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ABSTRACT
Velocities in stable circular orbits about galaxies, a measure of centripetal gravitation, exceed
the expected Kepler/Newton velocity as orbital radius increases. Standard � cold dark matter
(�CDM) attributes this anomaly to galactic dark matter. McGaugh et al. have recently shown
for 153 disc galaxies that observed radial acceleration is an apparently universal function of
classical acceleration computed for observed galactic baryonic mass density. This is consistent
with the empirical modified Newtonian dynamics (MOND) model, not requiring dark matter.
It is shown here that suitably constrained �CDM and conformal gravity (CG) also produce
such a universal correlation function. �CDM requires a very specific dark matter distribution,
while the implied CG non-classical acceleration must be independent of galactic mass. All
three constrained radial acceleration functions agree with the empirical baryonic v4 Tully–
Fisher relation. Accurate rotation data in the nominally flat velocity range could distinguish
between MOND, �CDM, and CG.
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cosmology: theory.

1 IN T RO D U C T I O N

Velocities of objects in stable circular orbits about galaxies mea-
sure radial gravitational acceleration. Kepler/Newton velocity falls
below observed velocity as orbital radius increases. Standard �

cold dark matter (�CDM) attributes observed excess velocity to
centripetal acceleration due to galactic dark matter.

McGaugh, Lelli & Schombert (2016) have recently shown for
153 disc galaxies that observed acceleration a is effectively a uni-
versal function of Newtonian acceleration aN, computed for the
observed baryonic distribution. The empirical function has negligi-
ble observed scatter.

This radial acceleration relation (RAR) is compatible with the
empirical modified Newtonian dynamics (MOND) model (Mil-
grom 1983, 2016; Sanders 2010; Famaey & McGaugh 2012),
which does not invoke cold dark matter (CDM). It implies some
very simple natural law. It is shown here that such a law is
predicted by conformal theory (Weyl 1918; Mannheim 2006;
Nesbet 2013, 2014), without dark matter. It does not exclude a
specific CDM source density derived here. This is consistent with
conclusions that current �CDM simulations do not imply ob-
served galactic rotation curves (Wu & Kroupa 2015) nor the ob-
served distribution of extragalactic matter (Kroupa 2012). Incre-
mental non-classical conformal gravity (CG) radial acceleration
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�a, constant except for a smooth cut-off in the very large spheri-
cal dark halo, is determined in the isotropic Friedmann–Lemaı̂tre–
Robertson–Walker (FLRW) metric (Nesbet 2015). Derivations of
�a, important only for large orbital radii, are simplified here
by imposing spherical symmetry, valid for acceleration at large
radii.

The empirical RAR (McGaugh et al. 2016) resolves a long-
standing conflict between MOND (Milgrom 1983; Sanders 2010;
Famaey & McGaugh 2012) and CG. Fitting CG to earlier less
precise data (Mannheim 2006; Mannheim & O’Brien 2011), non-
classical acceleration parameter γ has been inferred to depend on
galactic mass, incompatible with negligible scatter of the observed
RAR. Mass-independent γ would agree with the RAR and with
constant MOND scale parameter a0. This supports a recent conclu-
sion that the assumed mass-dependent part γ G = N∗γ ∗ of γ cannot
be derived from current theory (Nesbet 2014).

Agreement of CG with the RAR supports a universal confor-
mal symmetry postulate (Nesbet 2013) that all elementary physical
fields satisfy local Weyl scaling symmetry (Weyl 1918), modify-
ing Einstein–Hilbert general relativity (CG; Mannheim & Kazanas
1989; Mannheim 2006) and the electroweak scalar field model (con-
formal Higgs model; Nesbet 2010, 2011).

2 QUA LI TATI VE I MPLI CATI ONS

The observed correlation (McGaugh et al. 2016) between classical
and non-classical centripetal acceleration puts a strong constraint
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on any theoretical model. Observed radial acceleration a must be a
unique function of Newtonian aN, regardless of galactic structure
or mass. Standard �CDM assumes that a pre-existing dark mat-
ter aggregate attracts baryonic matter, which forms the observable
galaxy. This must correlate the baryonic distribution to the assumed
dark matter with no interaction other than gravity.

a and aN are functions of two variables, galactic mass M and
radius r, even beyond the range of dependence on galactic structure.
If unrelated functions a(x, y) and b(x, y) were plotted against each
other the general result would be a two-dimensional smear, not the
one-dimensional line plot found by McGaugh et al. (2016). This
result requires a(x, y) = F(b(x, y)). Observed correlation function F
depends on only a single variable, with negligible scatter.

