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abstract: Nitrosative stress is produced by high levels of reactive nitrogen species (RNS). The RNS include peroxynitrite, a highly reactive
free radical produced from a diffusion-controlled reaction between nitric oxide and superoxide anion. Peroxynitrite causes nitration and oxidation
of lipids, proteins and DNA, and is thus considered an important pathogenic mechanism in various diseases. Although high levels of peroxynitrite
are associated with astenozoospermia, few reports exist regarding the in vitro effect of high levels of this RNS on human sperm. The aim of this
study was to evaluate the in vitro effect of nitrosative stress caused by peroxynitrite on the viability, motility and mitochondrial membrane potential
of human spermatozoa. To do this, human spermatozoa from healthy donors were exposed in vitro to 3-morpholinosydnonimine (SIN-1), a
molecule that generates peroxynitrite. Incubations were done at 378C for up to 4 h with SIN-1 concentrations between 0.2 and 1.0 mmol/l.
Generation of peroxynitrite was confirmed using dihydrorhodamine 123 (DHR) by spectrophotometry and flow cytometry. Sperm viability
was assessed by propidium iodide staining; sperm motility was analyzed by CASA, and the state of mitochondrial membrane potential
(DCm) by JC-1 staining. Viability andDCm were measured by flow cytometry. The results showed an increase in DHR oxidation, demonstrating
the generation of peroxynitrite through SIN-1. Peroxynitrite decreased progressive and total motility, as well as some sperm kinetic parameters.
Mitochondrial membrane potential also decreased. These alterations occurred with no decrease in sperm viability. In conclusion, peroxynitrite-
induced nitrosative stress impairs vital functions in the male gamete, possibly contributing to male infertility.
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Introduction
Oxidative stress caused by an excess of reactive oxygen species (ROS)
damages proteins, lipids and DNA in human spermatozoa and is consid-
ered a major cause of impaired sperm function (Makker et al., 2009;
Gharagozloo and Aitken, 2011). Like ROS, reactive nitrogen species
(RNS) when produced at high levels during so-called nitrosative stress,
cause modifications to several biomolecules (Nash et al., 2012). RNS
include nitrogen dioxide (NO2), peroxynitrite (ONOO2) and nitric
oxide (NO) (Nash et al., 2012). NO, a diffusible free radical acting as
intracellular messenger, has been implicated in numerous physiological
and pathological conditions (Pacher et al., 2007). NO production in
several compartments of the male reproductive system (Ehren et al.,
1994; Zini et al., 1996; Uckert et al., 2003) and in spermatozoa
(Herrero et al., 1996; Lewis et al., 1996; O’Bryan et al., 1998) has been
reported, supporting several sperm functions at physiological levels
(Zini et al., 1995; Lewis et al., 1996; Sengoku et al., 1998; Revelli et al.,

1999; Belen Herrero et al., 2000; Miraglia et al., 2011). In contrast,
high levels of NO are associated with alterations in sperm function, par-
ticularly with decreased motility (Rosselli et al., 1995; Weinberg et al.,
1995; Nobunaga et al., 1996), inhibition of cellular respiration (Wein-
berg et al., 1995) and DNA damage (Amiri et al., 2007; Santiso et al.,
2012).

However, it has been suggested that most detrimental effects attribu-
ted to NO are the result of its reaction with superoxide (O2

