
MNRAS 500, L37–L41 (2021) doi:10.1093/mnrasl/slaa178
Advance Access publication 2020 October 31

The distribution of neutral hydrogen in the colour–magnitude plane of
galaxies

Saili Dutta ‹ and Nishikanta Khandai ‹

School of Physical Sciences, National Institute of Science Education and Research, HBNI, Jatni 752050, India

Accepted 2020 October 27. in original form 2020 September 30

ABSTRACT
We present the conditional H I (neutral hydrogen) mass function (HIMF) conditioned on observed optical properties, Mr (r-band
absolute magnitude), and Cur (u − r colour), for a sample of 7709 galaxies from Arecibo Legacy Fast ALFA (40 per cent data
release – α.40) which overlaps with a common volume in SDSS DR7. Based on the conditional HIMF, we find that the luminous
red, luminous blue, and faint blue populations dominate the total HIMF at the high-mass end, knee, and the low-mass end,
respectively. We use the conditional HIMF to derive the underlying distribution function of �H I (H I density parameter), p(�H I),
in the colour–magnitude plane of galaxies. The distribution, p(�H I), peaks in the blue cloud at Mr

max = −19.25, Cur
max = 1.44

but is skewed. It has a long tail towards faint blue galaxies, and luminous red galaxies. We argue that p(�H I) can be used to
reveal the underlying relation between cold gas, stellar mass, and the star formation rate in an unbiased way, that is, the derived
relation does not suffer from survey or sample selection.

Key words: surveys – galaxies: evolution – galaxies: formation – galaxies: luminosity function, mass function – radio lines:
galaxies.

1 IN T RO D U C T I O N

Cold gas represents an important baryonic component of galaxies
since it indicates the amount of gas that is available for future star
formation of galaxies. Observationally the star formation surface
density is strongly correlated with the cold gas (neutral hydrogen:
sum of atomic, H I, and molecular, H2) surface density in late type disc
galaxies – the Kennicutt–Schmidt (KS) law (Schmidt 1959, 1963;
Kennicutt 1989, 1998) for star formation. Targeted observations have
detected H I in late-type (E and S0) galaxies (Morganti et al. 2006;
Oosterloo et al. 2007; Serra et al. 2012), but their star formation
rate is negligible to construct a corresponding KS-like law for them.
Blind surveys on the other hand have constrained the H I (neutral
hydrogen) mass function (HIMF) in the local Universe (Zwaan et al.
2003; Martin et al. 2010; Haynes et al. 2011; Jones et al. 2018), but
the HIMF does not reveal how H I is distributed amongst different
galaxy populations.

Although the HIMF, and other one-dimensional functions [e.g.
multiband luminosity functions, stellar mass functions, star forma-
tion rate (SFR) function, to name a few] are important distributions
which any theory of galaxy formation should reproduce, they
only represent marginalized distributions of higher dimensional
multivariate distribution functions of galaxies. These multivariate
functions encode the effects and interplay of complex processes
between various baryonic components of galaxies. With the advent
of ongoing and future large surveys which target different bands
of the electromagnetic spectrum there is a need to go beyond
one-dimensional functions. It is common to present bivariate or
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multivariate functions, when the observables are from different
surveys, as conditional functions. The bivariate H I mass–B-band
luminosity function was estimated from a sample of 61 galaxies
in the blind Arecibo H I Strip Survey (Zwaan, Briggs & Sprayberry
2001). More recently, Lemonias et al. (2013) presented the H I mass–
stellar mass bivariate function using a parent sample of 480 galaxies
from the GALEX Arecibo SDSS Survey (GASS) Data Release 2
(Catinella et al. 2010, 2012).

In this work, we present the conditional HIMF conditioned on
optical colour and magnitude using a sample of 7709 galaxies from
the blind Arecibo Legacy Fast ALFA (ALFALFA) survey. We then
use the conditional HIMF to estimate, for the first time, the two-
dimensional distribution function of �H I in the colour–magnitude
(CM) plane of galaxies. Our paper is organized as follows: we
describe our data in Section 2 followed by a brief description of
estimating the HIMF in Section 3. We present our results in Section 4
and discuss our results in Section 5. We assume the following
cosmology: {��, �m, h} = {0.7, 0.3, 0.7}.

