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ABSTRACT
Gravitational microlensing can detect isolated stellar-mass black holes (BHs), which are believed to be the dominant form of
Galactic BHs according to population synthesis models. Previous searches for BH events in microlensing data focused on long
time-scale events with significant microlensing parallax detections. Here we show that, although BH events preferentially have
long time-scales, the microlensing parallax amplitudes are so small that in most cases the parallax signals cannot be detected
statistically significantly. We then identify OGLE-2006-BLG-044 to be a candidate BH event because of its long time-scale and
small microlensing parallax. Our findings have implications to future BH searches in microlensing data.
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1 IN T RO D U C T I O N

Stars with initial masses �20 M� are believed to end their lives in
stellar-mass black holes (BHs). It has been estimated that the Milky
Way contains ∼108 stellar-mass BHs (e.g. Shapiro & Teukolsky
1983). Although most massive stars are found in binaries or higher
multiples, stellar evolutions frequently lead to mergers (due to
common envelope evolution or gravitational radiation) or disruptions
of stellar binaries, resulting in the majority of stellar-mass BHs
in isolation (e.g. Belczynski, Bulik & Kluźniak 2002; Belczynski,
Sadowski & Rasio 2004; Wiktorowicz et al. 2019; Olejak et al. 2020).
Therefore, isolated BHs are important for our understanding of the
stellar-mass BH population. In particular, a statistical knowledge
of isolated BHs can help to constrain the formation channels of
gravitational wave sources, such as those found by LIGO and Virgo
(e.g. Abbott et al. 2016, 2019).

While many techniques exist to detect BHs in binaries, gravita-
tional microlensing is perhaps the only viable technique to detect
isolated BHs (Einstein 1936; Paczynski 1986). Starting from the
widely used initial mass function and the general criterion for BH
formation, Gould (2000a) estimated that ∼1 per cent of microlensing
events towards the bulge direction should be due to stellar-mass BHs.
Later studies that implemented more complicated physics and/or
focused on specific surveys or observing strategies found consistent
results (e.g. Osłowski et al. 2008; Rybicki et al. 2018; Wiktorowicz
et al. 2019; Lam et al. 2020). Wiktorowicz et al. (2019) used the stellar
population synthesis code, startrack, and estimated that there
should be 14 and 26 BH microlensing events per year in surveys like
OGLE-III and OGLE-IV, respectively. Lam et al. (2020) developed
a new population synthesis code specifically for the searches of
compact object microlensing events, popsycle. The authors found
that with current ground-based astrometric follow-ups (e.g. Lu et al.
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2016) of events from existing microlensing surveys one should expect
to detect one to two BHs each year.

One issue with using microlensing to detect BHs is how to identify
them from the much more abundant normal microlenses, namely,
stars. In the standard microlensing model (Paczynski 1986), only the
event time-scale, given by

tE ≡ θE

μrel
=

√
κMLπrel

μrel
, (1)

is related to the lens mass ML. Here, θE is the angular Einstein radius,
μrel and π rel are the relative proper motion and relative parallax
between the lens and source, respectively, and κ is a constant:

κ ≡ 4G

c2au
≈ 8 14

mas

M�
. (2)

With one observable (tE) and three unknowns (ML, μrel, and π rel),
one cannot uniquely determine the lens mass. Statistical studies of
the event time-scale distribution have been done to infer the mass
function from substellar objects up to stellar-mass BHs (e.g. Sumi
et al. 2011; Mróz et al. 2017), but results from this approach are very
much subject to the details of the adopted Galactic model.

Once measured (or constrained), the microlensing parallax param-
eter, given by (Gould 2000b)

πE ≡ πrel

θE
, (3)

can reduce the degree of freedom in the problem. As tE ∝ M
1/2
L

whereas πE ∝ M
−1/2
L (see Fig. 1), the combination of the two can

significantly reduce the statistical uncertainty in inferred lens mass,
even though the mass still cannot be uniquely determined (Han &
Gould 1995; Zhu et al. 2017).