2), which
produces peroxynitrite (Pacher et al., 2007). Peroxynitrite covalently
interacts with most biomolecules and its cytotoxicity is mediated
through lipid peroxidation, protein oxidation and nitration, activation
of matrix metalloproteinases and inactivation of several enzymes,
particularly mitochondrial enzymes, and also DNA oxidation and frag-
mentation. Peroxynitrite adversely affects viability and cell function and
can also induce cell death by apoptosis or necrosis, and has been
implicated in several diseases [reviewed in Pacher et al. (2007) and
Szabo et al. (2007)].
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High levels of seminal ONOO2 have been associated with male infer-
tility. In asthenozoospermic infertile men, higher levels of ONOO2 and
nitration of the tyrosine residues have been found than in normospermic
fertile men (Vignini et al., 2006; Salvolini et al., 2012). A negative correl-
ation has been reported between ONOO2 concentration and sperm
morphology and motility (Vignini et al., 2006; Khosravi et al., 2012).
Also, negative associations were found between ONOO2 levels and
Na+/K+-ATPase and Ca2+-ATPase activity, and total thiol content
(Vignini et al., 2009). A positive correlation has also been reported
between RNS and sperm DNA fragmentation (Khosravi et al., 2012).
It has been suggested that ONOO2 generation is the result of excessive
activity of nitric oxide synthase and nitric oxide formation, which would
cause the decreased sperm function observed in patients with varicocele
(Mitropoulos et al., 1996). Oztezcan et al. reported that upon in vitro ex-
posure to ONOO2, human spermatozoa showed reduced motility and
a decrease in the total sulfhydryl group as well as increased lipid perox-
idation (Oztezcan et al., 1999).

Although many studies have been published regarding the negative
effect of peroxynitrite on somatic cells [for an extensive review, see
Pacher et al. (2007)], few studies have reported the in vitro effect of per-
oxynitrite in human sperm. Therefore, the aim of this study was to evalu-
ate the in vitro effect of peroxynitrite on human spermatozoa. To do this,
human spermatozoa from healthy donors were exposed to a molecule
that generates peroxynitrite and then sperm viability, motility and mito-
chondrial membrane potential were evaluated.

Materials and Methods

Semen preparation and analysis
The semen samples were obtained from four healthy donors during the
study. Donors were informed and signed a written consent form. The
samples obtained from the same donor were requested with at least a
15-day interval. The study was approved by the Scientific Ethics Committee
of the Universidad de La Frontera.

Semen samples were obtained by masturbation, with at least 3 days of
sexual abstinence. Semen was collected in sterile vessels and maintained at
room temperature for 30 to 60 min until liquefaction. Standard semen ana-
lysis was performed according to the WHO Manual (World Health Organ-
ization, 2010). Only normal samples were used in the experiments as per
WHO 2010 guidelines.

Generation of peroxynitrite
3-Morpholinosydnonimine (SIN-1; Enzo Life Science Inc., Farmingdale, NY,
USA) was used for generation of peroxynitrite. SIN-1 in solution and in the
presence of oxygen decomposes spontaneously releasing NO and O2

2,
which react together forming peroxynitrite (Blanco Garcia et al., 2009).
A stock solution of SIN-1 was prepared at 100 mmol/l in dimethyl sulfoxide
(DMSO), before being aliquoted and stored at 2208C.

Detection of peroxynitrite production
In order to check peroxynitrite generation by SIN-1, we used dihydrorhoda-
mine 123 (DHR; Enzo Life Science Inc.), which is oxidized to the product
rhodamine by peroxynitrite but not by other oxidants such as hydrogen per-
oxide, superoxide anion or nitric oxide (Crow, 1997).

A stock solution of DHR was prepared in DMSO at 20 mmol/l and stored
at 2208C. Working solutions were prepared freshly by dilution in DMSO to
obtain 1 mmol/l solutions (Aziz et al., 2010). Rhodamine generation was
evaluated by flow cytometry and spectrophotometry. DHR does not

absorb light or emit fluorescence, but its oxidized product, rhodamine, exhi-
bits a linear oxidant-dependent increase in light absorbance at 500 nm and
fluorescence emission at 536 nm (Crow, 1997; Blanco Garcia et al., 2009).

