties of atoms and the new quantum
mechanics, which has been already applied to simple gases by Fermi

“and Dirac.* It may be accepted now as certain that classical statistical
mechanics is not applicable at extreme densities, even to ideal material
composed of extensionless mass-points, and that the form used here
is fairly certainly the correct substitute. Its essential feature is a
principle of exclusion which prevents two mass-points ever occupying
exactly the same cell of extension A3 of the six-dimensional phase-space
of the mass-points. When this form of statistical mechanics is adopted,
it at once appears that the suggested difficulty resolves itself, and there
is really no difficulty at all. The apparent difficulty was due to the
use of a wrong correlation between energy and temperature, suggested
by classical statistical mechanics. When the correct relation is sub-
stituted, it is found that thelimiting state of such dense stellar matter
is one in which the energy is still, as it must be, excessively great, but
the temperature is zero! Since the temperature determines the radia
tion, radiation stops when the dense matter has still ample energy to
expand and form normal matter if the pressure happened to be removed. .
As the dense matter radiates its energy away, the number of its possible
configurations ~ rapidly falls, and therewith the temperature. The
absolutely final state is one in which there is only one possible con-
figuration left. Temperature then ceases to have any meaning, for the
star is strictly analogous to one gigantic molecule in its lowest quantum
state. We may call the temperature then zero.

Whether or no some such explanation may not be equally possible

“using other forms of statistical mechanics (perhaps the classical) I am

not prepared to say. The new form used here seems for entirely in-
dependent reasons so satisfactory that its applicability need not be
questioned. On application it clears up Hddington’s question in a
convincing manner, and I am content to leave the matter so.

§ 2. The Equilibrium State of Dense Matter.—It is obviously reason-
able to consider dense stellar material as an assembly of free electrons
and bare nuclei of net charge zero. It is, however, necessary to idealise
the problem a little further and ignore the electrostatic charges, so that

* Fermi, Rend. Acc. Lincei, Ser. 6, 8, 145 (1926), Dirac, Proc. Roy. Soc., A,

112, 661 (1926). See also Fowler, Proc. Roy. Soc., A, 118, 432 (1926), for a 'full ,
account with other references.
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the whole energy of the assembly is the kinetic energy of translation
of the various particles. We shall later see reason to believe that this
idealisation does not vitiate the results, or at least not their qualitative
form, for we are really mainly concerned with calculations of amounts
of phase-space, and these are independent of potential energy.
Consider a volume V of stellar material consisting of N/q bare nuclei
of mass m, and N free electrons of mass m, with total (kinetic) energy E.
We will assume as a first approximation, as we have said, that the electro-
static forces may be ignored, and then that the statistics of assemblies
of practically independent systems is applicable. Then* the total
number of complexions C representing any state of the assembly is

1 \3 de d dz
C=<2_7-r_%> f/ :zcl‘T+I‘yl‘T/s§/+I i o1 a5 ML (14yz) (1)

In this equation €,(c =1, 2, . ..) are the possible energies of an
independent electron in a volume V, and 7, those of an independent
nucleus. The power 2 enters because the electron has a structure
(axis of spin) which gives it two possible orientations in a magnetic field,
that is, a statistical weight 2. The nucleus probably also has a weight
greater than unity, but the nuclear terms turn out to be unimportant,
so that we need not spend time over this refinement. Students of
classical statistical mechanics will recall that the classical formula differs
from this only in having exp { 2s2x2¢s} in place of II,(1-+az<0)2.

All the mean values associated with the equilibrium state of the
assembly can be derived from C, and the value of C can be obtained
by “ steepest descents.” Writing

G = G(z,2) = Z,2log (1+w2%0), Gy = Gy(y,2) = B, log (1+y27),  (2)

the critical value of the integrand is determined by the unique root
A, , 6 of the equations

oG N oG, 0G| 9G,
N—x—%, —q— —y—ay—, E-—Zé;-f‘z—-a; . . (3)
With these special values of #, y, z we have, among other equations,
oG oG
where E, is the average energy of the free electrons. Also
S=1Flog C = k[G‘r-l—Gq—N log )\——lglog p—E log 9], . (5)
0 = e-thT | . . . . . . (6)

The number of possible energy values for an electron of mass m in a
volume V which lie between 7 and 7+dr is '

—= (2m)er¥dr . . . . (T

* The following formule will be found in detail in Fowler, loc. cit. l
1 Dirae, loc. cit., p. 671. v
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Theref 3 |
eretore G = 477(hz3m) VZ log (1+A0")ridr.