With only ground-based observations, πE is constrained through
the annual parallax effect that originates from the orbital motion
of the Earth around the Sun (Gould 1992). Such an effect is only
detectable in relatively long time-scale (tE � yr/2π ) events. Luckily,
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Figure 1. The event time-scale tE (blue) and the microlensing parallax
parameter πE (orange) as functions of lens mass for typical disc events (πrel =
0.12 mas, μrel = 7 mas yr−1) and typical bulge events (πrel = 0.02 mas,
μrel = 4 mas yr−1), respectively. Microlensing events arisen from isolated
stellar-mass BHs (�3 M�) should have large tE but small πE.

events due to stellar-mass BHs belong to such a category. Since
the early days of microlensing searches, efforts have been taken
to identify events with long time-scales and annual parallax effect
and to infer masses of the foreground lenses (e.g. Agol et al.
2002; Bennett et al. 2002; Mao et al. 2002; Poindexter et al. 2005;
Wyrzykowski et al. 2016). Here, we use Wyrzykowski et al. (2016)
as a representative example to demonstrate the standard procedure.
Starting from over 3600 microlensing events found by the OGLE-III
survey (Udalski et al. 2008; Wyrzykowski et al. 2015), Wyrzykowski
et al. (2016) found 59 parallax events. These were the events that
showed significant (>50) χ2 improvement in the light-curve fit
after parallax parameters were included. From the standard Bayesian
statistical inference, the authors identified 13 microlenses consistent
with being stellar remnants.

For such massive microlenses as the isolated stellar-mass BHs, the
long time-scale makes it easier to detect the annual parallax effect,
but the reduced amplitude of the parallax parameter also makes the
parallax effect more subtle (see Fig. 1). We show in Section 2 that the
parallax effect in a truly BH event is mostly undetectable. As such,
we reanalyse the OGLE-III data set with a method slightly different
from that of Wyrzykowski et al. (2016) and identify one candidate
BH event. This search is presented in Section 3. We discuss the
results in Section 4.

2 A N N UA L PA R A L L A X EF F E C T I N A BH
EVE NT IS UNDETECTA BLE

With a single lens, the magnified source flux at any given time t is
given by

F (t) = FS[A(t) − 1] + Fbase, (4)

where the magnification A is given by

A(t) = u2 + 2

u
√

u2 + 4
. (5)

Here, FS is the source flux at baseline (A = 1), Fbase is the total
flux (i.e. source and blend) at baseline, and u is the dimensionless

separation between the source and the lens. When annual parallax is
included (Gould 2004),

u2 =
(

t − t0

tE
+ πE,NsN + πE,EsE

)2

+ (u0 + πE,NsE − πE,EsN)2,

(6)

where t0 is the event peak time (in the absence of parallax effect), u0

is the impact parameter, tE is the event time-scale in the geocentric
reference frame, and πE,N and πE,E are the parallax components
along the north and east directions, respectively. The quantities sN

and sE are the corresponding offsets (in units of au) between Earth’s
actual position and the position of Earth in the absence of parallax
effect. These offsets are evaluated at a fixed time very close to the
peak time t0 and are thus independent of the details of the event.

The detectability of the parallax effect, namely, the deviations
of πE,N and πE,E from zeros, can be evaluated through a Fisher
matrix analysis. With the nuisance parameter Fbase ignored, the
microlensing light curve is described by the parameter set θ ≡
(t0, u0, tE, πE,N, πE,E, FS). The Fisher information matrix is then

Fij =
∑
{tk }

1

σ 2
F (tk)

∂F (tk)

∂θi

∂F (tk)

∂θj

. (7)

Here, σ F denotes the uncertainty in measured flux. The summation
is done over a time series {tk}. The inverse of the Fisher information
matrix gives the covariance matrix of θ . The detectability of the
parallax effect can be quantified as

	χ2 = (θ0 − θ )F (θ0 − θ )T, (8)

where the no-parallax parameter set θ0 has (πE,N, πE,E) = (0, 0) and
other parameters the same as those in θ .

We compute 	χ2 values for typical isolated BH events in an
OGLE-like microlensing survey. A typical event time-scale is chosen,
tE = 100 d (e.g. fig. 13 of Lam et al. 2020), and two sets of the
parallax vector are explored, (πE,N, πE,E) = (0.1/

√
2, 0.1/

√
2) and

(0.03/
√

2, 0.03/
√

2). While the former is chosen for comparison
purposes, the latter is more typical for BH events (see Fig. 1). We also
fix the source magnitude to I = 18 and assume no blending, which
are not atypical for the OGLE-III events (Wyrzykowski et al. 2015).
To mimic the OGLE-III survey, we assume that the flux noise is sky
limited (i.e. σ F = constant and thus σ I ∝ F−1) and the magnitude
error σ I = 0.04 at I = 18 mag source. 1 The cadence is chosen to
be 1 d−1. With two representative values of the impact parameter,
u0 = 0.1 and 0.3, and different values of the event peak time, we can
then compute the uncertainties on the parallax components and the
detectability of the parallax effect. The results are shown in Fig. 2.