To demonstrate peroxynitrite generation by SIN-1, 1 ml aliquots of
100 mmol/l of DHR in Dulbecco’s phosphate buffered saline (DPBS) at pH
7.3 were supplemented with SIN-1 to final concentrations of 0.05, 0.2,
0.4, 0.6, 0.8 and 1.0 mmol/l. A control without SIN-1 was also included.
Rhodamine formation was monitored by increasing absorbance every
1 min for 4 h at 500 nm in a spectrophotometer Optizen 3220 UV
(Mecasys Co., Daejeon, Republic of Korea)

For analysis of peroxynitrite permeability through cell membranes, ali-
quots of 1 ml of sperm suspension at 2 × 106 ml21 were incubated with
0.8 mmol/l of SIN-1 at 378C for 4 h. An untreated sperm control and a
vehicle control were included. The vehicle control consisted of sperm ali-
quots exposed to 1% v/v of DMSO (the highest concentration used).
After the SIN-1 incubation period, the cells were washed once and incubated
with 1 mmol/l of DHR at 378C for 20 min. The mean fluorescence intensity
(MFI) of DHR in the cells was determined using flow cytometry.

Sperm viability
The effect of peroxynitrite on sperm viability was evaluated by incorporating
propidium iodide (PI; Sigma-Aldrich Inc., St Louis, MO, USA). For this, ali-
quots of a sperm suspension at 2 × 106 ml21 were incubated separately
with 0.5 and 1.0 mmol/l of SIN-1 at 378C for 4 h. An untreated control
and a vehicle control were also included in each experiment. The vehicle
control consisted of sperm aliquots exposed to 1% v/v of DMSO. After
incubation, the spermatozoa were washed twice with DPBS at 500g
for 5 min, the supernatant discarded and the cells were resuspended
with DPBS to 400 ml. The percentage of living spermatozoa was determined
by adding PI to a final concentration of 1 mmol/l and analyzing by flow cyto-
metry. The sperm viability was determined as the mean percentage of
PI-negative cells.

Sperm motility
To evaluate the effect of SIN-1 on sperm motility, Computer-Aided Sperm
Analysis (CASA) was used through the Integrated Sperm Analysis System
software (ISAS; Proiser, Valencia, Spain). Negative contrast was used and a
minimum of 200 spermatozoa were examined for each test using the adjust-
ments for assessing human spermatozoa. The parameter settings were: 25
frames/s; 15–50 mm2 for head area; and curvilinear velocity (VCL) .

10 mm/s to classify a spermatozoon as motile. Neat semen samples were
diluted to 20 × 106 spermatozoa/ml with spermatozoa-free seminal
plasma and the suspension was kept at 378C (World Health Organization,
2010). Aliquots of 0.5 ml were exposed separately to 0.5 and 1.0 mmol/l
of SIN-1 at 378C for 4 h. An untreated control was included. Sperm motility
was assessed every hour. Avehicle control which consisted of sperm aliquots
exposed to 1% v/v of DMSO was also incubated at 378C for 4 h. Progressive
motility and kinetic sperm parameters were assessed.

Mitochondrial membrane potential
The mitochondrial membrane potential (DCm) was assessed using the
Mı̂t-E-CTM mitochondrial permeability detection kit (Enzo Life Science
Inc.) which uses the reagent JC-1 (5,5′6,6′-tetrachloro-1,1′,3,3′-tetraethyl-
benzamidazolocarbocyanin iodide). JC-1 is a cationic dye which accumulates
in DCm intact mitochondria forming aggregates and emits orange fluores-
cence. Orange fluorescence levels of JC-1 aggregates arecorrelated toDCm.

The experiments to evaluate the DCm entailed sperm suspensions at
2 × 106 spermatozoa/ml in DPBS being incubated with SIN-1 to 0.2,
0.4, 0.6, 0.8 and 1.0 mmol/l. An untreated control and a vehicle control
were also included. The vehicle control consisted of sperm aliquots
exposed to 1% v/v of DMSO. The incubation was performed at 378C for
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1 h. After incubation, the sperm suspensions were washed once by
centrifugation to 500g for 5 min and then the spermatozoa were resus-
pended in 1 ml of DPBS and 1 ml of reagent JC-1 was added. After
15 min incubation at 378C, the spermatozoa were washed once, resus-
pended in 500 ml of DPBS and then 1 mmol/l of PI was added prior to ana-
lysis in order to exclude dead cells from the analysis. The DCm was
evaluated by flow cytometry as the geometric mean of fluorescence of
the JC-1 aggregates (see Flow cytometry analysis below).