Correlation function a = F(aN) is a basic postulate of MOND
(Milgrom 1983, 2016). It will be shown here that CG (Mannheim
2006) and the depleted halo model (Nesbet 2015) produce such a
function if the implied non-classical acceleration parameter is in-
dependent of galactic mass. A particular distribution of dark matter
is derived here for which �CDM also produces such a function.

3 MO N D BAC K G RO U N D

MOND (Milgrom 1983; Sanders 2010; Famaey & McGaugh 2012)
modifies the Newtonian force law for acceleration below an empir-
ical scale a0. Using y = aN/a0 as independent variable (McGaugh
2008; Milgrom 2016), for assumed universal constant a0, MOND
postulates an interpolation function ν(y) such that observed radial
acceleration a = F(aN) = aNν(y), which defines a correlation func-
tion.

For aN � a0, ν → 1 and for aN � a0, ν2 → 1/y. This implies
asymptotic limit a2 → a0aN for small aN, which translates into an
asymptotically flat rotational velocity function v(r) for large galactic
radius r (Milgrom 1983).

4 �C D M BAC K G RO U N D

External Schwarzschild potential function B(r) is determined for a
static spherical galactic model by simplified second-order differen-
tial equation:

∂2
r (rB(r)) = rw(r) (1)

for w(r) determined by source energy–momentum. Centripetal ra-
dial acceleration for a stable circular orbit is

a(r) = v2(r)

r
= 1

2
c2B ′(r). (2)

Spherically averaged mass/energy density w(r) is modelled by
baryonic w0(r) within galactic radius rG, embedded in dark matter
w1(r) within halo radius rH � rG. Then w(r) = w0(r) + w1(r)
within rG. Functions y0 = rB(r) and derivative y1 satisfy differential
equations:

∂ry0 = y1, ∂ry1 = rw(r). (3)

Gravitational potential B(r) is required to be differentiable and
free of singularities. B(r) = α − 2β/r is the source-free solution.
y0(0) = 0 prevents a singularity at the origin. y1(0) can be chosen
to match boundary condition α = 1 at rH.

A solution of equation (1) for r ≤ rH is

y0(r) = rB(r) = −
∫ r

0
wq2 dq + αr − r

∫ rH

r

wq dq,

y1(r) = B(r) + rB ′(r) = α −
∫ rH

r

wq dq. (4)

The simple form a = aN + �a defines RAR correlation function
F(aN) if �a is a universal constant. Dependence on r or M would
produce scatter about such a function plotted as a = F(aN) (Mc-
Gaugh et al. 2016). Equations (2) and (4) imply �CDM dark matter
term �a = 1

2
c2

r2

∫ r

0 w1q
2 dq. Constant �a requires w1(r) = μ/r,

where μ is a universal constant. Constant �a is also implied by the
quantized inertia model (McCulloch 2013, 2017).

5 C O N F O R M A L G R AV I T Y BAC K G RO U N D

Conformal gravity (CG) modifies the metric field action integral
of standard general relativity, replacing the Einstein–Hilbert Ricci
scalar by a quadratic contraction of the conformal Weyl tensor
(Mannheim & Kazanas 1989; Mannheim 2006). Together with the
conformal Higgs model (Nesbet 2011) of dark energy, also without
dark matter, this follows a postulate of universal conformal symme-
try (Nesbet 2013).

In spherical geometry, the static source-free Schwarzschild
potential (Mannheim & Kazanas 1989; Mannheim 2006) is
B(r) = −2β/r + α + γ r − κr2, where all coefficients are con-
stants and α2 = 1 − 6βγ (Mannheim & Kazanas 1991). This
fourth-order CG equation adds two integration parameters γ and
κ to the second-order �CDM equation. γ defines non-classical ra-
dial acceleration and κ determines a cut-off at the halo boundary
(Nesbet 2015). Outside an assumed model spherical source mass,
Schwarzschild potential function B(r) determines circular geodesics
such that ra/c2 = v2/c2 = 1

2 rB ′(r) = β/r + 1
2 γ r − κr2. The

Kepler formula is raN/c2 = β/r. Agreement with standard gen-
eral relativity for subgalactic phenomena requires β = GM/c2.

