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Are star formation rates of galaxies bimodal?
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ABSTRACT
Star formation rate (SFR) distributions of galaxies are often assumed to be bimodal
with modes corresponding to star-forming and quiescent galaxies, respectively. Both
classes of galaxies are typically studied separately, and SFR distributions of star-forming
galaxies are commonly modelled as lognormals. Using both observational data and
results from numerical simulations, I argue that this division into star-forming and
quiescent galaxies is unnecessary from a theoretical point of view and that the SFR distributions
of the whole population can be well fitted by zero-inflated negative binomial distributions. This
family of distributions has three parameters that determine the average SFR of the galaxies in
the sample, the scatter relative to the star-forming sequence and the fraction of galaxies with
zero SFRs, respectively. The proposed distributions naturally account for (i) the discrete nature
of star formation, (ii) the presence of ‘dead’ galaxies with zero SFRs and (iii) asymmetric
scatter. Excluding ‘dead’ galaxies, the distribution of log SFR is unimodal with a peak at the
star-forming sequence and an extended tail towards low SFRs. However, uncertainties and
biases in the SFR measurements can create the appearance of a bimodal distribution.
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1 IN T RO D U C T I O N

The bimodal colour distribution of nearby galaxies leads to a natural
classification into ‘blue’ and ‘red’ galaxies (e.g. Baldry et al. 2004;
Brammer et al. 2009). On average, blue (red) galaxies in the local
Universe have high (low) star formation rates (SFRs), although
dust extinction complicates this basic picture (Whitaker et al. 2012;
Taylor et al. 2014). Hence, galaxies are often divided into star-
forming and quiescent galaxies based on their level of star formation
activity (e.g. Balogh et al. 2004; Moustakas et al. 2013). However,
whether the distribution of SFRs is also bimodal remains an open
question (e.g. Elbaz et al. 2007; McGee et al. 2011).

The SFRs of star-forming galaxies strongly correlate with their
stellar masses, resulting in a well-defined ‘star-forming sequence’
(Noeske et al. 2007). In contrast, quiescent galaxies have generally
very low (or vanishing levels) of SFRs whose exact amount is chal-
lenging to infer observationally (e.g. Brinchmann et al. 2004; Utomo
et al. 2014; Chang et al. 2015). Hence, most observational studies
focus on the SFRs of ‘star-forming galaxies’ alone and model their
distribution at fixed stellar mass with a lognormal distribution (e.g.
Noeske et al. 2007) or with the sum of two lognormal distributions
(Sargent et al. 2012). The intrinsic scatter around the star-forming
sequence is found to be about ∼0.3–0.4 dex, essentially indepen-
dent of redshift (z ∼ 0–6; e.g. Chang et al. 2015; Salmon et al.
2015; Schreiber et al. 2015; Shivaei et al. 2015). The approach
of approximating the distribution of SFRs of star-forming galaxies
with a lognormal is also adopted in most analyses of galaxy forma-
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tion simulations (e.g. Schaye et al. 2015; Sparre et al. 2015; Dave,
Thompson & Hopkins 2016; Feldmann et al. 2016).

However, this approach has a number of shortcomings. First, a
clear separation of galaxies into star forming and quiescent is chal-
lenging in practice. Classifications based on colour–magnitude dia-
grams suffer from a large population of dust-obscured star-forming
galaxies with colours intermediate between blue and red (Salim
et al. 2009; Taylor et al. 2014; Chang et al. 2015). While colour–
colour diagrams offer a more robust alternative (Wuyts et al. 2007),
the mapping from colours to SFRs can be biased by relatively small
amounts of recent star formation, by dust and by the presence of
evolved stellar populations (e.g. Salim et al. 2009; Wuyts et al. 2011;
Fumagalli et al. 2014). For instance, while high-redshift galaxies
classified as quiescent based on colour–colour diagrams have typi-
cally significantly reduced SFRs (Man et al. 2016; Straatman et al.
2016), some of them show non-negligible levels of SFR and dust
extinction (e.g. Brammer et al. 2009; Spitler et al. 2014; Mancini
et al. 2015). It is thus legitimate to ask whether quiescent and star-
forming galaxies are actually two separate populations or whether
galaxies simply form a continuum from low to high specific SFRs
(sSFRs) without a natural dividing point.