Flow cytometry analysis
Fluorescence analysis was performed in a flow cytometer FACSCanto II
(Becton, Dickinson and Company, BD Biosciences, San Jose, CA, USA).
Samples were acquired and analyzed with the software FACSDivaTM

v. 6.1.3 (Becton, Dickinson and Company). Sample aspiration speed was
60 ml/min and data from 10 000 sperm events were recorded. The excita-
tion was realized at 488 nm with an argon laser. The green fluorescent stain-
ing (DHR) was detected using a 530/30 nm bandwidth filter; orange
fluorescence (PI alone; JC-1 orange aggregates) was detected using a 585/
42 nm bandwidth filter; and a band-pass filter .LP670 nm (long-pass, far
red) was used to measure the fluorescence of PI when used in combination
with JC-1. All were done on logarithmic scales.

Statistical analysis
The treatment of spermatozoa with SIN-1 at each dose was carried out
in duplicate and the experiments were repeated at least three times on differ-
ent days. Results were expressed as mean+ standard deviation (SD). Stat-
istical evaluation was performed with the Prism 6 software package
(GraphPad, La Jolla, CA, USA), applying D’Agostino’s K2 test to assess
Gaussian distribution. To evaluate the effect of concentration of peroxyni-
trite on sperm viability, mitochondrial membrane potential, kinetic para-
meters of sperm motility and peroxynitrite permeability through cell
membranes, a one-way analysis of variance (ANOVA) was used followed
by Dunnett’s post-test. To evaluate the effect of time and concentration of
peroxynitrite on sperm motility, a two-way ANOVA was used followed by

Bonferroni’s post-test. A paired t- test was used to analyze vehicle control
on total, progressive and kinetic parameters of sperm motility. P-values
,0.05 were considered statistically significant.

Results

Demonstrating the generation of
peroxynitrite
First, the proper generation of peroxynitrite with SIN-1 was verified. The
generation of peroxynitrite through SIN-1 was demonstrated by oxida-
tion of DHR, which was evidenced by the increase in absorbance at
500 nm. Absorbance of DHR increased exponentially in direct propor-
tion to the concentration of SIN-1. For concentrations of SIN-1 between
0.4 and 1.0 mmol/l, the steady state was reached after about 100 min.
These results confirmed the peroxynitrite generation by SIN-1 (Fig. 1).

Subsequently human sperm were exposed to 0.8 mmol/l SIN-1 for
4 h at 378C and DHR fluorescence intensity was measured in the cells
by flow cytometry. A statistically significant increase was observed in
the MFI of sperm cells treated with SIN-1 compared with untreated
sperm (9780+2472 versus 401+223, respectively, P , 0.0001).
MFI of vehicle control (403+ 192) did not show a significant increase
compared with the untreated control (P . 0.05). The increase in MFI
shows that peroxynitrite, generated by SIN-1 under the conditions
used in this study, was able to cross cell membranes and enter the cells.

Effect of peroxynitrite on sperm viability
and motility
The percentage of sperm viability was not affected by 0.5 and 1.0 mmol/l
of SIN-1 (76.5+10.4 and 73.0+ 10.1, respectively) or vehicle (75.4+
10.0) when compared with the untreated control (75.8+ 7.5) after 4 h
of incubation at 378C (P . 0.05).