The values of ¢, are extremely closely spaced, so that for a fixed value
of § we can replace the sum by an integral with negligible error and find

_ 4m(zm)

}3

Strictly we shall want to make 6—o (T—o0). The form (8) might then
fail, but as we shall really not be interested in the differences between
T = 0°% T = 100°, or even T = 1000°, this does not matter, and we shall
assume the general validity of (8). The validity of some applications
of (8) can be checked in the limit by direct calculation. N and E. are
obtained from this by differentiation. Similar forms and equations

G V] log (14A07)ddr . . (8)
0

- hold for Gy, N/g, and E, for the nuclei. The assembly is a thermo-

dynamic system. -

Our chief interest is now to trace the series of equilibrium states of
such an assembly as its energy is slowly radiated away. A loss of
energy by radiation means necessarily a loss of entropy, and therefore
a fall of temperature. We have therefore to trace the behaviour of the
assembly as 0 decreases—presumably as 6—o. But by (4) and (8)
N depends on a function of the form

/ T T¥dr.
0 1+A0"

If A has an upper bound b, this is less than
b / 6 rbdr=bT(2)/(log 1/0),
0

and therefore tends to o as 8—o. This would make N—o, which is
impossible, as the number of particles is fixed. Since A cannot have an
upper bound, it is reasonable to assume that A>oo . We shall see shortly
that this is a necessary consequence of §—o.

Let us therefore write 6 = e—«, dAe=+7 = 1, defining 7, and assume
that A and therefore ar, are large. Then

RBG
4m(2m)tV
® (V=1 r7, .
= £(log A)70§—§a7042+z( ;,5 / e—i(ry—yldy . r
=1 0

=]

+> &= f e~ (ry+y)dy.
J 0

j=1

]To{log (Ae—a'r)-l—]_og (I—|—eaT/A)}7-§d7'—}—f log (I+)\6_‘")T§d7,
0 70

In transforming the integrals we have used the fact that esmo = A,
Since aty, and a forttors jat,, are large, we have approximately

To 3 ® 3
—ja —u\3 NE_ / —ja 3 NZO__
L e—ia¥(To—y)idy i o e—IoY(7o+y)idy T
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Therefore finally (and approximately)

WG _ 4 (g m (log A
4m(zm)V 15 (log1/0)! 6 (log1/8)¥

an equation whose real value can be expressed in the form

G 4 (log A (log ¥\
4m(zm)V 15 (log 1/9)%+0{(1og1/0)%} ) -

This equation can be differentiated. Therefore
3 H '
BN 2 (ogd) 4 { 1 3} . (10)
4r(2miV 3 (log1/6) (log A)* (log 1/6)?
BPE, 2 (log A)f +0 { (log M) }
4m(zm)V 5 (log1/6)! ~ L(log 1/6)

It follows from (10) that 6o implies A>c0, and therefore from (10)
and (11) combined that as -0

KE, g<:_s_ BNy
4(zm)V B

(1)

2 4m(2m)iV (12)
The temperature can (and presumably would) fall to zero, still leav
ing, however, the free electrons with kinetic energy E. given by (12).
Similar relations hold for the nuclei. In the limit, however, E, =
E.(m/gm,), and is therefore negligible compared with E..

It 1s wise to check up the behaviour of the entropy meanwhile. The
contribution S, by the electrons is given by

S, = k[G—N log A+E, log 1/6],

— 4 (2m)!V (log A)F 4 _ 2.2 (log )
b h3 [(logl/@)*}{ﬁ 3+F}+0 (10g1/9)§}:|’,

—>0.

