Organization of the transcriptional unit of a human class II histocompatibility antigen: HLA-DR heavy chain

Anton Schamboeck, Alan J.Korman, Alexander Kamb and Jack L.Strominger

Department of Biochemistry and Molecular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA

Received 10 August 1983; Revised and Accepted 7 Novernber 1983

Abstract

A total of 5724 base pairs of a recombinant phage DNA containing a human HLA-DR heavy chain gene including flanking regions has been analyzed. The regions corresponding to all the exons have been identified. The sites of initiation of transcription and polyadenylation have been determined. A large intron of 2399 base pairs separates the first exon containing the 5^{\prime} untranslated region and the signal peptide from the second exon containing the N-terminal peptide domain.

INTRODUCTION

The major histocompatiblity complex (MHC) in man is located on chromosome 6 and is composed of 3 classes of antigens.

Class I is a highly polymorphic gene family defined by three genetic loci, HLA-A, HLA-B and HLA-C (1). On the aucleic acid level transcripts of class I gene products will crosshybridize to each other as well as to spectes homologous to the murine TL and Qa antigens (2). Class I antigens are membrane glycoproteins noncovalently assoclated with A2-microglobulin (the gene for which is located on chromosome 15). They are commonly expressed in all tissue cells, and it has been shown that they are recognized by cytotoxic T cells along with viral antigens or as alloreactive targets (3,4).

Class II antigens (Ir or immune response genes) are encoded by a genetic region called HLA-D. They represent a gene family of more limited polymorphism expressed on the cell surface of lymphoblastoid cells and in tissue involved In immune processes $(5,6)$. They are two chain membrane glycoproteins composed of a 34000 dalton heavy chain (α) in noncovalent association with a polymorphic 29000 dalton light chain (β). Both chains pierce the membrane (1). It has been shown that HLA-D region products together with antigen are presented on the cell surface of macrophages and are recognized by syngeneic T cells resulting in T cell proliferation ($7,8,9,10$). So far experimental evidence has been presented for the existence of 3 class II related antigens
called $D R$, $D C$ and $S B(11,12,13,14,15)$. Class III antigens are peptides of the complement group (16).

We have focussed on the complete structural analysis of the HLA-DR heavy chain gene in an attempt to broaden our understanding about regulation and action of this gene product and for comparison with other α chain genes in man and in other species.

METHODS

DNA cloning and sequence analysis: A human genomic DNA library (fetal liver, HLA type unknown) in phage lambda Charon 4A (17) was screened with the probe pDRH-2 (18) as described previously (19). DNA fragments of the recombinant phage were subcloned into the plasmid vector pDC9. Restriction sites (Fig. 1) were labeled at their 5^{\prime} ends using polynucleotide kinase (PL Biochemicals) and ${ }^{32} \mathrm{P}$-YATP ($10 \mathrm{mCl} / \mathrm{nMol}$, a gift of Rick Myers), or at their 3^{\prime} ends using the Klenow frqgment of Polymerase I and ${ }^{32} \mathrm{P}-\alpha d N T P$'s and subjected to the base specific degradation reactions according to Maxam and Gilbert (20). The cleavage products were analyzed on $80 \times 30 \times 0.03 \mathrm{~cm} 8 \%$ polyacrylamide urea gels.

Extraction of RNA and S muclease mapping: Total RNA was extracted by the method of Auffray and Rougeon (21) from the lymphoblastoid B cell line JY (DR 4,w6). $20 \mu \mathrm{~g}$ of total RNA together with 5000 cpm of an end-labeled DNA fragment in a total volume of $20 \mu \mathrm{~d}$ containing $0.5 \mathrm{M} \mathrm{NaCl}, 40 \mathrm{mMPIPES}, 1 \mathrm{~m}$ EDTA and 8% formamide (Mallinckrodt) was denatured for 5 minutes at $75^{\circ} \mathrm{C}$ and annealed for 12 hours at $42^{\circ} \mathrm{C}$. The sample was diluted 10 fold at $37^{\circ} \mathrm{C}$ Into buffer containing $0.2 \mathrm{M} \mathrm{NaCl}, 4 \mathrm{mM} \mathrm{ZnCl})_{2}, 30 \mathrm{mM} \mathrm{NaAc} \mathrm{pH} 4.5$ and 40 U of S_{1} nuclease (PL Biochemicals) and incubated for 30 minutes at $37^{\circ} \mathrm{C}$. After phenol/chloroform extraction and isopropanol precipitation, samples were applied to 5% polyacrylamide urea gels as described (22).