Figure 1 Generation of peroxynitrite by SIN-1 overtime. Spectrophotometric measurement of the increase in absorbance due to oxidation of DHR by
peroxynitrite in incubation medium (DPBS) without spermatozoa. Curves correspond to different concentrations of SIN-1, indicated to the right of the
graph. Representative example of one experiment. SIN-1, 3-morpholinosydnonimine; DHR, dihydrorhodamine 123.
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Then, the effect of peroxynitrite on sperm motility was assessed.
For this, the spermatozoa were incubated with SIN-1 for 4 h at 378C
and sperm motility was measured every 1 h from the onset of incuba-
tion. A decrease in progressive sperm motility, which was both
time- (P , 0.0001) and dose- (P , 0.0001) dependent, was observed
after exposure to peroxynitrite. The decrease in progressive motility
was significant compared with the untreated control from 3 h of incuba-
tion with 1.0 mmol/l of SIN-1 (Fig. 2). Total motility was also affected,
decreasing significantly with 1.0 mmol/l of SIN-1 at 4 h in a time- and
dose-dependent manner (data not shown). The vehicle control
showed no differences in progressive sperm motility compared with
the untreated control after 4 h of incubation (52.0+5.4 versus
53.2+8.1, respectively, P . 0.05). In the same way, the vehicle
control did not decrease total sperm motility compared with the untreat-
ed control (63.6+4.9 versus 61.8+ 8.9, respectively, P . 0.05).

Table I presents kinetic motility data of spermatozoa exposed to per-
oxynitrite for 4 h, showing that VCL, straight-line velocity (VSL) and
average path velocity (VAP) were also affected. For all kinetic motility
parameters, the vehicle control did not show any statistically significant
differences compared with the untreated control (data not shown).

Effect of peroxynitrite on sperm
mitochondrial membrane potential
After exposure of spermatozoa to concentrations between 0.2 and
1.0 mmol/l SIN-1 for 1 h, there was a statistically significant decrease
in the sperm DCm compared with the untreated cells. The vehicle of
SIN-1 did not induce a significant change. Figure 3 illustrates that the
sperm DCm decrease was SIN-1 concentration-dependent.

Discussion
Although oxidative stress has been widely associated with impaired
sperm function and male infertility (Gharagozloo and Aitken, 2011),

nitrosative stress caused by excessive RNS production may also con-
tribute to impaired sperm function (Khosravi et al., 2012; Salvolini
et al., 2012).

We have demonstrated here the association between peroxynitrite
and decreased motility and mitochondrial membrane potential in
human spermatozoa. To our knowledge, this is the first study reporting
the influence of peroxynitrite on the DCm of human spermatozoa.

To mimic pathophysiological states in vitro, the peroxynitrite precur-
sors NO and O2

2 can be simultaneously generated using compounds

Figure 2 Effect of peroxynitrite on progressive sperm motility over
time. Results are presented as mean+ SD. The experiment was
repeated six times on different days using semen samples from four
healthy donors. Two-way ANOVA indicated statistically significant dif-
ferences (P , 0.0001) for both time and dose factors. (*) P , 0.01;
(**) P , 0.001 compared with the untreated control within the same
time point. SIN-1, 3-morpholinosydnonimine.

........................................................................................

Table I Effect of peroxynitrite on sperm kinetic
parameters at 4 h of incubation with SIN-1 at 3788888C.

Parameter Untreated
control

0.5 mmol/l of
SIN-1

1.0 mmol/l of
SIN-1

VCL (mm/s) 49.5+3.9 45.4+2.2 39.3+5.4a

VSL (mm/s) 24.4+1.3 22.8+0.9 18.5+1.6b

VAP (mm/s) 34.4+1.9 31.8+1.3 27.3+2.8a

LIN (%) 49.0+6.0 50.4+3.5 47.6+6.3

STR (%) 71.0+6.1 71.9+5.2 68.0+6.3

WOB (%) 69.8+3.5 70.1+2.6 69.5+4.0

ALH (mm) 2.1+0.2 2.0+0.2 1.9+0.2

BCF (Hz) 8.0+0.2 7.8+0.4 6.9+1.2

Values correspond to mean+ SD.
VCL, curvilinear velocity; VSL, straight-line velocity; VAP, average path velocity; LIN,
linearity; STR, straightness; WOB, wobble; ALH, amplitude of lateral head
displacement; BCF, beat-cross frequency.
aP , 0.01.
bP , 0.0001, both compared with untreated control.