2 DATA

We give a brief summary of our sample, which is based on the
α.40 data release of ALFALFA (Haynes et al. 2011) and is the
same as in Dutta, Khandai & Dey (2020) (hereafter, D20). We
choose an area overlapping with the SDSS DR7 (Abazajian et al.
2009) footprint and the α.40 sample and restrict the redshift range to
czcmb = 15000 km s−1, to avoid radio frequency interference (RFI).
This common volume is ∼2.02 × 106 Mpc3, and subtends an
angular area of ∼2093 deg2. We also consider only Code 1 objects,
which have a signal-to-noise ratio, SNR > 6.5. Finally, we apply
the 50 per cent completeness cut as described in Haynes et al.
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(2011), which brings our final sample to 7857 galaxies. Of these,
7709 galaxies (or 98 per cent) have optical counterparts in SDSS
and we loosely refer to the remaining 148 (2 per cent) galaxies as
dark galaxies. In D20, we showed that the dark galaxies contribute
about ∼ 3 per cent to �H I. Our results should therefore not be
sensitive to this population of dark galaxies. Of the 7709 galaxies that
have optical counterparts in SDSS DR7, we use their ugriz model
magnitudes (extinction corrected) and redshifts to obtain absolute
magnitudes (Mu, Mg, Mr, Mi, Mz) using kcorrect (Blanton & Roweis
2007). The SDSS galaxy distribution in the CM plane is bimodal.
The dot–dashed curve in Fig. 3 is the optimal divider to classify these
galaxies into red (above curve) and blue (below curve) populations
(Baldry et al. 2004). A bimodal distribution is not seen in our
H I-selected sample (Fig. 3) because ALFALFA primarily samples
the blue cloud, but is nevertheless seen in SDSS for the volume
considered here (see fig. 3 of D20) and we refer to them accordingly
as red and blue galaxies. We restrict our study to the α.40 rather
than the recently released 100 per cent catalogue (α.100) (Haynes
et al. 2018). This is because we find that at lower declinations, which
are now covered by α.100, many galaxies have luminous foreground
stars (as seen in the images) and photometric values are not available
since SDSS has masked these regions. We will consider the α.100
sample in the future.

3 ESTIMATION O F H IMF

The HIMF, φ(MH I), represents the underlying number density of
galaxies in the Universe as a function of their H I mass. This is
written as

φ(MH I) = dN

V d log10 MH I
. (1)

Here, dN is the number of galaxies with masses in the range
[log10MH I, log10MH I + dlog10MH I] and V is the survey volume of
interest. A single Schechter function has been shown to describe
the HIMF reasonably well (Zwaan et al. 2003; Martin et al. 2010;
Haynes et al. 2011; Jones et al. 2018, D20):

φ(MHI) = ln(10) φ∗

(
MHI

M∗

)α+1

exp

(
−MHI

M∗

)
, (2)

where, φ∗ is the amplitude, α is the slope at the low-mass end,
and M∗ is the knee of the HIMF, beyond which the galaxy counts
drop exponentially. Converting the observed counts of galaxies
to the HIMF is non-trivial. ALFALFA being a blind survey, its
sensitivity affects the observed counts. In the context of ALFALFA
the sensitivity limit depends both on the galaxy flux and velocity
width W50. However, the data of ALFALFA is large enough so that
it can be used itself to estimate the completeness limit (Haynes et al.
2011). We use the 50 per cent completeness curve (Haynes et al.
2011) as our sensitivity limit.

We use the two-dimensional stepwise maximum likelihood
(2DSWML) method (Loveday 2000; Zwaan et al. 2003; Martin et al.
2010; Haynes et al. 2011) to estimate the HIMF. The 2DSWML
estimator is based on the assumption that the observed sample of
galaxies is drawn from an underlying distribution function. In our
case, it is a bivariate H I mass–velocity width function, φ(MH I, W50).
The advantage of this method is that it is less susceptible to effects
of large-scale structures (e.g. clustering) and the stepwise nature of
the method does not assume a functional form but rather estimates
φjk. Here φjk ≡ φ(Mj

HI, W
k
50) is the discretised version of bivariate

function φ(MH I, W50) in bins of mass, M
j

HI and velocity width Wk
50.