RESULTS
Analysis of genonic clone lambda DRH-6A
A human genomic library in lambda Charon 4A (17) was screened with the CDNA probe pDRH-2 (18), representing the carboxy-terminal 31 amino acids and the entire 3^{\prime} untranslated region of the HLA-DR heavy chain, as described previously (19). A phage, lambda DRH-6A, was isolated containing a 3.2 kb EcoRI fragment, which hybridized to pDRH-2 and has been characterized in detail (19). It represented all the coding portions of the DR heavy chain polypeptide except for the signal sequence including amino acids one and two

Fig. 1: Restriction map of the genomic clone lambda DRH-6A and the overlapping subclones 3.2 kb EcoRI and 6 kb PstI. The symbols for restriction enzymes are: A AccI, B BglII, b Ball, C ClaI, E EcoRI, H HindIII, P PstI, S SstI, X XbaI, Y XmaI. Intron-exon organization and the region sujected to nucleotide sequence analysis ts shown below the map. Solid blocks represent exons.
of the mature $D R$ heavy chain and the 5^{\prime} untranslated region. The missing part was identified as follows: a 225 bp Sau3A primer fragment (position 3010 to 3235, see Fig. 3 below) was purified by polyacrylamide gel electrophoresis, denatured and hybridized to total JY RNA. In a primer extension reaction (23) a product which was $150-160$ bp larger was found (results not shown). The same extension product was used as a probe to identify a 6 kb PstI fragment which was subcloned into the pUC9 plasmid vector and analyzed by restriction mapping (Fig. 1) and sequence analysis (see Fig. 3 below). It appeared from these studies and from the S_{1} nuclease mapping experiment described below that the 5^{\prime} untranslated region and the signal peptide are encoded in one exon of 148 nucleotides separated by an intron of 2399 nucleotides from the next downstream exon. The complete transcriptional unit of the HLA-DR heavy chain ts therefore split into 5 exons (Fig. 1 and Fig. 3): 5' untranslated region, signal sequence and amino acids one and two of the dl domain in exon $1 ; \alpha 1$ domain in exon $2 ; \alpha 2$ domain in exon 3 ; connecting peptide, transmembrane, intracytoplasmic region and 11 bp of the 3^{\prime} untranslated region in exon 4 and the remainder of the 3^{\prime} untranslated region in exon 5 . The overall intron-exon organization has been confirmed by the structure of the corresponding cDNA clones $(23,24,25,26)$.
The initiation site of transcription
The 5^{\prime} end of HLA-DR mRNA was mapped approximately to position 449 by S_{1}

F1g. 2:
A: Determination of the 5^{\prime} Initiation site of transcription of the HLA-DR O chain gene by S_{1}, nuclease mapping. A 135 bp Ball fragment (position 380 515 Fig 3) was 5^{\prime} end labeled, strand separated and annealed to $30 \mathrm{\mu g}$ of total JY RNA (lane 1) or to 3 Ng of polyA selected JY mRNA (lane2) as described in Hethods. The same fragment was subjected to the base specific degradation reactions according to Maxam \& Gilbert and run side by side on a $5 Z$ polyacrylamide urea gel (lanes GATC). The labeled probe and protected fragments are shown in the small schemes below.

B: Determination of the 3^{\prime} end by S nuclease mapping. The probe was a 3^{\prime} end labeled 360 bp TaqI - EcoRI fragment (position 5365 - 5724 Fig. 3). M, marker fragments in basepairs; lane 1: input DNA probe, lane 2: annealing of probe in the absence of RNA, lane 3: annealing of probe in the presence of PNA shows
two protected fragments (indicated by arrows) differing by 10 - 15 bp corresponding to the second polyA addition site at position 5570 in Fig. 3. Labeled probe and protected fragments are shown below.

muclease mapping (Fig. 2A). A 5' end labeled Ball fragment of 135 bp (corresponding to position 380 to 515 in Fig. 3) was hybridized to total JY RNA and treated with S_{1} nuclease. The protected fragment could be mapped to the corresponding DNA sequence as shown in Fig. 2A. The Cap position 449 in Fig. 3 may indicate the most upstream possible transcript; the major start positions are to be expected in the region 5 to 10 bp downstream (arrow in Fig. 2A). The first AUG codon is located at position 513 resulting in a 60 to $65 \mathrm{bp} 5^{\prime}$ untranslated sequence followed by 25 amino acids of the signal peptide. This sequence was identical to the partial sequences of the 5^{\prime} untranslated region of an HLA-DR cDNA clone (27).