Observed orbital velocities for 138 galaxies are fitted assum-
ing γ = γ 0 + γ G, where γ G = N∗γ ∗ (Mannheim 1997, 2006)
for N∗ = M/M	. Constants inferred from this rotation data
are γ 0 = 3.06 × 10−28 m−1, γ ∗ = 5.42 × 10−39 m−1, and
κ = 9.54 × 10−50 m−2 (Mannheim 1997; Mannheim & O’Brien
2011, 2012; O’Brien & Mannheim 2012; O’Brien & Moss 2015;
O’Brien, Chiarelli & Mannheim 2017).

Well inside a galactic halo boundary, 2κr/γ can be neglected. For
�a = 1

2 γ c2 this defines RAR correlation function F(aN) = aN +�a
if constant γ is mass independent, as indicated by a recent study
(Nesbet 2014).

CG fits to galactic orbital velocities (Mannheim 2006; Mannheim
& O’Brien 2012) determine γ directly for galactic mass M after
scaling by an assumed mass-to-light ratio ϒ . ϒ is adjusted for each
galaxy to make assumed γ = γ 0 + N∗γ ∗ as consistent as possible for
a set of galaxies, with universal constants γ 0 and γ ∗. This procedure
has been remarkably successful for 138 galaxies (Mannheim 1997;
Mannheim & O’Brien 2011, 2012; O’Brien & Mannheim 2012).

Replacing γ 0 by total γ and eliminating γ ∗ would retain the
orbital rotation velocity function to good accuracy. The practical
issue is whether or not mass-to-light parameters ϒ could be adjusted
to give mass-independent γ . The recent study by McGaugh et al.
(2016) strongly indicates that this is possible. This study, designed
to reduce observational error as much as possible, eliminates the
need to adjust ϒ for each galaxy. CG can be empirically correct
only if γ is mass independent.

6 D E T E R M I NAT I O N O F PA R A M E T E R γ

In the Schwarzschild metric, non-classical CG acceleration param-
eter γ for a galaxy has been assumed to take the form γ = γ 0 + γ G,
where γ G = N∗γ ∗ (Mannheim 1997), proportional to galactic mass
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M = N∗M	 in solar mass units. Mass-independent γ 0 is attributed
to the Hubble flow.

The depleted halo model (Nesbet 2015) justifies this rationale for
mass-independent γ 0. One might anticipate a second fundamental
constant γ ∗, as assumed by Mannheim et al. (Mannheim 1997,
2006; Mannheim & O’Brien 2012; O’Brien & Moss 2015). The
RAR (McGaugh et al. 2016) requires γ ∗ = 0. If so, γ 0 must be
identified with inferred universal constant total γ , in agreement
with MOND constant a0.

A galaxy of mass M can be modelled by spherically averaged
mass density ρ̄G/c2 within radius rG, formed by condensation of
primordial uniform, isotropic matter of mass density ρm/c2 from a
sphere of large radius rH (Nesbet 2015).

The depleted halo model (Nesbet 2015) identifies the dark halo
inferred from gravitational lensing and anomalous centripetal ac-
celeration with this depleted sphere.

Given constant mean density ρ̄G within rG, this model determines
empty halo radius rH = rG(ρ̄G/ρm)1/3. Empirical parameters γ and
κ from Schwarzschild potential B(r) imply halo radius rH = 1

2 γ /κ

(Nesbet 2015).
For the Milky Way, rH = 33.28 × 1020 m = 107.8 kpc, compared

with rG 
 15.0 kpc.
The conformal Friedmann equation (Nesbet 2015), with

Friedmann weight parameters �k and �m set to zero (Nesbet 2011),
fits observed Hubble function h(t) = H(t)/H0, scaled by Hubble con-
stant H0, as accurately as �CDM, with only one free constant for
redshifts z ≤ 1 (7.33 Gyr) (Nesbet 2010, 2011). This determines
Friedmann weights, at present time t0, �� = 0.732, �q = 0.268,
where acceleration weight �q = äa

ȧ2 and a(t) is the computed Fried-
mann scale factor (Nesbet 2010, 2011).