The contribution by the nuclei behaves in a similar way. This 1s
correct. :

We may note that the relation (12) can be confirmed by a direct
calculation of the tight-packed phase-space required to house the N
electrons. If the number of cells is the number of electrons,’we find

from (7)

N £ T,
-—V = 4.77'(;3”?/) / T‘}dT,

while at the same time

B, 4rr(2m)? / To
VB b ridr,

which together give (12).
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§ 3. Numerical Calculations.—Let us assume that the density of
the stellar matter is 10% gm./c.c., and that it is composed on the average
~ of iron atoms, at

6-06x 1023
—%5 per gm.,
or
6-06x 1023+
_5—6—-—‘ per C.C.
Then for the free electrons,
57 _© Oi_g 26 02342 — 2-81x 102342,

E. ‘ N
logyo V- —27+0'539+3 logy, V= 12621452

For a density 10% gm./c.c.
E./V = 9-0x 1020 ergs.

Thus the average kinetic energy of an electron in this state is
9:0x1020/2-81x10%8 ergs. This is the same as the average kinetic
energy of an electron in an expanded gas at a temperature T, where

0
33T — 22 % 1078
z 2:81 ’

or

T = 1-56x108 °K.

It is not, however, possible to rest quite content with this result,
since the electrostatic energy terms are far from negligible, and in fact
of the same order of magnitude. We observe first that the equation (12)
is based entirely on considerations of phase-space. There must be
enough cells of extension 4% in six-dimensional phase-space to accom-
modate all the electrons. The phase-space depends only on velocities,
or kinetic energy of the electrons, and is independent of the potential
“energy terms.. The relation (12), therefore, should continue to give the
necessary kinetic energy of the electrons, at least reasonably accurately,
even when the effects of potential energy are allowed for. We have
therefore merely to attempt to estimate the negative potential energy
in order to compare the total energy of the condensed matter with its
total energy in an expanded form.

The negative potential energy of a normal atom can be estimated
roughly but easily if we recall that the average negative potential energy
of an orbit in an inverse square field is twice the negative (total)
energy of the orbit. The total negative energy of an iron atom is*
17,8004 12,400+ 2700+ 600 volts for the K, L, M, and N electrons respec-
tively, or 33,500 volts in all. The nega‘mve potentlal energy of one
atom may therefore be taken to be

67,000 volts or 1-065X 1077 ergs.

* Hartree, Proc. Camb. Phil. Soc., 22, 464 (1924).
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The negative potential energy of the atoms equivalent to 1 c.c. of
density 10% is therefore
I-15X 1018+€ ergs.

For the standard case of density 10° the negative energy of the normal
atoms is, therefore, say 1020 ergs.

The negative potential energy in the condensed form is far more
difficult to estimate with any pretence to accuracy. If we simply say
that at a density 10® everything will on the whole be about (10%-1)t
closer than it could be packed before in normal atoms, we might argue

. that the negative potential energy would be increased about ro(e-1)/3
times, and so become
5-3X 1014+4# ergg.

or in the standard case 2:-5x102l. This, however, must grossly over-
estimate the increase. For half the negative energy comes from the two
K electrons normally at a distance of 2x 10719 cm. from the nucleus.
The average distance of uniformly distributed electrons at a density 10%
is as much as 6x 10710 ¢m., and there is no reason for two electrons on
the average to sink into about 2x 10710/1043 that is 1071 ¢cm. They
might be expected to get hardly any closer, and the L-electrons not
to experience the full shrinkage. If the contribution of the two electrons
corresponding to the K electrons is unaltered, the potential energy
increase, and therefore roughly the potential energy, is halved, and the
1ncomp1ete shrinkage of the L group would halve the energy again.
A negative potential energy of 5x10% is all that can be expected.

An alternative estimate may be made as follows. The average space
assigned to each nucleus is a sphere of radius r;, where

2-81
4 3) 2
1(5770°) = PR 10222
23-|—z.
7o = I1'30X 10~ 3

Let us estimate the electrostatic energy by distributing 26 electrons
uniformly between o and 7, for each nucleus, assume that the field of
a single point charge 26e acts on each and ignore their own repulsions.
Such an average distribution is not far wrong, for it is known that there
is comparatively little crowding of bound electrons owing to the quantum
restrictions, or of free electrons owing to the energy condition.* Thus
the negative energy per atom is