As with any maximum likelihood method, the normalization is lost

and has to be fixed separately. We use the method outlined in the
appendix of D20 to fix the normalization. One can then integrate
φ(Mj

HI, W
k
50) over the velocity width to obtain the HIMF φ(Mj

HI)
(Zwaan et al. 2003; Martin et al. 2010; Haynes et al. 2011; Jones
et al. 2018) or integrate over the mass to obtain φ(Wk

50).
We estimate errors in the same manner as in D20. The error in

mass is related to the errors in the observed flux (S21) and the errors
in distance (D) of each galaxy, since MH I∝S21D2. Based on the
observed values and the estimated errors on both flux and distance,
we generate 300 Gaussian random realizations for each object in the
catalogue. These are then used to quote an error for φ(Mj

HI). The
second source of errors are Poisson errors which affects the low- and
high-mass end of the H I catalogue, both of which have few objects.
Finally, we estimate sample variance by splitting the survey area into
26 contiguous regions of approximately equal area. We compute the
HIMF for each of these jackknife samples by removing one region
at a time. This is then used to compute the jackknife uncertainty.
One may consider other sources of errors (see Jones et al. 2018)
but as discussed in D20, these may be correlated. For this work, we
consider the errors outlined above which are consistent with Martin
et al. (2010) and Haynes et al. (2011).

4 R ESULTS

We now present the results of our paper. Given that 98 per cent of
the H I selected galaxies have optical counterparts a natural question
would be to look at the conditional HIMF, conditioned on an optical
property. The 2 per cent of galaxies which are dark contribute only
3 per cent to �tot

HI (D20). In the rest of the paper, we will therefore
ignore this population of dark galaxies since we do not expect them
to affect our results quantitatively. We emphasize that this is an H I

selected sample for which optical properties exist for all galaxies.
Therefore when computing the HIMF (conditioned on an optical
property) we need to consider only the ALFALFA selection function
and volume. In what follows, we will compute the HIMF based Mr

and Cur thresholds.

4.1 Conditional HIMF

We define the colour-conditioned HIMF as

φ(MHI|Ct
ur) = φ(MHI)|Cur>Ct

ur
. (3)

This represents the HIMF for galaxies which have a colour Cur

redder than a threshold value Ct
ur . Similarly, we define the luminosity-

conditioned HIMF as

φ(MHI|Mt
r) = φ(MHI)|Mr<Mt

r
, (4)

which represents the HIMF for galaxies which are more luminous
than a threshold value Mt

r . To compute the conditional HIMF, we start
with the full sample of 7709 galaxies and create a subsample based
on a threshold colour Ct

ur (or magnitude threshold Mt
r ). We compute

the HIMF for this subsample and also estimate its errors as outlined
in Section 3. We then fit a Schechter function to obtain a conditional
HIMF for the particular subsample. We repeat this exercise to obtain
the conditional HIMF as a function of Cur

t and Mt
r. Our results are

shown in Figs 1 and 2.
For the rest of the paper, the values of the characteristic mass M∗

and the amplitude of the Schechter function φ∗ (in equation 2) will
be in the units [log (M∗/M�) + 2log h70] and

[
10−3h3

70Mpc−3dex−1
]
,

respectively. We will also quote MH I in the same units as M∗.
In the left-hand panel of Figs 1 and 2, we show the Schechter

function fits to the conditional HIMF. The thick solid line is the HIMF
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Figure 1. Left: Conditional HIMF as a function of increasing colour thresholds (top to bottom). The thick solid line is the HIMF for the full sample. The shaded
grey region does not contain data, the conditional HIMF have, however, been extrapolated into this regime as well. Right: The Schechter function parameters
of the conditional HIMF and their uncertainties as a function of colour thresholds. The solid lines are fits to the data points with a quadratic function. The top,
middle, and bottom panels show the dependence of M∗, φ∗ and α, respectively, on the colour threshold Ct

ur .