Secondly, a lognormal distribution predicts a symmetric scatter
around the star-forming sequence, in contrast to the findings of many
observational studies and numerical simulations (Brinchmann et al.
2004; Chang et al. 2015; Dave et al. 2016). Often, this difference is
attributed to an ‘imperfect separation’ into star-forming and quies-
cent galaxies (e.g. Chang et al. 2015). Instead, I argue that the level
of asymmetry of the scatter contains important information about
galactic star formation and should not be ignored.
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Thirdly, star formation is correlated in space and time as stars are
typically born in clusters (Lada & Lada 2003). These correlations
introduce a level of discreteness into the star formation process. For
instance, star clusters in the Milky Way have masses ranging from
∼102 to 103 M� for open clusters to ∼105 M� for young massive
clusters (Portegies Zwart, McMillan & Gieles 2010). Star clusters
can be even more massive in star-bursting galaxies (Zhang & Fall
1999) and at high redshift, when galaxies are generally more gas
rich (e.g. Swinbank et al. 2010; Kruijssen 2012). The discreteness
effect is further exacerbated in observationally inferred SFRs as
those trace energy injections from rare, massive stars (Kennicutt
1998). A lognormal distribution, which is a continuous distribution,
does not account for this discrete mode of star formation.

Finally, the star formation activity, especially for higher redshift
and/or lower mass galaxies, is thought to be bursty (e.g. Dominguez
et al. 2015; Sparre et al. 2017). Consequently, many galaxies may
experience intermittent episodes of low or vanishing SFR (Feld-
mann et al. 2017). However, galaxies with fully suppressed SFRs
cannot be modeled by a lognormal distribution. Thus, in practice,
galaxies with SFRs below the detection limit are excluded from
(non-stacked) analyses of the star-forming sequence even if such
galaxies are star forming according to their colours (e.g. Whitaker
et al. 2014).

As I argue in this Letter, these shortcomings can be mitigated by
dropping the assumption of a lognormal SFR distribution and by not
dividing galaxies into star-forming and quiescent galaxies in the first
place. In particular, I propose to replace the lognormal ansatz with
(zero-inflated) negative binomial distributions (NBDs). This family
of distributions found wide applicability in particle physics (e.g.
multiplicity distributions of charged particles in hadronic collisions;
Alner et al. 1985), astrophysics (e.g. the number of globular clusters
in galaxies and event rates of fast radio bursts; De Souza et al.
2015; Wiel et al. 2016) and cosmology (e.g. modelling count-in-cell
distributions and void probability functions; Carruthers & Duong-
Van 1983; Gaztanaga 1992) but, to my knowledge, has not been
used to model distributions of SFRs or sSFRs.

Choosing an appropriate model for the distributions of SFRs is
not self-evident as the origin of the scatter around the star-forming
sequence is not well understood. As gas accretion on to galaxies and
star formation within galaxies are likely linked (e.g. Bouché et al.
2010; Sánchez Almeida et al. 2014), the scatter may be related to
variations in the gas accretion rates (Dutton, van den Bosch & Dekel
2010; Forbes et al. 2014) or halo growth rates (Feldmann & Mayer
2015; Feldmann et al. 2016; Rodrı́guez-Puebla et al. 2016). The
scatter may also arise from random stochasticity (Kelson 2014), gas
fraction variations (e.g. Magdis et al. 2012; Saintonge et al. 2012;
Scoville et al. 2016), changes in the efficiency of star formation
(e.g. Genzel et al. 2010; Saintonge et al. 2012), a natural diversity
in star formation histories (Gladders et al. 2013; Dressler et al. 2016)
or combinations of some of these processes (e.g. Tacchella et al.
2016; Feldmann et al. 2017). Hence, it appears justified to explore
empirically how well SFRs follow various basic distributions.