The termination site of transcription

The cDNA clone pDRH-2 (18) apparently contained a complete 3^{\prime} untranslated region running into a stretch of polyA. According to this transcript the termination signal would have to be placed at position 5570 AATAAA in Fig. 3. However two potential polyA addition sites are located in the 3^{\prime} untranslated region corresponding to position 5472 and 5570 respectively. An S_{1} muclease mapping experiment was performed in order to show if one of the two termination signals is used preferentially. A 360 bp TaqI-EcoRI fragment (position 5365-5724) was 3^{\prime} end labeled, denstured and hybridized to total JY RNA as described in the methods section. After S_{1} muclease treatment the only detectable products of 220 and 235 bp mapped close to position 5596 (Fig. 2B) indicating that the termination signal 5570 was used exclusively in JY cells. No shorter transcripts corresponding to the first termination signal at position 5472 could be detected. However the detectable signal corresponding to the second polyadenylation site was split into two bands differing by $10-15$ nucleotides, indicating two transcripts, the first one mapping to approximately position 5585 and the second to position 5596. In this region a Bgll I restriction site polymorphism has been reported (23). The finding of two different transcripts in the 3^{\prime} end may indicate the existence of two slightly different alleles of the HLA-DRa chain gene in the cell line JY (DR4,w6). The same two bands were found with RNA from the cell line LB (DRw6,w6 but not homo-
zygous throughout the MHC).
Structural elements in the DNA sequence
The complete sequence (Fig. 3) was determined from the two overlapping subclones shown in Fig. 1 by the Maxam and Gilbert sequencing protocol (20). With the initiation site at position 449 and termination at position 5596 a precursor transcript of approximately $5150 \mathrm{bp}+150$ polyA would be predicted. The DNA sequence has been searched for elements of symmetry, repeats and consensus sequences by Homology Matrix computer programs (28). Some of the more obvious ones are listed below: position 318-325 and 331-338 imperfect tandem repeat may correspond to the mimas 100 initiation signal described by McKnight et al. (29); position 381 TTGGCCAA corresponding to the minus 65 to 75 initiation region CCAAT (30); position 441 TATTA Hogness-box candidate; position 423-436 a 7 bp inverted repeat; position $451-463$ a 7 bp inverted repeat located in the 5^{\prime} Cap region which may in part be responsible for the broad aignal observed in the S_{1} muclease mapping in Fig. 2A; position 849 the element TGGGGG repeated 4 times; position 993 homopolymer 8 A ; position 1965 homopolymer 10 A ; position $4746-4826$ shows a 23 bp element repeated 3 times in Intron 4; position 5421-5438 a 9 bp direct repeat; position 5501-5516 7 bp palindrom; position 5472 and 5570 AATAAA termination and polyadenylation signals; two additional AATAAA signals were observed in the first large intron position 1581 and 2300.

Extensive regions of the human HLA-DRa chain gene and its murine homolog IE $\alpha(31,32$) have been compared. The coding regions are 82% homologous and intron sequences in the range of 55% to 65% except for a 90 bp element located in the first large intron (corresponding to position 2050 to 2140 in Fig. 3) showing 75% homology. It will be of interest to search other class II antigen related sequences for homology to this element.

An interesting observation was made in the promotor region. A segment of 95 bp (position 37 to 130 in Fig. 4) of the human and marine promotor regions are nearly identical except for a 31 bp insertion in the human sequence as compared to the murine, changing the promotor sequence drastically (Fig. 4). The putative TATA-box and the 7 bp inverted repeat position $423-436$ (Fig. 3) is contained within this 31 bp insertion. This segment of the human gene substitutes for the murine TATA-box region and results in a shift converting the murine TATA-box region into the minus 55 region in the human gene, possibly resulting in a more heterogeneous Cap site.

By comparison of the promotor regions of the murine light chain gene IE β With the analogous sequences of $D R a$ and IEa Saito et al. (33) have observed

2941 CATTCCCCTC TCTTGATTCC CCCOGCCCAA CTCTCTTTCT CCATTTCTTG CCTTTCAGAA GluHisVali loIfeGlnA1 GloPheTyr LenAsnProA splnSorgl folnPhemet
agTactgcca anttcoagac antctccatg acctgacant traccitcta titgggtaat TTATTGTCCC TTAOGCAAAC TCTCCAACTG TCATTGCACA GACATATGAT CTGTATTTAG CTCTCACTIT AGGTGTTTCC ATTGATTCTA TTCTCACTAA TGTGCTTCAG GTATATCCCT gTCTAGAAGT CAGATTGGGG TTAAAGAGTC TGTCCGTGAT TGACTAACAG TCTTAAATAC TTGATITGTT GTTGTIGTTG TCCTGTTTGT TTAAGAACTT TACTTCTTTA TCCAATGAAC GGAGTATCTT GTGTCCTGGA CCCTTTGCAA GAACCCTTCC CCTAGCAACA GATGCOTCAT CTCAAAATAT TTTTCIGATT GGCCAAAGAG TAATIGATTT GCATTTTAAT GGTCAGACTC tattacacce cacattctct trtcititat tctigtcigt tctgcctcac tccogagctc 5^{1} UT