Figure 2. Left: Conditional HIMF as a function of decreasing rest frame magnitude thresholds (top to bottom). The thick solid line is the HIMF for the full
sample. The shaded grey region does not contain data; the conditional HIMF have, however, been extrapolated into this regime as well. Right: The Schechter
function parameters of the conditional HIMF and their uncertainties as a function of magnitude thresholds Mt

r . The solid lines are fits to the data points. For α

(bottom), we fit with a quadratic function. For M∗ (top) and φ∗ (middle), we fit with a function of the form: y(x) =
[
a + b exp

(
− (x+c)2

2d

)]
f

(x+e) .

for the full sample. The shaded grey patch represents the region
where there is no data. While displaying the Schechter functions
we have, however, extrapolated them to this region as well. The
right-hand panels represent the Schechter function fits and their
uncertainties. The lines represent a parametric fit to these values. We
note that the errorbars on the Schechter function parameters, although
representative of the sample, are correlated, since the sample at

each threshold (i.e. Ct
ur or Mt

r) contains the sample of the previous
neighbouring threshold.

In Fig. 1, we look at the colour-conditioned HIMF and its
dependence on the threshold colour Ct

ur. For 2.0 ≤ Ct
ur ≤ 2.4, the

slope at the low-mass end is flat, or α ∼ −1 (see bottom right panel
of Fig. 1). At this end the amplitude, φ∗ is small (16 × smaller)
compared to the amplitude of the total HIMF, φ∗ = 5.3 × 10−3, but
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Figure 3. The bottom left panel shows the distribution function p(�H I) (see
equation 7) in the CM plane colour-coded by (�ij

HI)
norm (equation 9). The

thick (thin) line represents the 1σ (2σ ) widths of p(�H I). The dash–dotted
line separates the optical red (above) and blue (below) populations (Baldry
et al. 2004). The top left (bottom right) panel is the marginalized distribution
of �H I as a function of Mr (Cur). The crossed circle represents the peak of
the two-dimensional distribution function, p(�H I).

the characteristic mass M∗ = 10.13 is about 50 per cent larger than
that of the HIMF of the full sample. A large value of Ct

ur means
that the subsample contains mostly redder galaxies. By decreasing
this value, we add blue galaxies to the sample and the conditional
HIMF then approaches the total HIMF in the limit Ct

ur ⇒ −∞. In
our sample, this is achieved when Ct

ur = 0. As can be seen in Fig. 1,
there is a near monotonic change in the shape (with the exception of
α) of the conditional HIMF with Ct

ur. Although α as a function of
Ct

ur peaks at about Ct
ur = 1.9, the variation is still consistent with a

constant value beyond that. Incidentally the peak in α occurs close
to the value of the optimal divider of Baldry et al. (2004) at Cur =
2.3 (see Fig. 3). The red population dominates the HIMF at the large
mass end whereas decreasing the Ct

ur we progressively add bluer
galaxies to our sample which start to dominate the knee and then the
low-mass end for even smaller values of Ct

ur.
In Fig. 2, we look at the dependence of the conditional HIMF

on Mt
r. Unlike the previous case, the dependence of the conditional

HIMF on Mt
r is not monotonic (see right-hand panel of Fig. 2). We

see a dip (bump) in M∗ (φ∗) at Mt
r = 19 (Mt

r ∼ 17.5). Coincidentally,
the distribution of the blue (red) population of galaxies is centred at
Mr = 19 (Mr = 20) (see fig. 3 of D20). As we move from the
luminous (Mt

r ≤ 20 dominated by the red sample), to the faint end,
the conditional HIMF picks the contribution from the blue cloud at
Mr = 19. The bimodality of the underlying optical galaxy sample
is reflected more strongly in the luminosity-conditioned HIMF than
the colour-conditioned HIMF.

4.2 The distribution of �H I in the Cur−Mr plane

We extend our previous definition to the two-dimensional conditional
HIMF:

φ(MHI|Ct
ur , M

t
r ) = φ(MHI)|(Cur>Ct

ur ),(Mr<Mt
r). (5)

This represents the HIMF of galaxies redder than Ct
ur and more

luminous than Mt
r, for which the corresponding H I density parameter

is

�HI(C
t
ur, Mt

r) = 1

ρc

∫ ∞

0
MHIφ(MHI|Ct

ur, Mt
r)dMHI. (6)