With the recent availability of large numbers of reliable SFR mea-
surements, these basic distributions can be compared against obser-
vations and numerical simulations. I use spectral energy distribution
(SED) based SFR estimates of galaxies in the local Universe from
the Sloan Digital Sky Survey (SDSS) (Chang et al. 2015), ultravi-
olet (UV) and infrared (IR) based SFR measurements of galaxies
at z ∼ 2 from 3D-HST (Brammer et al. 2012; Skelton et al. 2014),
as well as SFRs measured in cosmological simulations (Feldmann
et al. 2016) that are part of the Feedback in Realistic Environments
(FIRE) Project (Hopkins et al. 2014).

This Letter is organized as follows: Section 2 introduces probabil-
ity distributions to model SFRs in galaxy samples. Section 3 shows
that zero-inflated NBDs (zNBDs) provide adequate approximations
to SFR distributions in observations and numerical simulations. I
discuss the implications for a possible SFR bimodality in the final
section.

2 MO D E L L I N G T H E D I S T R I BU T I O N O F SF R S

At fixed stellar mass, SFRs of star-forming galaxies are typically
assumed to obey lognormal distributions (e.g. Chang et al. 2015),
i.e. the logarithm1 of the SFR is assumed to be a continuous variable
that is normally distributed with standard deviation σ ≡ σln SFR =
σlg SFR ln 10. The mean, median and most probable value of lg SFR
coincide, and they define the position of the star-forming sequence
for the given stellar mass.

Instead, I propose to model SFRs of galaxies with NBDs. As
NBDs describe count data, I assume that the star formation activ-
ity over time tav consists of individual star formation events, each
adding mass mSFC, i.e.

SFR = SFC mSFC/tav. (1)

SFC (‘star formation count’) is a non-negative integer-valued ran-
dom variable with a [potentially zero-inflated (discussed later)]
NBD.

The probability mass function (PMF) of an NBD is specified by
two parameters, for example, the expected count μ and a shape
parameter θ , both positive real numbers. The probability of the
outcome SFC = k ∈ N is (e.g. Cameron & Trivedi 2013)

PNB(k; μ, θ ) =
(

θ + k − 1

θ − 1

) (
μ

θ + μ

)k (
θ

θ + μ

)θ

. (2)

If θ is a positive integer, equation (2) describes the probability
distribution of the number of Bernoulli trials (each with a success
probability θ/[θ + μ]) undertaken before the θ th trial is successful.
Cases with θ = 1 are known as geometric distributions. There exist
many other characterizations of NBDs (Boswell & Patil 1970). For
the remainder of this Letter, I will assume θ = O(1) and μ � θ .

NBDs are often used to model count data that is ‘overdispersed’
relative to a Poisson distribution.2 NBDs are Poisson–Gamma mix-
tures, which suggests a simple physical interpretation: The overdis-
persion arises from galaxy-by-galaxy variations of the expected
number of SFCs even among galaxies of the same stellar mass.
This is plausible as the expected number of SFCs in a galaxy should
vary depending on the state of its interstellar medium.

Zero-inflated models (Mullahy 1986; Lambert 1992) increase the
probability of obtaining zero counts, i.e. of producing galaxies with
zero SFRs. For zNBDs,

PzNB(k; π,μ, θ ) = π δ0k + (1 − π )PNB(k; μ, θ ), (3)

where π ∈ [0, 1] parametrizes the excess probability to obtain zero
counts: PzNB(0; π , μ, θ ) − PNB(0; μ, θ ) = π [1 − PNB(0; μ, θ )].
Candidate processes responsible for π > 0 include galactic outflows
powered by starbursts or active galactic nuclei (e.g. King & Pounds