MotAlaIl eSerglyVal Provelledg TACTGACTCC CAAAAGAGOO CCCAAGAAGA AAATGGCCAT AAGTGGAGTC CCTGTGCTAG S|G 1yPhePhoIl efleAlaVal LealiotSerA laginglaSo rTrpAlaile Lys GATTTTTCAT CATAGCTGTG CTGATGAGCG CTCAGGAATC ATGGGCTATC AAAGGTAOGT GCTGAGGGAA TGAAATCTGG GACGATAGAC TACGAAGCAT TGGAGAAAAG ACCTATGGAC atitgganga tantgtgtga agtganagan tagtgigaca ggtattatg g gictogaca gaiagtatai canattgigg titgotggag ticticcctc accacanact gangiangic aAATTTGGTT TAGAGGGTCA AAACTGAGTT GTGTATTGAT GAATAGCACG GTCCTGCTAC ANGCCAAACT GGGGGTGGGG GTGGGGGTGG GGGAGGAAGA ATATTTTCTG GCAAOCATTA aCAAGTTATA TITCTGGGCT TTAATTATTC TTTCTGGAAA ATTAGTAAAA TTAAAAACTA AAAACCACAC ATAGTTTTGT TAGAATTAAA TGAAAAAAAA AGTTATTAGC CCIGTTCTTA tCTGantaca tgatacagta gTtattitit ggagtgtana tcctgtcegt atatattgag CACATATATT GTGTTGAAGA TTACTAGAAG GAAAAGTCAT CAAAAAGCAA CAATTTACCC CAGGAAAAGG GGAGGGAAGG CATGCTGATA TGAGTTGCCT CATGGGACAG TGATAGCCAT TCCCTGCCTT CCCATCTCCA TGGTACAGCA GATCTTATAT CATGTTAACT TAGTAATATT TCCAAGAGAG TAOAAAAATA AGTAAGGAAA TGGGGAATCT GATATTATTG TCTCTCATCT CCAGAGCAAC ATTGGTGCTG TTGTAAAGAT GTACTGTAOA AAAGTATTCT TCACCCAGCG tGacccccac moanggtgic aggtagacti g gantangca angTantanc ccagctccca tacccatagt ggcantigta gattictatt gccccanang agccatacat aggatacti aCCTAGAAAG aCAGAGGATC TTCCCTTGGT TTGTGAAGAG GCAGCTAGTA TATTTGTGTG tgTtig cata gatggangta antanattcc taggittatc antacacagt caiacattea AAATCTCTCA TCTIGGCTGG GCACGGTGOC TCACGCTAAT CCCAGCACTT TGGGAGGCCG AGGCGGGOGG ATCACGAGGT CAAGAGATCG AGACOGTCCT GGOCAACATG GIGAAACCCC gTCTCTACTA Aatacaian ahttagctgg gTatggtggc acacgcctgt agtcccagct actoggagg ctgagocagg aggatigcti g cccoggoag googaggitg cagtgagctg agatgetgcc actgcactcc agcctogcga tagagcanga ctcogictca ancanccana ccanaacaan acanaatatc tcacctitatc titgangact anggahahan nanatctcce actcatcgat acactccaca gaggcagcat actctcccag tgtagctitc tctittcatg tTCATTATTC CCTIGGTGTT GGTTATTCTC AATGTCAATC GTAACAGAAC atCTTCCATA atancagTCC cantteangg agcattanga tanahggtg antigccang gTcaatccag aCgagancct tctcatagag gtanccacco tgigggitig gatgctggga agcaggggga ctatgacgct acanggtctc agtcttantt titggagtac ttcagtccec aggtatatte tccatagatt tggccctian atanaangan gctictgact ctanaatgTa ancagtgcte gTtacagTCT tottgatata ttanganatt actcacctia tctcattian tcttanaaac aAACCCCTGA CAGGATCAAA aCCACAGCAG GACTACATAA TAGGAAAACT ATACATAAAT agGtaganta atctgctcag gatcactagg tangTtgctg antangantt cangatgaia a gatcccag agTTTAAAAC CCAACCTTTC AAACAGTGTT TCCTTCTTCT TAGAGTACAA tgTtctgaga ahgagatcct ctggantict ggcctangig tattiantgc coggotanad aAAGTGAGAG AACATTTCTC TTTAGGGGCT GCTGCTGGAT TTCTAAAAAG AAAATAATTT CTCAGCTAGT AACATGGAGC CAAACAACAG CTTCACAAGA CTCTGGGTTC TTTAGCCCTC atcTCCTTCA atccaccctc tTataaccag tccitcitot titicccctc ccagctitet TCAGCAGCAT GCCCTTCACC CAGACCTTGT CTTGTCACTC ATCCCTACTC GCCATCATTC TITCATTCCT CTTGOCCCAA TCTCTCTCCA CCACTTCCTG CCTACACGTA TGTAGGTCAC 10 GAACATGTGA TCATCCAGGC OGAGTTCTAT CTGAATCCTG ACCAATCAGG CGAGTTTATG PheAspPheA spGlyAspG1 nIlePheHis ValAspMeta laLysLysGi nThrValtrp TTTGACTTIG ATGGTGATGA GATITTCCAT GTGGATATGG CAAAGAAOGA GACGGTCTGG
 CGGCTIGAAG AATTTGGACG ATTTGCCAGC TITGAGGCTC AAGGTGCATT GGCCAACATA
 AsnV
AATGGTACCT CCCTCTCTGC TGCACTCCTG GACACGGGAA TCCATAGTTT GAAAGTAGTT GCTICAGCTC TTTGTGTTAG ATTATTGTAA CTGATTTTCC CTCCAAGGGC CTAACCTTGC CTIGTIGTGC TCAAGTCTTG TCTCTGTCAT CCATGGTCTC CTACGAAOTC ATTGCCCTAA gTTCATGCTA GGGGAGCCAG AagGGAagTC CTTGGATATC TTATACCTCA atattggCtC CaGGGCACAA TTTCAACTAC TTITTCAGCT TTAGGGTTTT TAGATACGTT TGTACCACAA TIGAGCATGG GAGGGAGAGG GGTGAGCCTA AGCAGTGACO GCTGATTCTG TCACGTCTGT
alProP rogluValth rValleaThr Asn8erProV alG1uLenAr CATGIGTCCC CCAGTACCTC CAGAGGTAAC TGTGCTCACG AACAGCCCTG TGGAACTGAG gGlaProAsn ValleaIleC ysPheIleAs plysPheThr ProProValV alAsnValth AGAGCCCAAC GTCCTCATCT GTTTCATCGA CAAGTTCACC CCACCAGTGG TCAATGTCAC
俗