Figure 3 Effect of peroxynitrite on sperm mitochondrial membrane
potential. Sperm were incubated for 1 h at 378C with different concen-
trations of SIN-1; vehicle corresponds to 10 ml of DMSO; 0 mmol/l of
SIN-1 corresponds to the untreated control. Results are presented as
mean+ SD. The experiment was repeated three times on different
days using semen samples from three healthy donors. (*) P , 0.001
compared with the untreated control.DCm, mitochondrial membrane
potential; MFI, mean fluorescence intensity; AU, arbitrary units; SIN-1,
3-morpholinosydnonimine; Veh, vehicle.
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such as SIN-1 (Szabo et al., 2007). SIN-1 has been used in studies with
several cell types, including human and bovine spermatozoa (Weinberg
et al., 1995; Blanco Garcia et al., 2009; Rodriguez and Beconi, 2009;
Agbani et al., 2011).

In this study, the suitable generation of peroxynitrite with SIN-1 was
monitored using DHR, which is selectively oxidized by peroxynitrite
(Blanco Garcia et al., 2009). Spectrophotometric measurements
showed that the amount of SIN-1 added to the solution was directly cor-
related with the DHR oxidation and thus with the ONOO2 generated
amount, as previously reported (Blanco Garcia et al., 2009). Then, the
DHR oxidation was confirmed in the spermatozoa exposed to SIN-1
compared with the untreated sperm, demonstrating that with SIN-1
the effects of peroxynitrite could be analyzed on different cell variables.

We found that sperm viability was unchanged after treatment with
concentrations up to 1.0 mmol/l of SIN-1 during an incubation time
up to 4 h. These data are consistent with a previous study conducted
on cryopreserved bovine spermatozoa, where incubation for 45 min
at 378C with up to 1.0 mmol/l of SIN-1 did not significantly reduce
sperm viability (Rodriguez and Beconi, 2009). Considering that these
SIN-1 concentrations did not alter sperm viability, we proceeded to
evaluate motility.

Our results show a time- and dose-dependent decrease in progressive
and total sperm motility and also in several sperm kinetic parameters
after exposure to peroxynitrite. An association has been reported
between sperm motility and the precursor of peroxynitrite, nitric
oxide, high concentrations of which were associated with reduced
sperm motility in in vitro studies (Tomlinson et al., 1992; Herrero et al.,
1994; Rosselli et al., 1995; Weinberg et al., 1995; Rodriguez et al.,
2005) and in asthenozoospermic patients (Aksoy et al., 2002; Balercia
et al., 2004). Thus, if NO can generate ONOO2 in vivo, then this
highly reactive radical could ultimately be responsible for impaired
sperm function. Consistent with this, asthenozoospermic infertile men
present significantly higher ONOO2 concentrations than normosper-
mic fertile donors, revealing a negative correlation between ONOO2

concentration and sperm motility (Vignini et al., 2006). Also, it has
been affirmed that the high levels of peroxynitrite observed in patients
together with high NOS activity are involved in the pathogenesis of
idiopathic asthenozoospermia (Salvolini et al., 2012).

In vitro studies have shown an association between high levels of
peroxynitrite and impaired sperm motility. In a study using peroxynitrite,
a decrease in human sperm motility was observed, which was associated
with increased levels of lipid peroxidation (Oztezcan et al., 1999). Later,
in bovine spermatozoa, a significant decrease in the motility of cryopre-
served bull spermatozoa was reported after incubation with 160 mmol/l
SIN-1 (Rodriguez and Beconi, 2009). Although we also worked with
SIN-1, higher SIN-1 concentrations were needed to significantly de-
crease sperm motility. This difference could be explained by species-
specific characteristics and by the higher susceptibility of cryopreserved
spermatozoa to structural and physiological alterations induced by free
radicals (Medeiros et al., 2002).