A geodesic passing into the empty halo from the surrounding cos-
mic background is deflected by acceleration proportional to incre-
mental Hubble acceleration (Nesbet 2015) ��q = (1 − ��)(0) −
(1 − �� − �m)(ρm) = �m(ρm) = 2

3
τ̄ c2ρm

H 2
0

(Nesbet 2011).

Converted from Hubble units, this implies non-classical cen-
tripetal acceleration 1

2 γ c2 = −cH0�m(ρm) (Nesbet 2015). �m < 0
because non-classical constant τ̄ < 0 (Nesbet 2011). This is ob-
served as gravitational lensing and in anomalous orbital rotation
velocities.

This logic is equivalent to requiring continuous radial accelera-
tion across halo radius rH as a boundary condition:

1

2
γHc2 − cH0�q(0) = −cH0�q(ρm). (5)

Notation γ H is used here for the contribution to total acceleration
parameter γ arising from the halo boundary. Signs here follow from
the definition of �q as centrifugal acceleration weight.

Comparison of conformal theory with observed data depends on
exact solutions of the field equations in highly symmetric geome-
tries characterized by two different relativistic metrics. The confor-
mal Higgs model (Nesbet 2011, 2013) has an exact time-dependent,
spatially uniform solution in the FLRW metric, which describes
Hubble expansion. CG (Mannheim & Kazanas 1989; Mannheim
2006) has an exact solution for spherical symmetry in the static
Schwarzschild metric, which describes anomalous galactic rotation.

The equations are decoupled (Nesbet 2014) by separating source
mass/energy density ρ into uniform average density ρ̄ for the con-
formal Higgs model and residual density ρ̂ = ρ − ρ̄ for CG. These
solutions must be made consistent by choice of parameters and
boundary conditions (Nesbet 2014).

For a spherical solar mass isolated in a galactic halo, γ ∗ = 0 re-
sults from requiring continuous radial acceleration across boundary

radius r	 (Nesbet 2014). Mean internal mass density ρ̄	 within r	
determines an exact solution of the conformal Higgs gravitational
equation (Nesbet 2011, 2013), giving internal acceleration weight
�q(ρ̄	). For continuous radial acceleration across r	,

1

2
γ	,inc

2 − cH0�q(ρ̄	) = 1

2
γ c2 − cH0�q(0), (6)

constant γ	, in is determined by local mean source density ρ̄	, valid
inside r	. γ is a constant of integration that cannot vary within the
source-free halo. Equation (6) does not determine a mass-dependent
increment.

Thus galactic γ consists entirely of constant γ H determined at
halo boundary rH. It is constant and spatially uniform in the source-
free space because it depends only on uniform cosmic background
density ρm and on Hubble constant H0 = 2.197 × 10−18 s−1 (Planck
Collaboration XIII 2016).

7 T H E T U L LY– F I S H E R R E L AT I O N

Static spherical geometry defines Schwarzschild potential B(r).
For a test particle in a stable exterior circular orbit with veloc-
ity v the centripetal acceleration is a = v2(r)/r = 1

2 B ′(r)c2. Given
β = GM/c2, Newtonian B(r) = 1 − 2β/r for sufficiently large r, so
that aN = βc2/r2 = GM/r2.

MOND postulate a2 → aNa0 as aN → 0 (Milgrom 1983;
McGaugh 2011) implies v4 = a2r2 → GMa0. This supports the
empirical baryonic Tully–Fisher relation(Tully & Fisher 1977; Mc-
Gaugh 2005, 2011).