The negative potential energy per c.c. of condensed matter is therefore
4z
13+
8:9X 10 3 ,
or in the standard case 4-1X 102,
* For the latter see Eddington, loc. cit., § 183.
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All this is very uncertain; the best we can do is to conclude
that the negative potential energy of the condensed form is about

1442
fe) 3

I ’

or in the standard case 4-6x 10?0 ergs, compared with 102 ergs when
expanded in normal atoms. As a result the kinetic energy is perhaps
twice the negative potential energy for a density 10, and the expanded
form could become a perfect gas of normal atoms at about 1-56x 108
Xx4x26 say 2x10° °K, »

Whether or no by our rough calculations we can show that the total
energy of the condensed form is large and positive for a density of 105,

we can certainly conclude that this must be true for still greater densities,
bx

for the kinetic ener er unit volume varies as 103, and on almost
p s al o

any view the negative potential energy must vary ultimately like 103.
There seems no reason to doubt that this inequality, kinetic energy
greater than negative potential energy, is true over wider conditions
than we can show by these arguments. For in condensed forms at
somewhat lower densities the tight packing is presumably achieved
at the expense of shifting only the more lightly bound electrons, and
our estimates of increase in the negative potential energy will be greatly
in excess.

§ 4. Cognate Speculations.—If we return to the condensed assembly
of mass-points, electrostatic forces ignored, we may note that the pressure
is given by the thermodynamic equation

. m0G
p = TW-

This is strictly the pressure exerted by the electrons, and obeys the
usual perfect gas equation
. 2<Ee . /s
b= "3' V) ’

the contribution by the nuclei is trivial by comparison. Thus in the

condensed limit
_R_E N
P 15<2> (471)§2m<V> ’

If the volume is a sphere of radius R, then

I
_pOC ﬁ.

This pressure represents an interaction of the assembly with the outside
world which is in a sense due to the quantum restraints to which the
assembly is subject.

Now an atom, especially an atom of an inert gas, is really condensed
matter of just the same general type. The assembly, whether atom or
stellar material, contains just so many cells of phase-space available
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for electrons and every one of them is full. It is tempting to speculate
as to whether the apparent forces of repulsion, which prevent the too
close approach of atoms, molecules, or 1ons with closed configurations
of electrons, may not be due in just the same way purely to the quantum
constraints. The number of cells of the phase-space must be unaltered
in an encounter, and the apparent force of repulsion represents just, the
work which must be done to make up by an increase 1n the veloclty
(or kinetic energy) space for a loss in the extent of the “ space ’-space.

These forces of repulsion between condensed atomic configurations of
electrons seem empirically to vary like 1/R9, or thereabouts, for a large
variety of atoms. It would be too much to expect the pressure of the
stellar material to follow exactly the same law. But the general forms
of the two types of system are sufficiently alike, and the resemblance
of their laws of interaction close enough to lead one to believe that the
origin of this important part of inter-atomic forces is to be sought in
this direction, in the quasi-thermodynamic consequences of the existence
of the quantum constraints embodied in Pauli’s principle.

The Constanis of the Star-Streams from the Photographic Proper Motions
of 3029 Stars. By W. M. Smart, M.A., D.Se.

(Communicated by the Director, Cambridge Observatory.)

Summary.

1. The data are the proper motions—based on an average interval
of about 22 years—of 3029 stars in 31 regions (formed into 8 groups),
from photographs taken with the Sheepshanks Equatorial of 19-3 feet
focal length. :

2. The frequency curve of the proper motions in each group has been
analysed into two drifts. It is found that the stars are nearly equally
divided between the two drifts : 1577 belong to Drift I. and 1452 to
Drift I1.

- 3. The combination of the 8 groups leads to the following positions
of the Drift apices :—

Drift I.: R.A. 88°%4; Dec. —11°8.
Drift I1. : R.A. 289°-0; Dec. —73°3.

4. The co-ordinates of the vertex of star-streaming are—
R.A. 91°7; Dec. +19°9,

which is about 24° from the galactic plane.
5. The co-ordinates of the solar apex are—

R.A. 273°2; Dec. +43°6.
§ 1. In four previous papers,* it has been shown that the pheno-
* M.N., 84, 3, 123, 481 ; 85, 433.
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