1 In the following, log , lg and ln denote the logarithm to an arbitrary base,
to base 10 and to base e, respectively.

2 A Poisson-distributed random variable has a variance equal to its mean
value μ. In contrast, the variance of a random variable with an NBD is equal
to μ + μ2/θ , i.e. the variance at given μ can be adjusted by changing θ .
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Figure 1. Properties of negative binomial, zero-inflated negative binomial, lognormal and Poisson distributions. All distributions have the same mean number
of counts (μ = 300). For illustration purposes, I convert between counts (bottom axis) and sSFR (top axis) by assuming that each count corresponds to a
fractional increase of galactic stellar mass by 3.3 × 10−4 over the past 20 Myr. Left-hand panel: PMFs of all considered distributions are unimodal. The PMF
of an NBD with θ ≤ 1 decreases monotonically with increasing counts. For large μ, the PMF of a Poisson distribution approximates a normal distribution with
mean = variance = μ. Middle panel: probability density function (PDF) of log counts. All distributions show a well-defined ‘star-forming sequence’ with a
peak close to lg μ. Compared with the observed star-forming sequence, a Poisson distribution predicts a much narrower star-forming sequence. NBDs with
θ = 1 predict a reasonable amount of scatter and a negligible fraction of galaxies with zero SFRs. NBDs with θ < 1 result in a strongly broadened star-forming
sequence and in a significant number of non-star-forming galaxies. Zero-inflated variants of the shown distributions boost the probability of having zero counts.
Right-hand panel: upward (�+) and downward (�−) scatter relative to the peak of the lg count distribution as a function of θ for NBDs (see the text). The
downward scatter is generally larger than the upward scatter. The dot–dashed curve shows the approximation θ−1/2/ln 10, which holds if 1 � θ 	 μ. NBDs
with θ ∼ 0.3–3 have a scatter relative to the peak of the star-forming sequence of about 0.2–1 dex.

2015; Somerville & Davé 2015, and references therein) and strong
environmental effects (Gunn & Gott 1972).

Examples of lognormal, negative binomial, zero-inflated nega-
tive binomial and Poisson distributions are shown in Fig. 1. For
illustrative purposes, I convert between PMFs and probability den-
sity distributions (PDFs) by approximating probability point masses
with intervals of uniform probability density. As the figure shows,
a count of zero is the most probable outcome for random variables
with (z)NBDs if θ ≤ 1. Interestingly, while the probability of obtain-
ing a certain count value is unimodal and decreases monotonically
with the count value for (z)NBDs, the distribution of the logarithm
of the count variable shows a well-defined peak near3 the logarithm
of μ. In addition, a conversion to log counts requires that zero and
non-zero counts are treated as separate components. As I argue in
Section 4, this split into two components may lead to an apparent
‘bimodality’ of log SFR distributions.

Fig. 1 also illustrates that the distribution of log counts around
the peak is asymmetric for (z)NBDs. There is a significant tail to-
wards lower values, resulting in a non-negligible probability of a
zero count outcome if θ < 1. Furthermore, the degree of asym-
metry and the width of the log count distribution increases with
decreasing θ (see the right-hand panel). There, I plot how the up-
ward scatter (�+) and the downward (�−) scatter4 relative to the
peak of the PDF scale with θ . For θ < 1, upward scatter and
downward scatter differ significantly from each other, while for
θ � 1, �+ ∼ �− ∼ θ−1/2/ln 10.

3 Provided μ � θ , the peak of lg count is near lg(μ + θ/2) ∼ lg μ. In
contrast, for a lognormally distributed random variable X, the distributions

of lg X and X peak at lg μ − σ 2

2 ln 10 and μ/e1.5σ 2
, respectively.

4 �+ and �− are defined as follows. Let lg c∗ denote the position where
the PDF of lg counts reaches its maximum value p∗. Increasing (decreasing)
the counts by �+(�−) dex relative to c∗ results in a decrease of the PDF by
χ = e−1/2 relative to p∗. The factor e−1/2 is chosen such that �+ = �− = 1
standard deviation for a normal distributed PDF of lg counts. For μ � θ ,
�± = lg(−W∓(−χ1/θ /e)), where W+ and W− are the principal and the −1
branch of the Lambert W function, respectively.

3 C O M PA R I S O N W I T H O B S E RVAT I O N S A N D
SI MULATI ONS

I use three samples of galaxies at different redshifts, with differ-
ent stellar masses and from different sources to test whether SFR
distributions at fixed stellar mass can be approximated by zNBDs.