3961
4021 GGAAGACCAC CTITTCCOCA AGITCCACTA TCTCCCCITC CTGCCCTCAA CTGAGGACGT
 TTACGACTGC AGGGTGGAGC ACTGGGGCTT GGATOAGCCT CTTCTCAAGC ACTGGGGTAT GGACCAACAC TCAATCTCCT TTATTTCAAG GTTTCCTCCT ATGATGCTTG TGTGAAACTC gGIGTTCTAA CTGTTTCATA ATATCTGCTA CAATTAATAT AACTGTCTTC TCCTACTATC CAGCTTCCTC CTTTTTTTTAA TCTGTAATTC TCTCAATACA TCATTCTGTC TTCCTCTTCT ttantctatg antanctitt ctctitctan aganccctac attigatter gagtgttact 1uPho AspAlaPros TCTTCCCACA CTCATTACCA TGTACTCTGC CTTATCTCCC CCCAGAGTTT GATGCTCCAA
 GCCCTCTCCC AGAGACTACA GAGAACGTGG TGTGTGCCIT GGGCCTGACT GTGGGTCTGG
 TGGGCATCAT TATTGGGACC ATCTTCATCA TCAAGGGATT GOGCAAAAGC AATGCAGCAG loArgArgGl yProLen***
4441 AACGCAGGGG GCCTCTGTAA GGCACATGGA GGTGAGTTAG GTGTGGTCAG NGGAAGACAT 4501 ATATGGAGAT ATCTGAGGGA GGAAAATCAG GGTGGGGAAA GGAAATGTAA TGCATTTAAG meacanggta ggancagatg tgg Crctiga titctctitg ctagaitgan tcagacattg gTatcatctg gTaccccaan gcticagget ctgTcatccc titctataga gggecacctt gatcacggct ccagTCTTAG anatcatctc cagTacctan anccatigit tcacattaga atactgagtc taggoatcta ganaltacat taghatatgg agtctaggga tctaganaat aCTGAGTCTA GGGATCTAGA AAAATAAGCC TCAAGATITG GGCACATCCT AGCTTGTATT TCCTGGGGCA GGFCATCAGT TCAGAAGCAT TTCCAGATCC TGGCTCCTTT CAGGTTAGGG TCAATTCGTT GCATGAAATG GGAATCTCTT AGAGGCCAAT GCCTGCTTTT GCITCTTTAG tCTCAAATGT AGTATGAGAA ACTCTAAAAA AGGGTAAGAC ATGGTTGCTT ATTATGTTCA gTtggagagt agganctaac tgtatacagt tagttcatgt tgganaggtt hoatgancat TGAAAGAATT TTGCAAAGTC AAAOGATTAA GAGAGAAGAG GAAGGAATCT GAAGCAAGGA GCTCAAAACG GATCTTAAAT TCCTTGGTAA CTATGTGTGT CTIGCTATAG GTGATGGTGT TTCTTAGAGA GAAGATCACT GAAGAAACTT CTGCTITAAT GACTITACAA AGCTGGCAAT ATTACAATCC TTGACCTCAG TGAAAGCAGT CATCITCAGC GTIITCCAGC CCTATAGCCA CCCCAAGTGT GGTTATGCCT CCTCOATTGC TCCGTACTCT AACATCTAOC TGGCTTCCCT $3 \bigcup$ GTCTATTGCC TTTTCEFGTA TCTATTTCCT CTATITCCTA TCATTITATT ATCACCAIGC AATGCCTCTG GAATAAAACA TACAGGAGTC TGTCTCTGCT ATGGCCCATG GGGCATCTCP TGTGTACTTA TTGTTTAAGG TTTCCTCAAA CTGTGATTIT TCTGAACACA ATAAACTATT TGATGATCTT GGGTGGAATT TTTGGTGTTT AAGCCAGTTC TTTGGGTGGC GGTGGGGGGT GGGGAGTOGG TCCTGGGGAA TATATGTGAT CCITTCCOGG TAAAATATCT GAATGTTGAA tTtatctitat anattctaga attc
two conserved elements not otherwise discernable between the nearly identical human and murine 5^{\prime} flanking regions (Fig. 4 and ref. 31). These two elements (indicated by stippled boxes in Fig. 4) are separated by 20 nucleotides and are located $50-100 \mathrm{bp}$ upstream of the Cap site. In addition the two corresponding elements are strikingly conserved in the murine IAB gene (34), in a human HLA-DCB gene (J. Boss personal communication) and in a human HLA-DCa gene (J. Lillie personal communication). Recent work indicates that γ-interferon can Induce class II antigen expression in peripheral blood monocytes (35). The role of those conserved elements mentioned above need to be defined and delineated with respect to developmental versus inducible gene expression.