As shown in Fig. 2, both components of the parallax vector
show large variations with the event peak time t0, with the eastern
component, πE,E, usually better constrained than the northern com-
ponent, πE,N. The event peak time t0 determines the orientation of the
sky-projected acceleration of the Earth from the Sun relative to the
Earth’s trajectory. The eastern component preferentially introduces
asymmetry into the microlensing light curve, whereas the northern
component preferentially changes the overall magnification (e.g.
Smith, Mao & Paczyński 2003). The two effects switch when the
projected acceleration of the Earth from the Sun is perpendicular to
Earth’s trajectory (i.e. at conjunction point). Additionally, the rela-
tively small parallax amplitudes we have chosen have a rather minor

1Such a simple assumption fails for very bright measurements (I � 16).
However, for our chosen event parameters its impact is very limited.
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Figure 2. Left-hand panel: Uncertainties on the two components of the microlensing parallax vector, πE,N (blue) and πE,E (orange), from different event
set-ups. The x-axis denotes the event peak time t0. The parallax amplitude πE is 0.1 for the dashed curves and 0.03 for the solid curves. The latter is more typical
for BH events. The impact parameter u0 is 0.1 for the circles and 0.3 for the triangles. The event time-scale tE is chosen to be 100 d and the source baseline
magnitude I = 18 mag. Right-hand panel: The resulting detectability of the parallax effect, measured in 	χ2 (equation 8), for different event set-ups. The black
horizontal line marks 	χ2 = 50, the threshold used in Wyrzykowski et al. (2016) for selecting BH candidate events.

Figure 3. Light curve of the microlensing event OGLE-2006-BLG-044. The
best-fitting model is shown as orange curve.

Table 1. Fitting parameters of the microlensing event OGLE-
2006-BLG-044. Here, Ib is the I-band magnitude of the blend
object. These parameters are measured in the geocentric ref-
erence frame and the parallax reference time is set at HJD =
2453 849. The reduced χ2 (i.e. χ2 per degree of freedom) values
are also listed. For a reference, the standard model yields χ2 =
924.8 for 890 degrees of freedom.

Plus solution Minus solution

χ2/d.o.f. 921.7/888 920.8/888
t0 − 2450 000 3848.8 ± 0.5 3848.8 ± 0.5
u0 0.54 ± 0.09 − 0.58 ± 0.06
tE (days) 106 ± 12 99 ± 6
πE,N 0.06 ± 0.05 − 0.10 ± 0.07
πE,E 0.034 ± 0.018 0.028 ± 0.017
Ib

a >18.9 >19.5

aDerived from the 95 per cent upper limit on the blend flux.

effect on the parallax uncertainties, whereas the different impact
parameters, through the larger impact on the magnifications, can
lead to considerate differences in the resulting parallax uncertainties.

The main point of this exercise is to show that the microlensing
parallax effect in a typical BH event (with tE = 100 d and πE = 0.03)
is usually undetectable according to the criteria of Wyrzykowski et al.
(2016) (	χ2 > 50), regardless of the exact choices of other values.

3 A BH CANDI DATE EVENT W I TH NO
PA R A L L A X D E T E C T I O N

Building on the conclusion from the previous section, we revisit
the OGLE-III microlensing data set presented by Wyrzykowski et al.
(2015) and identify one event in which the lens is possibly an isolated
stellar-mass BH. The identified event did not have a statistically
significant parallax signal and thus was not included in the list of
candidate events in Wyrzykowski et al. (2016).