The first sample comprises 38 246 nearby galaxies from SDSS.
SFR and stellar mass estimates are based on multiwavelength (UV
to mid-IR) SED modelling (Chang et al. 2015). I select a mass-
complete sample of galaxies5 with stellar masses in the range of
1010–1011 M� and with redshifts z < 0.054 56. I set the SFR of a
galaxy to zero if the best-fitting sSFR is very low (<3 × 10−12 yr−1)
and the modelling error is at least twice the spread of the star-
forming sequence.

The second sample contains 2317 galaxies at z ∼ 2 from the 3D-
HST survey (Brammer et al. 2012; Skelton et al. 2014; catalogue
v4.1). SFRs in the catalogue are based on UV+24 µm luminosities
(SFRs of non-detected galaxies are set to zero), while stellar masses
are derived from SEDs fits. I select all galaxies6 from the five
available fields with stellar masses in the range of 1010–1011 M�
and with redshifts z = 1.5–2. For both observational samples, I
convert SFR into SFC with the help of equation (1) and by adopting
a conversion factor7 of mSFC/tav = 10−3 M� yr−1.

The last sample combines SFRs and stellar masses from cosmo-
logical galaxy simulations. Specifically, I use 1648 z = 6 galaxies
with Mstar = 107–109 M� from the MassiveFIRE simulation suite
(Feldmann et al. 2016, 2017). Gas and stellar components of the
simulated galaxies are represented by gas and star particles with

5 Excluding galaxies with flag �= 1, i.e. those without reliable aperture
corrections, WISE photometry or SED fits.

6 Excluding galaxies with star_flag = 1, near_star = 1 or use_phot �= 1.
7 This choice corresponds to, for example, mSFC = 2 × 104 M� and

tav = 20 Myr. However, provided k � 1 and μ � θ , (z)NBDs are
well approximated by (zero-inflated) gamma distributions, and the PDF
of lg SFR for SFR > 0 approaches ln (10) x PGamma(x; α = θ , β = 1) with
x = θ SFR/〈SFR〉, i.e. it is independent of the conversion factor.
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masses mb = 3.3 × 104 M�. Star formation occurs probabilisti-
cally based on the local conditions of the interstellar medium. Each
individual star formation event results in the formation of a star
particle of mass mb. I refer the reader to Hopkins et al. (2014) for
a background on the simulation methodology. Stellar masses and
SFRs are measured within radii of 0.1Rvir of the primary dark matter
haloes hosting a given galaxy, excluding satellites. SFRs are aver-
aged over the past 20 Myr and converted into SFCs via equation (1)
with mSFC = mb and tav = 20 Myr.

The data sets contain galaxies of a range of stellar masses to in-
crease the sample size. To combine the SFR distribution of galaxies
with different stellar masses, I convert SFRs into SFCs and perform
generalized linear regressions of the SFCs as a function of ln Mstar

with a log link function.8 I thus simultaneously fit for the position
of the star-forming sequence as a function of stellar mass and con-
strain the parameters for the assumed distribution of SFCs at fixed
stellar mass.

The Akaike information criterion (AIC; Akaike 1974) measures
how well, relative to each other, different statistical models describe
a given data set. Among the SFC distributions I tested (negative
binomial, geometric, lognormal, Poisson distributions as well as
their zero-inflated versions), zNBDs performed best under the AIC
metric. Fig. 2 clarifies why zNBDs work so well. The lg sSFR
distribution is highly asymmetric with a tail towards low values.
Furthermore, there is a significant fraction of galaxies with vanish-
ing SFRs or SFRs below the detection limit. These properties are
captured by zNBDs but not by, for example, lognormal distributions.

I tested the sensitivity of the fitted model parameters (overdisper-
sion parameter θ , stellar mass scalings of the average SFR and of the
excess probability π ) by analysing additional MassiveFIRE-based
samples for different redshifts and mass resolutions. The main find-
ings are as follows: The slope and normalization of the star-forming
sequence show significant changes with redshift (as expected) and
only slight changes with particle resolution. The excess probability
π is not affected by redshift or mass resolution. The overdispersion
θ does not depend on redshift but varies mildly with mass resolution
in a not obviously systematic way.