DISCUSSION

It has been shown for class I antigens (36,37) that intron-exon organization follows the general principle of exon blocks containing the coding information for the functional peptide domains. A similar arrangement has been observed in the class II heavy chain gene described in this paper. An unusually large intron (2399 bp) searates the first from the second exon, as compared to class I antigens (36). This structural arrangement with a large intron separating the 5^{\prime} exon is comparable to the homologous murine IEa chain gene ($31,32,38$) and also to the 5^{\prime} end structure of the B2-microglobulin gene (39). A further difference in intron-exon organization between class I and II heavy chains is observed in the 3^{\prime} terminal portion. The class II gene contains transmembrane and intracytoplasmic region in one exon block of 165 bp separated from the 3^{\prime} untranslated portion of 390 bp by an intron of 790 bp . The corresponding region in class I heavy chains is split into geveral smaller blocks $(36,37)$. The difference in structural arrangement of transmembrane and intracytoplasmic portion between class I and II antigens may imply a difference in function. By 'Southern blotting' using DNA from various cell lines or individuals and probing with an HLA-DRa chain probe, a constant

Fig. 3: Nucleotide sequence and peptide domains of an HLA-DRa (heavy) chain gene. The sequence was deduced from the two overlapping subclones 3.2 kb EcoRI and 6 kb PstI of lambda DRH-6A indicated in Fig. 1 as described in Methods. Exon 1: 5' untranslated region, signal peptide (25 amino acids) and amino acids 1 and 2 of the al domain, Exon 2: al peptide domain, Exon 3: a2 peptide domain, Exon 4: connecting peptide (13 amino acids), transmembrane region (23 amino acids), intracytoplasmic region (15 amino acids) and 11 bp of the 3^{\prime} untranslated region, Exon 5: 3^{\prime} untranslated region. Glycosylation sites correspond to Asn position 3223 and Asn 3833. A disulfide loop forms between Cys at position 3800 and Cys 3968 respectively.

| | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

DRa 5' - ACTTCTTTATCCAATGAACFGGGTATCTTGTGTCCTGGACOCT-TTGCAAGAACCCTTCC IEa 5' - TCTTGAAATGTTAAGTGGAACTCGGATACTAAATAGGACCTCGTTECAAGAACCCTTT-

	70	80	90	100	110	120
DRa IEa	CQIAGCAACAGATGTGTCAGTCTGAAACGTTTICTGATTGGTTAAAAGTTGCGTGCTTT					
	130	140	150	160	170	180
DRa	GCATTTIAATGGTCAGACTqTATTACACCOCACATTCTCTITCTITIA-TTCTTGTCTGGATTTAATCC--- CTITTAGTTCTTGTTIA					
IEa						
	190	200	210	220	230	240
	,	,	,	,		
DRa	GTTCTGCCTCACTC-CCGAGCTCTACTGACTCCCAAAAGAGCGCCCAAGAAGAAAATGXC					
IEa	ATTCTGCCTCAGTCTECGATCGCTTCTGA-ACCCACCMA-CACCCAAGAGGAAMIGGC					

Fig. 4: Aligned promotor regions of the human HLA-DRa and the murine IE α chain genes. Major mRNA starts are indicated by arrows. AUG codons and putative TATA-boxes are boxed. Conserved regions are underlined. The stippled boxes indicate conserved elements in the initiation region of class II antigens described by Saito et al. (33). The murine sequence was from ref. (32).
restriction pattern has been observed with the exception of one BglII site polymorphism (23), corresponding to position 5615 in Fig. 3. The HLA-DRa chain is not responsible for the HLA-DR phenotypes defined by serology.