Considering the highly oxidizing nature of peroxynitrite and the mul-
tiple disorders caused by its exposure in somatic cells (Pacher et al.,
2007), we hypothesize that impairment of sperm motility caused by per-
oxynitrite may be produced at different levels, including lipid peroxida-
tion (Radi et al., 1991; Oztezcan et al., 1999), damage to the structure
or function of contractile proteins responsible for the movement, or
alteration of ATP production by the sperm, either by the glycolytic

(Souza and Radi, 1998; Buchczyk et al., 2003; Koeck et al., 2004) or mito-
chondrial pathways (Radi et al., 2002). Possibly a combination of these or
other factors may contribute to sperm motility impairment.

We also studied mitochondrial membrane potential and observed the
decrease in sperm DCm after incubation with SIN-1, demonstrating a
negative effect of peroxynitrite on the mitochondrial function of
human spermatozoa as well. The inhibition of cellular respiration has
been previously reported in human spermatozoa induced by SIN-1 as
a NO generator (Weinberg et al., 1995). In somatic cells, it has been
shown that mitochondrial enzymes are particularly vulnerable to
damage by peroxynitrite. Peroxynitrite causes, among other things, in-
hibition of most components of the electron transport chain (ETC)
because it causes cysteine oxidation, tyrosine nitration and damage to
iron sulfur centers [reviewed in Pacher et al. (2007)]. Therefore, inhib-
ition of ETC proteins that maintain a proper transmembrane proton gra-
dient could be responsible for the decrease in DCm observed in human
spermatozoa. The decrease inDCm could also be due to lipid peroxida-
tion. It has been demonstrated in human spermatozoa that lipid perox-
idation generates electrophilic aldehydes that disrupt enzymes of the
ETC, thereby increasing mitochondrial ROS generation. This process
induces a series of harmful changes in spermatozoa which include a
loss of DCm (Aitken et al., 2012). Considering that peroxynitrite
causes lipid peroxidation (Oztezcan et al., 1999), we could hypothesize
that the generation of electrophilic aldehydes and their damaging effects
could also contribute to the decrease in DCm observed in our study.

Likewise, a positive correlation has been reported betweenDCm and
routine semen analysis parameters such as motility (Kasai et al., 2002;
Espinoza et al., 2009). Interestingly in our study the DCm decreased
after 1 h of exposure to peroxynitrite, whereas progressive motility sig-
nificantly decreased after 3 h of incubation and with a higher concentra-
tion of peroxynitrite. This suggests thatDCm is a more sensitive variable
than motility to detect a decrease in sperm quality, as has already been
suggested (Marchetti et al., 2002). Furthermore, the maintenance of
sperm motility when theDCm has already decreased may be consistent
with glycolysis rather than oxidative phosphorylation as the primary
energy source supporting sperm motility (Mukai and Okuno, 2004;
Nascimento et al., 2008).

In conclusion, peroxynitrite causes decreased motility and mitochon-
drial membrane potential of human spermatozoa, compromising vital
functions of the male gamete without affecting viability. As already
been mentioned, studies in somatic cells have revealed many alterations
caused by peroxynitrite [for an extensive review, see Pacher et al.
(2007)]. Thus, it is expected that in human sperm, peroxynitrite will
affect other functional parameters such as capacitation, acrosome reac-
tion and ATP synthesis. Signaling pathways and DNA integrity could also
be affected. Peroxynitrite, at higher levels, might even induce apoptotic-
like changes. In this way, earlier reports in spermatozoa have shown the
negative effects of nitric oxide, a precursor of peroxynitrite, on cellular
respiration (Weinberg et al., 1995), DNA integrity (Amiri et al., 2007)
and sperm-zona binding (Wu et al., 2004). A better understanding of
the influence on sperm function of ONOO2 and other RNS causing
nitrosative stress is crucial to the future improvement of treating patients
with impaired fertility. Anti-RNS drugs could be used to help patients
affected by high levels of nitrosative stress, to improve semen quality in
semen samples for fertilization therapies, and as cryoprotective agents
in cryopreservation media. Alternatively, RNS could be used in male
contraception.
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