Finally, I also explored the effect of varying the time interval
over which SFRs are averaged. As expected, reducing tav results in
a smaller number of SFCs and a larger fraction of galaxies with zero
SFRs. Specifically, π increases from 20 per cent to 52 per cent as
tav is reduced from 100 Myr to 5 Myr. Moreover, θ increases, i.e.,
the scatter of the star-forming sequence decreases, with increasing
averaging time. However, the change in θ is relatively modest (a
factor of 1.9 when tav increases from 20 to 100 Myr). Furthermore,
θ remains unchanged if tav is lowered to 5 Myr. This suggests
that the star formation activity of MassiveFIRE galaxies is strongly
correlated on � 20 Myr time-scales.

4 D I S C U S S I O N A N D C O N C L U S I O N S

(z)NBDs predict significant numbers of galaxies with vanishing
SFRs. As discussed in Section 2, these ‘dead’ galaxies form a sep-
arate component upon log-transforming SFRs, while the remaining
galaxies have a unimodal log SFR distribution with an extensive

8 Statistical analyses are carried out with R (www.r-project.org) using
the standard glm function to fit Poisson and geometric distributions, the
glm.nb function from the MASS package to fit NBDs and the zeroinfl
function from the PSCL package to fit zNBDs. An example regression script
is provided at www.ics.uzh.ch/∼feldmann/resources.html.

Figure 2. Distribution of sSFRs in observations and simulations. Each panel
shows a histogram of the sSFR relative to peak of the star-forming sequence
for mass- and redshift-selected samples of galaxies from SDSS (Chang et al.
2015), 3D-HST (Brammer et al. 2012) and MassiveFIRE (Feldmann et al.
2016). Best-fitting zNBDs (co-added relative to the Mstar-dependent peak
of the star-forming sequence) are shown as dashed lines, and galaxies with
undetected or zero SFRs are shown as the grey-shaded areas. The SFR
distributions of the three samples are well fitted by zNBDs.

Figure 3. Difference between actual SFR distributions and inferred ones.
An input SFR distribution (black histogram) is subjected to measurement
uncertainties (red histogram) and non-linear biases (blue histogram). Mea-
surement uncertainties can create the illusion of a bimodal distribution, while
biases can shift and tighten the appearance of the star-forming sequence and
reduce the number of galaxies with intermediate-to-low SFRs.

tail towards low SFRs. The reader may ask whether these findings
are consistent with claims of an SFR bimodality (e.g. Elbaz et al.
2007; McGee et al. 2011).

I address this question in Fig. 3 in a schematic way. A detailed
analysis is left for future work. Using the best fitting zNBD of
the SDSS-based sample shown in the top panel of Fig. 2, I create
a mock sample consisting of the SFRs of 40 000 galaxies with
Mstar = 1010.5 M� (black histogram). I then subject this sample to
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non-linear biases and measurement uncertainties.9 The latter moves
galaxies out of the ‘dead’ pile, thereby introducing in a second peak
in the log SFR distribution (red histogram), while biases distort the
apparent shape of the star-forming sequence (blue histogram). The
combination of measurement noise and bias can create the illusion
of a bimodal SFR distribution10 with low numbers of galaxies at
intermediate-to-low SFRs.

Fitting the distribution of SFRs with (z)NBDs is straightforward
(see footnote 8), and it offers substantial benefits compared with
the current standard approach of fitting only the star-forming sub-
sample with lognormals. I recommend its use for the modelling
of SFR distributions both in observations [e.g. in the simplified
form of (zero-inflated) gamma distributions, see footnote 7] and
in simulations (where the conversion parameters mSFC and tav are
given).

AC K N OW L E D G E M E N T S

RF thanks the referee for valuable comments. RF acknowledges
financial support from the Swiss National Science Foundation
(grant no 157591). 3D-HST observations were taken by the 3D-
HST Treasury Programme (GO 12177 and 12328) under NASA
contract NAS5-26555. Simulations were run under allocations
SMD-14-5492, SMD-14-5189, SMD-15-5950 (NASA HEC) and
AST120025, AST150045 (NSF XSEDE).