The human genome also encodes the HLA-DR related DC and SB a chain genes. The coding DNA sequence of the DC-1 heavy chain shows 57% overall homology to HLA-DR, and SB has a similar degree of homology (14, and C. Auffray in press). In contrast to HLA-DR the DC heavy chain shows population polymorphism (15).

It is unlikely that the DR related α chain genes interfere in S_{1} nuclease mapping using end labeled probes as was performed in this study, because the position carrying the label shows little sequence homology.

It has been shown that two size classes of $B 2-m i c r o g l o b u l i n$ mRNA differing by 250 bp are transcribed from one gene. The two mRNA spectes map to different polyA addition sites in the DNA sequence (40). This result is in contrast to our finding for the HLA-DRa chain gene where apparently only one of the two potential polyA addition sites is recognized in JY cells (Fig. 2B).

It has been pointed out earlier by several authors ($1,19,41$) that the peptide domain located closest to the membrane is most conserved (approximately 40\%) among the class I and II histocompatibility antigens. The region shows
striking homology to $\beta 2-m i c r o g l o b u l i n$ and to the constant region of immunoglobulins, pointing towards a common ancestor for these classes of genes.

Another analysis of the human HLA-DRa chain gene has been published recently (42). The coding sequences are in complete agreement except for two positions $4359 \mathrm{~T} \rightarrow \mathrm{C}$ silent, and $4419 \mathrm{~T} \rightarrow \mathrm{G}$ changing Leu $217-\mathrm{Val}{ }_{217}$, see Fig. 3 and ref. $(19,24)$. They may reflect allelic variation as they have been found In corresponding cDNA clones $(19,24)$. Intron and flanking sequences differ at 48 positions. Some of the descrepancies in our sequence may be the result of sequencing errors (estimated error rate less than 1\%) or allelic variation. Point mutations may also be considered as the DNA is propagated in cell lines and bacterial vectors under no selective pressure. The following gaps not indicated by dashes exist in their sequence (42) as compared to ours corresponding to positions in Fig. 2 of their presentation: 9 bp gap position 1910 and 151 bp gap position 2538. The statement made in their work that the entire HLA-DRa chain gene is contained in two contiguous EcoRI fragments of 4.4 kb and 3.1 kb respectively is not in agreement with our mapping and sequencing data and inconsistent with their own presented DNA sequence showing two Ecorl sites at positions 2735 and 2832 in their Fig. 2. Our analysis shows that a 98 bp EcoRI fragment maps between the fragments mentioned above.

In addition a gene expression study carried out by C. Rabourdin-Combe and B. Mach (43) using the lambda phage DNA (\triangle DRH-6A) described in this paper confirmed that the gene is functional as would be expected from our analysis.

ACKNOWLEDGMENTS

We are grateful to Dario Grossberger, David Arnot and members of the laboratory of Tom Manlatis for expert technical advice and gifts of restriction enzymes, to Magali Roux-Dosseto and Dietmar Kappes for gifts of mRNA and to Alice Furamoto-Dawson for typing the manuscript. Steve Dunn helped us in preparing large scale phage DNA. This work was supported by grants from the Swiss National Foundation (to A.S.), from the National Institute of Health (AI-30241) and from the Kroc Foundation.

REFERENCES

1. Strominger J.L. et al. (1981) in the Role of the Major

Histocompatibility Complex in Immunobiology, (Dorf M.E. Ed.) Garland STPM Press, New York p. 115-172
2. Orr H. and DeMars R. (1982) Nature 302, 534-536
3. Zinkernagel R. and Doherty P. (1974) Nature 251, 547-548
4. Zinkernagel R. and Doherty P. (1979) Adv. Immanol. 27, 51-177
5. Nixon D., Pan-Yun-Ting J. and Frelinger J. (1982) Immunology