CG function B(r) determines orbital velocity in the source-free
halo v2/c2 = ra/c2 = β/r + 1

2 γ r − κr2. For r in a range outside
rG such that Newtonian raN/c2 
 β/r, while 2κr/γ can be ne-
glected, the slope of v2(r) vanishes at r2

TF = 2β/γ . This implies that
v4(rTF)/c4 = (β/rTF + 1

2 γ rTF)2 = 2βγ (Mannheim 1997; Nesbet
2014). This is the Tully–Fisher relation, exact at stationary point
rTF of the v(r) function. Given β = GM/c2, v4 
 2GMγ c2, for
relatively constant v(r) centred at rTF. This derivation holds for CG
neglecting κ and for equivalent �CDM with source density μ/r.
MOND v4 = GMa0 would be identical if a0 = 2γ c2 (Mannheim
1997). rTF can be defined as the outermost crossing point of the
Newtonian and non-classical acceleration functions.

8 DATA FO R M I L K Y WAY

Given kpc = 0.30857 × 1020 m, G = 6.674 × 10−11 m3 kg s−2,
c2 = 8.982 × 1016 m2 s−2, γ = 6.35 × 10−28 m−1, and M =
1.207 × 1041 kg (Mannheim 1997, 2006; McGaugh 2008;
Mannheim & O’Brien 2011; O’Brien & Moss 2015), then
βc2 = GM = 8.056 × 1030 m3 s−2.

Milky Way Tully–Fisher radius rTF = 17.2 kpc, halo radius
rH = 107.8 kpc (Nesbet 2015, 2014) for rG 
 15.0 kpc. Implied
MOND constant a0 = 2γ c2 = 1.14 × 10−10 m s−2. Outside rG, aN


 βc2/r2. a (CDM) = aN + 1
2 γ c2, using empirical CG �a, a

(CG) = aN + 1
2 γ c2(1 − r/rH), including parameter κ , and a (Mc-

Gaugh et al. 2016) 
aN/(1 − e−√
aN/a0 ), just MOND with a particu-

lar interpolation function and a0 = 1.20 × 10−10 m s−2. The CDM
function is generic for any model with universal constant �a.

Table 1 compares detailed predictions for the implied nearly flat
external orbital velocity curve for the Milky Way galaxy. The CDM
curve rises gradually, the CG curve remains remarkably flat, while
the MOND (McGaugh et al. 2016) curve falls gradually towards a
definite asymptotic velocity.
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Table 1. Milky Way: radial acceleration(10−10 m s−2).

r CDM CG MOND
(kpc) aN a 103 v

c
a 103 v

c
a 103 v

c

15 0.376 0.661 0.584 0.621 0.566 0.877 0.672
20 0.212 0.497 0.584 0.444 0.552 0.617 0.650
25 0.135 0.420 0.601 0.354 0.551 0.475 0.638
30 0.094 0.379 0.625 0.300 0.556 0.385 0.630
35 0.069 0.354 0.652 0.261 0.560 0.324 0.624
40 0.053 0.338 0.682 0.232 0.565 0.279 0.619
45 0.042 0.327 0.717 0.208 0.567 0.246 0.616
50 0.034 0.319 0.740 0.187 0.566 0.219 0.613

9 C O N C L U S I O N S

�CDM, restricted to CDM source density μ/r; CG, restricted
to mass-independent non-classical acceleration parameter γ ;
and MOND, with a particular implied interpolation function
(McGaugh et al. 2016), are consistent with the recent RAR (Mc-
Gaugh et al. 2016) and with other qualitative features of observed
stellar-dominated galactic orbital velocities. Velocities exceed the
Newtonian value but remain nearly constant for a large range of radii
extending into the galactic dark halo. This constant velocity is char-
acterized by the baryonic Tully–Fisher relation (McGaugh 2005,
2011), with v4 proportional to baryonic galactic mass M. Note that
the integrated CDM source density produces a mass-independent
constant, consistent with CG non-classical acceleration γ .

If γ is independent of galactic mass, CG is compatible with the
RAR (McGaugh et al. 2016). This supports the conclusion that
CG determines only mass-independent γ (Nesbet 2014). Dark mat-
ter source density μ/r would determine constant �a in �CDM,
with the same implications as CG except at large radii, where
CG implies effects not described by �CDM or MOND. CG or-
bital velocity drops to zero at an outer boundary (Mannheim &
O’Brien 2011), identified as the dark halo radius (Nesbet 2015).
CG parameter κ , consistent with the halo radius, does not have
a counterpart in �CDM or MOND. Distinction between �CDM,
CG, and MOND requires accurate rotational data at large galactic
radii.
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