The candidate event was found through a systematic search in the
OGLE-III microlensing sample. With the microlensing parameters
reported by Wyrzykowski et al. (2015), we first selected events with
relatively long time-scales and reasonably well-sampled light curves.
These events are then fitted for microlensing parallax effect using the
Markov chain Monte Carlo (MCMC) method. The parallax model
is generated by the mulensmodel package (Poleski & Yee 2019)
and the MCMC is done with the emcee package (Foreman-Mackey
et al. 2013). The resulting Markov chains are visually inspected
for convergence and the converged chains are saved for the mass
inference. Two degenerate solutions due to the ecliptic degeneracy
(Skowron et al. 2011) are identified. They are labelled ‘plus’ (for u0

> 0) and ‘minus’ (for u0 < 0) solutions, respectively.
Our method to infer the lens mass is similar to that of Zhu et al.

(2017) but with some modifications. In a short summary, the method
derives the probability distribution of the lens mass in a Bayesian
framework (e.g. Batista et al. 2011)

P (log ML) ∝
∫

d4


dtEd log MLd2ṽhel
L(tE, ṽhel)dtEd2ṽhel, (9)
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Figure 4. Posterior distributions of the parallax vector for the plus (left) and minus (middle) solutions. The dashed lines indicate the zero parallax positions.
The probability distributions of the lens mass are shown in the right-hand panel. Contributions from individual solutions are indicated. The grey dashed vertical
line indicates ML = 1.9 M�, the 95 per cent upper limit on the lens mass if the lens is luminous.

where

d4


dtEd log MLd2ṽhel
= 4nL,�D

4
Lfv(ṽhel)

dξ (ML)

d log ML

μ3
rel

ṽhel
(10)

represents the prior information combining the lens mass and lens
kinematics. Here, nL,� is the number density of the lens at a given loca-
tion, fv(ṽhel) is the probability distribution of the transverse velocity
vector ṽhel, dξ /d log ML is the lens mass function, and L(t ′

E, ṽhel) is
the likelihood distribution of the microlensing parameters from the
light-curve modelling. Note that we use t ′

E for the event time-scale
measured in the heliocentric frame, which can be determined for a
given parameter set θ . The integral in equation (9) is done with a
summation over the entire Markov chain.

For nearly all of the events modelled here, the amplitude of the
parallax vector is statistically consistent with zero and thus the
direction, which is also the direction of ṽhel, is nearly unconstrained.
To prevent the prior mass function from driving the posterior to very
unusual lens kinematics, we use a log-flat distribution as the lens mass
function, dξ /d log ML∝ constant. Such a mass function can produce
unbiased lens mass probability distribution, as is demonstrated in
Appendix A. The upper limit of the mass function is extended up to
100 M�. Other parts of the Galactic model are detailed in Zhu et al.
(2017).

The best candidate we identified is OGLE-2006-BLG-044.2 The
light curve is shown in Fig. 3 and our best-fitting parameters are
given in Table 1. As seen from Table 1 as well as illustrated in
the left-hand and middle panels of Fig. 4, the parallax parameters
of this event are consistent with zero at the 2σ level. If the lens
is luminous, it would contribute to the blend flux. In other words,
the blend flux provides an upper limit on the mass of a luminous
lens. With the distance modulus (14.58) and the extinction (AI =
2.56) given by the OGLE survey at this particular line of sight (Nataf
et al. 2013), we can convert the apparent I-band magnitude of the
blend object into the absolute magnitude MI. With the stellar mass–
absolute magnitude relations from Pecaut, Mamajek & Bubar (2012)
and Pecaut & Mamajek (2013), we then find that the mass of the
luminous lens cannot be higher than 1.6 or 1.9 M� for the minus and
plus solutions, respectively. Both are the 95 per cent upper limit. This

2This event is also labelled as OGLEIII-ULENS-1643 in the Wyrzykowski
et al. (2015) catalogue.

calculation has assumed that the lens is behind all the dust and very
close to the source, which is assumed to be in the bulge. The mass
limit for a luminous lens can only be lower if the lens gets closer.

As seen from Fig. 4, although the parallax is not statistically
significantly detected in OGLE-2006-BLG-044, the inferred lens
mass distribution suggests that the lens is relatively massive and
probably (with 66 per cent probability) dark. If 3 M� is taken as the
upper limit of any neutron star, then there is a 39 per cent probability
that the lens in OGLE-2006-BLG-044 is a stellar-mass BH.

A similar Bayesian analysis is performed on the lens distance. The
median value of the lens distance probability distribution is found
to be 3.2 kpc and the 68 per cent confidence interval is 2.0–4.9 kpc.
Therefore, the lens of OGLE-2006-BLG-044 is likely in the disc.