Today 3, 339-342
6. Pober J. and Glmbrone Jr. M. (1982) Proc. Natl. Acad. Sci. USA 79, 6641-6645
7. Benacerraf B. (1981) Science 212, 1229-1238
8. Lamb J. and Feldman M. (1982) Nature 33, 456-458
9. Lamb J., Eckels D., Lake P., Johnson A., Hartzman R. and Woody J. (1982) J. Immuno1. 128, 233-238
10. Fischer A., Beverley P. and Feldman M. (1981) Nature 294, 166-168
11. Tosi R., Tantgaki M., Centis N., Ferrara G. and Pressman D. (1978)
J. Exp. Med. 148, 1592-1611
12. Cook R., Vitteta E., Uhr J. and Capra J. (1979) Mo1. Immuno1. 16, 29-35
13. DeKretser T., Crumpton M., Bodmer J. and Bodmer W. (1982) Eur. J. Imminol. 12, 600-606
14. Auffray C., Korman A., Roux-Dosseto M., Bono R. and Strominger J. (1982) Proc. Nat1. Acad. Sc1. USA 79, 6337-6341
15. Auffray C., Ben-Nun A., Roux-Dosseto M, Germain R., Seidman J. and Strominger J. (1983) EMBO J. 2, 121-124
16. Shreffler A. (1982) Histocompatibility Antigens Structure and Function ed. Parham P. and Strominger J., Chapman and Hall p. 189-219
17. Lawn R., Fritsch E., Parker R., Blake G. and Maniatis M. (1978) Cell 15, 1157-1174
18. Korman A., Kmudsen P., Kaufman J. and Strominger J. (1982)

Proc. Natl. Acad. Sci. USA 79, 1844-1848
19. Korman A., Auffray C., Schamboeck A. and Strominger J . (1982) Proc. Natl. Acad. Sci. USA 79, 6013-6017
20. Maxam A. and Gilbert W. (1980) Methods in Enzymol. 65, 499-560
21. Auffray C. and Rougeon F. (1980) Eur. J. Biochem. 107, 303-314
22. Mantatis R., Fritach E. and Sambrook J. (1982) Molecular Cloning, a Laboratory Manual, Cold Spring Harbor Laboratory
23. Stetler D., Das H., Nunberg J., Saiki R., Sheng-Dong R., Mullis K., Weissman S. and Erlich H., (1982) Proc. Natl. Acad. Sci. USA 79, 5966-5970
24. Lee J., Trowsdale J. and Bodmer W. (1982) Proc. Natl. Acad. Sci. USA 79, 545-549
25. Larhamar D., Gustafbson K., Claesson L., Bill P., Wiman K., Schenaing L., Sundelin J., Widmark E., Peterson P. and Rask L. (1982) Cell 30, 153-161
26. Long E., Wake C., Strubin M., Gross N., Accolla R., Carrel S. and Mach B. (1982) Proc. Nat1. Acad. USA 79, 7465-7469
27. Wake C., Long E., Strubin M., Gross N., Acolla R., Carrel S. and Mach B. (1982) Proc. Nat1. Acad. Sci. USA 79, 6979-6983
28. Pustell J. and Kafatos P. (1982) Nucleic Acid Res. 10, 4765-4782
29. McKnight S., Gavis E., Kingsburg R. and Axel R. (1981) Cell 25, 386-398
30. Breathnach R. and Chambon P. (1981) Ann. Rev. Biochem. 50, 349-383
31. Mathis D., Benoist C., Williams W., Kanter M. and McDevitt H. (1983) Cell 32, 745-754
32. Hyldig-Nielsen J., Schenning L., Hammerling U., Widmark E., Heldin E., Lind P., Servenius B., Lund T., Flavell R., Lee J., Trowsdale J., Schreier P., Zablitzky F., Larhammar D., Peterson P. and Rask L. (1983) Nucleic Acids Res. 11, 5055-5071
33. Saito H., Maki R., Clayton L. and Tonegawa S. (1983) Proc. Natl. Acad. Sci. USA 80, 5520-5524
34. Larhammar D., Hammerling U., Denaro M., Lund T., Flavell R., Rask L. and Peterson P. (1983) Cel1 34, 179-188
35. Basham T. and Merigan T. (1983) J. Immunol. 130, 1492-1494
36. Malissen M., Mallssen B. and Jordan B. (1982) Proc. Nat1. Acad. Sci.

USA 79, 893-897
37. Evans G., Margulies D., Camerini-Otero R., Ozato D. and Seidman J. (1982) Proc. Natl. Acad. USA 79, 1994-1998
38. McNicholas J., Steimmetz., Hunkapiller T., Jones P. and Hood L. (1982) Science 218, 1229-1232
39. Parnes J. and Seldman J. (1982) Ce11 29, 661-669
40. Parnes J., Robinson R. and Seidman J. (1983) Nature 302, 449-452
41. Kaufman J. and Strominger L. (1982) Nature 297, 694-696
42. Das H., Lawrance S. and Welssman S. (1983) Proc. Natl. Acad. Sci. USA 80, 3543-3547
43. Rabourdin-Combe C. and Mach B. (1983) Nature 303, 670-674