In our sample �HI(Ct
ur, Mt

r) = �tot
HI = 4.894 × 10−4 when Ct

ur =
0.0, Mt

r = −6.0. We compute 2500 conditional HIMFs and their
associated errors in the CM plane by dividing Ct

ur ∈ [3.0, 0.0]
(decreasing colour threshold) and Mt

r ∈ [−23.0, −6.0] (increasing
magnitude threshold) into 50 bins each. From equation (6), we
see that the variation of �HI(Ct

ur, Mt
r) is that of a cumulant in the

two-dimensional CM plane. If we define the normalized condi-
tional H I density parameter as �norm

HI (Ct
ur ,M

t
r ) = �HI(Cur

t ,Mt
r)

�tot
HI

, then

�norm
HI (Ct

ur, Mt
r) is bounded and varies from 0 (luminous red, top left

corner of Fig. 3) to 1 (faint blue, bottom right corner of Fig. 3).
We define the distribution function of the cosmological H I density

parameter in the CM plane

p (�HI(Cur, Mr)) = ∂2�norm
HI (Cur

t , Mt
r)

∂Ct
ur∂Mt

r

∣∣∣∣
[Ct

ur=Cur ,Mt
r=Mr ]

. (7)

By construction this is a normalized distribution∫ ∫
p (�HI(Cur, Mr)) dCurdMr = 1.0. (8)

The cosmological H I density in a given CM (ji) pixel is

(�ij

HI)
norm =

∫ Mr
i+1

Mr
i

∫ Cur
j+1

Cur
j

p (�HI(Cur, Mr)) dCurdMr. (9)

In Fig. 3, we plot the distribution function, p(�H I), of the cosmologi-
cal H I density parameter in the CM plane. Each pixel is colour-coded
to the (�ij

HI)
norm value. The top left (bottom right) panel shows the

marginalized distribution of �H I as a function of magnitude (colour).
The dot–dashed line is the optimal divider which classifies these
galaxies into red and blue populations (Baldry et al. 2004). The
thick (thin) contour is the 1σ (2σ ) width of the distribution function,
p(�H I) [i.e. the contour is determined from equation 8 by setting
the RHS to 0.68 (0.95)]. The crossed circle is the peak of p(�H I) in
two dimensions, and does not match the peak of the marginalized
distribution because it is skewed.

5 D ISCUSSION

In this paper, we have presented the conditional HIMF, conditioned
on colour and/or magnitude. Based on the conditional HIMF, we
obtained the distribution of �H I, p(�H I), in the CM plane of galaxies.
Not surprisingly our results for φ(MHI)|Mr<−21 and even brighter
thresholds is similar to those obtained for the conditional HIMF,
φ(MHI)|Mstar≥10, for massive galaxies (Lemonias et al. 2013) from
the GASS survey (Catinella et al. 2010, 2012); this is because the
stellar mass of galaxies is correlated with its luminosity.

Both the two-dimensional and marginalized distributions show
that they have long tail towards faint blue galaxies and luminous
red galaxies. The peak of p(�H I) in the CM plane occurs at
Cur

max = 1.44, Mr
max = −19.25 in the blue cloud, which is about

1.36 mag fainter than the characteristic luminosity of blue galaxies
in SDSS (Baldry et al. 2004). The width of p(�H I) is also fairly
broad in both colour and magnitude; the average 1σ (2σ ) widths
being σ C = 0.8 and σ M = 3.0 (σ C = 1.1, σ M = 4.8). At the fainter
end, Mr > −16, ∼ 10 per cent of �tot

HI is locked in gas-rich low
surface brightness galaxies. The red population, on the other hand,
contributes ∼ 18 per cent to the H I budget.

The CM plane can be thought of as a coordinate system in
which we can plot distributions of other cosmological density
parameters (related to galaxies), p(�X) where X denotes a property,
e.g. stellar mass Mstar, SFR, molecular hydrogen mass MH2 , which
in turn are computed from φ(X|Cur

t, Mt
r). We therefore have all the
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information needed to obtain the mean relation between different
galaxy properties by discarding the common coordinate system. We
emphasize that this relation is unbiased and represents the underlying
relation since the distributions have folded in the survey selection.
The blind nature of the survey is also important since there is no
selection bias in estimating φ(X). This can be repeated for different
galaxies populations (blue or red) and for other bands as well. The
methods outlined in this paper are statistical in nature and provide
a powerful and unbiased way to probe the multivariate distributions
of galaxy populations. We will report on the mean H I–stellar mass
relation in a forthcoming paper.
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