R E F E R E N C E S

Akaike H., 1974, IEEE Trans. Automat. Contr., 19, 716
Alner G. et al., 1985, Phys. Lett. B, 160, 193
Baldry I. K., Glazebrook K., Brinkmann J., Ivezić Ž., Lupton R. H., Nichol
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Bouché N. et al., 2010, ApJ, 718, 1001
Brammer G. B. et al., 2009, ApJ, 706, L173
Brammer G. B. et al., 2012, ApJS, 200, 13
Brinchmann J., Charlot S., White S. D. M., Tremonti C., Kauffmann G.,

Heckman T., Brinkmann J., 2004, MNRAS, 351, 1151
Cameron A. C., Trivedi P., 2013, Book Cover. Cambridge Univ. Press,

Cambridge
Carruthers P., Duong-Van M., 1983, Phys. Lett. B, 131, 116
Chang Y.-Y., van der Wel A., da Cunha E., Rix H.-W., 2015, ApJS, 219, 8
Dave R., Thompson R., Hopkins P. F., 2016, MNRAS, 462, 3265
De Souza R. S., Hilbe J. M., Buelens B., Riggs J. D., Cameron E., Ishida E.

E. O., Chies-Santos A. L., Killedar M., 2015, MNRAS, 453, 1928
Dominguez A., Siana B., Brooks A. M., Christensen C. R., Bruzual G., Stark

D. P., Alavi A., 2015, MNRAS, 451, 839
Dressler A. et al., 2016, ApJ, 833, 251
Dutton A. A., van den Bosch F. C., Dekel A., 2010, MNRAS, 405, 1690
Elbaz D. et al., 2007, A&A, 468, 33
Feldmann R., Mayer L., 2015, MNRAS, 446, 1939
Feldmann R., Hopkins P. F., Quataert E., Faucher-Giguère C.-A., Kereš D.,
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2017, MNRAS, preprint (arXiv:1610.02411)

Forbes J. C., Krumholz M. R., Burkert A., Dekel A., 2014, MNRAS, 443,
168

Fumagalli M. et al., 2014, ApJ, 796, 35
Gaztanaga E., 1992, ApJ, 398, L17
Genzel R. et al., 2010, MNRAS, 407, 2091
Gladders M. D., Oemler A., Dressler A., Poggianti B., Vulcani B., Abramson

L., 2013, ApJ, 770, 64
Gunn J. E., Gott J. R. I., 1972, ApJ, 176, 1
Hopkins P. F., Kere D., Onorbe J., Faucher-Giguere C.-A., Quataert E.,

Murray N., Bullock J. S., 2014, MNRAS, 445, 581
Kelson D. D., 2014, Astrophys. J., preprint (arXiv:1406.5191)
Kennicutt R. C., 1998, ARA&A, 36, 189
King A., Pounds K., 2015, ARA&A, 53, 115
Kruijssen J. M. D., 2012, MNRAS, 426, 3008
Lada C. J., Lada E. A., 2003, ARA&A, p. 73
Lambert D., 1992, Technometrics, 34, 1
McGee S. L., Balogh M. L., Wilman D. J., Bower R. G., Mulchaey J. S.,

Parker L. C., Oemler A., 2011, MNRAS, 413, 996
Magdis G. E. et al., 2012, ApJ, 760, 6
Man A. W. S. et al., 2016, ApJ, 820, 11
Mancini C., Renzini A., Daddi E., Rodighiero G., Berta S., Grogin N.,

Kocevski D., Koekemoer A., 2015, MNRAS, 450, 763
Moustakas J. et al., 2013, ApJ, 767, 50
Mullahy J., 1986, J. Econ., 33, 341
Noeske K. G. et al., 2007, ApJ, 660, L43
Portegies Zwart S. F., McMillan S. L., Gieles M., 2010, ARA&A, 48,

431
Rodrı́guez-Puebla A., Primack J. R., Behroozi P., Faber S. M., 2016,

MNRAS, 455, 2592
Saintonge A. et al., 2012, ApJ, 758, 73
Salim S. et al., 2009, ApJ, 700, 161
Salmon B. et al., 2015, ApJ, 799, 183
Sánchez Almeida J., Elmegreen B. G., Muñoz-Tuñón C., Elmegreen D. M.,
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