4 D ISCUSSION

Gravitational microlensing can detect dark objects such as stellar-
mass BHs. Compared to other techniques, microlensing is unique in
its sensitivity to isolated BHs, which are thought to be the dominant
form of stellar-mass BHs according to population synthesis models.

Previous searches for BH events in microlensing data have focused
on long time-scale events with significant parallax signals. Here we
show that, while BH events have indeed preferentially long time-
scale, their microlensing parallax amplitudes are so small that the
parallax signal becomes undetectable in the most cases.

Following this new finding, we then looked into the public OGLE-
III microlensing data base and identified a new BH candidate
event, OGLE-2006-BLG-044. Although the parallax signal was not
detected at any statistically significant level, the long time-scale and
the small parallax amplitude together suggest that the lens is probably
dark and has a 39 per cent probability of being a stellar-mass BH.

Our results have implications to future searches and statistical
analysis of Galactic BHs in the microlensing data set.
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Smith M. C., Mao S., Paczyński B., 2003, MNRAS, 339, 925
Sumi T. et al., 2011, Nature, 473, 349

Udalski A., Szymanski M. K., Soszynski I., Poleski R., 2008, Acta Astron.,
58, 69

Wiktorowicz G., Wyrzykowski Ł., Chruslinska M., Klencki J., Rybicki K.
A., Belczynski K., 2019, ApJ, 885, 1

Wyrzykowski Ł. et al., 2015, ApJS, 216, 12
Wyrzykowski Ł. et al., 2016, MNRAS, 458, 3012
Zhu W. et al., 2017, AJ, 154, 210

A P P E N D I X A : TH E C H O I C E O F M A S S
F U N C T I O N PR I O R

When the lens mass is inferred in the Bayesian analysis, a flat mass
function (dξ /d log ML is constant) is used. Such a mass function is far
from being representative of the current-day stellar mass function,
but it provides an unbiased estimate of the lens mass in our analysis.

We use a simulated microlensing event to demonstrate this point.
An event light curve was generated with t0 = 2459 032 (i.e. 2020
July 1), tE = 100 d, u0 = 0.1, and πE,N = πE,E = 0.03/

√
2, with the

data sampling and precision chosen to best match that of OGLE-III
(see Section 2). See the left-hand panel of Fig. A1 for an illustration
of the simulated light curve. Galactic microlensing events with the
chosen tE and πE are overwhelmingly dominated by BH events, as
can be seen clearly in fig. 13 of Lam et al. (2020). The simulated
event was then processed in the same way as the OGLE-III events
in this study to produce the constraints on the parallax parameters
(middle panel of Fig. A1) and the lens mass probability distribution
(right-hand panel of Fig. A1). The inferred lens mass distribution
peaks at the most probable lens mass (i.e. BH lenses).

For a comparison, a different lens mass function was used to derive
the lens mass probability distribution and the result was also shown
in the right-hand panel of Fig. A1. This Kroupa-like mass function
(Kroupa & Weidner 2003), with its form dξ/d log ML ∝ M−1.7

L , gives
more weights to the low-mass lenses, making it a better match to the
current-day stellar mass function (although it is still far from perfect).
However, the lens mass probability distribution inferred with the use
of this more realistic mass function would suggest that the lens is
most likely a normal star. The use of this Kroupa-like mass function,
or any kind of realistic stellar mass function, tends to downplay
the importance of the information from the parallax constraint (or
measurement) and therefore leads to an underestimated lens mass
probability distribution.
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Figure A1. A simulated BH event light curve (left-hand panel), the constraint on the microlensing parallax parameters (middle panel), and the inferred lens
mass probability distribution (right-hand panel). We use tE = 100 d, u0 = 0.1, and πE,N = πE,E = 0.03/

√
2 in the light-curve simulation. Events with the chosen

tE and πE are overwhelmingly dominated by BH lenses (e.g. fig. 13 of Lam et al. 2020). The meanings of the data points in the middle panel are the same as
those in Fig. 4. When inferring the lens mass distribution, we have used two different mass priors. A flat prior can successfully recover the most likely mass of
the lens, with the vertical dashed line marking ML = 5 M�. A steep mass function that better matches the current stellar mass function, dξ/d log ML ∝ M−1.7

L ,
which we call a Kroupa-like prior (Kroupa & Weidner 2003), will lead to an underestimated lens mass probability distribution.
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