Sequences of the coding and flanking regions of the large ribosomal subunit RNA gene of mosquito
mitochondria

Chuen-Chin HsuChen, Robert M.Kotin and Donald T.Dubin

Department of Microbiology, UMDNJ-Rutgers Medical School, Piscataway, NJ 08854, USA

Received 3 May 1984; Revised and Accepted 5 October 1984


#### Abstract

We have sequenced a $1 . j \mathrm{kbp}$ region of the mosquito (Aedes albcpictus) mituchondrial genvae contaning the large ribcsomal subunit ("LSU") RNA gene, and have located the ends of the gene by $j_{1}$ protection analysis and by comparison with RNA sequences. The gene is preceded by a tRNAVA gene and followed by genes for t?NA UAG (rather than tKNAleu, as in armanalian mitochondria) 4nd an extended reading frame homoligous to mammalian URF1. It is approximately $1 j 35$ residues long and is very low (17\%) in $G+C$. The j' half is even lower in $G+C$ ( 9 j), and shows little apparent homology to other LSU RNA classes. The $5^{\prime}$ hulf is relatively rich ( $26 ;$ ) in $G+C$ and has many stretches of homology to prokaryotic and mamalian mitechondrial LSU RNA.


## InriRODUCTIOA

Analyses of ribosomal hiNA from phylogenetically disparate sources have provided clues on functional and evolutionary aspects of this important class of nucleic acid (see, e.g., refs. 1-3). Eurlier studies of ours have indicated that the large ribosomal subunit (LSU) RNA of mosquito (Aedes albopictus) mitochondria eccupies an evolutionary extreme in several reapects: it is very low in $G+C$ content ( 175 ) and in methylated reaidues (two) (ref. i); and it is 3'-terninaliy polyadenylated (9). In the expectation that it would serve as a basis for further inferences on $\operatorname{rRNA}$ function and evclution, we have determined the sequence of a region of the Aedeg mitochondrial (mit) genome that contains the LSU RNA and neigaboring genes, and have localized the boundaries of the rRNA gene by $S_{1}$ protection and RNA sequencing studies.

## HETHODS

Procedures for growing Aedes cells and preparing wit RNA and DNA were as previously described (2,11). Clones containing wit DNA were obtained by restricting genomic DNA with HindIII or Sau3A, ligating the resulting fragments anto appropriately restricted plasmid pUC9, and transforming E. colif atrain JiG3 (see ref. 11). Screening was performed by colony hybridization (12),
using either 5'-end labeled tRNaval (10) or ${ }^{\prime}$ '-end labeled LSU RNA. Samples were hybridized at $65^{\circ}$ für 16 h in 4 X SSC , rinsed thrice at $20^{\circ}$ in 2 X SSC , anj then washed twace ut $65^{\circ}$ for 30 minutes in $4 X$ SSC; all soluticas contganed in addrtion 1 mH EDRA and $0.1 \dot{\mathrm{~b}}$ SDS.

PCr Diff sequencing, samples were $S^{\prime}$ end labeled using the Klenci framment of E. coli Dif polymerase (13) and appropriste $\alpha-$ ? 32 j jdeoxynucleoside triphosphates. In some cases, sequencing was performed on double-stranded seginents labeled at one end and in scme cases segments labeled at both ends were subjected to strand separation for sequencing (ref. 14, p. 1w) (summarized in Fig. 1 , below). The partial chemical jesradation procedure of yaxam and Gilbert (15) and a modification theroof (16) wore used.

LSU RINA was purified by serial centrifugation in "low" salt, and then "standard" sult, sucrose gradients (17). RNA samples were j'-end labeled, repurified and subjected to digestion with RNases $T_{1}$ or A tc releage terminal oligonucleotides, as in ref. 13. RNA sequencing was performed by partial enzymatic digestion of end-labeled asmples (2,19).
 pmele) and $3^{\prime}$-end labeled DNA segments (18-50 ng; approx. 0.07 pacle) were taken up in 20 ul of $0.04 \mathrm{M} 1,4$-piperazine-diethanesulfonic acid (PIPES), pil $7.0,0.4 \mathrm{M} \mathrm{NaCl}, 0.001 \mathrm{HEDTA}, 80 \xi$ formamide; heated for 5 min. at $53^{\circ}$, incubated for 17 h gt $37^{\circ}$, and diluted with 0.2 ml of lce cold "nuclease-S ${ }^{\circ}$ buffer" (ref. 14, p. 205) containing varyang mmounts of nuclease $S_{1}$ (BoehringerMannheim). After 30 min . at $37^{\circ}$, samples were again chilled, brought to 0.5 li ammonium acetate and 130 m EDTA, extracted with phenol-chloraform, and precipitated with ethansl (following ref. 14, pp. 208-209). Kinsed pellets were dissolved in 10 ul of 1 HA Tris. ACl , pH 7.4 , containing 7 A urea gnd 1 mit EDMA, held at $80^{\circ}$ for 3 win., chilled, and run on gequencing gel (13,20).

## RESULTS and DISCUSSIO:

1. Vene order and sequence.

The LSU RNA gene sequence was determined primarily using two cloned restriction fragments, designated HindIII-E and HindIII-D. Cclonies containing HindIII-E hybridized to Aedes mit tRNAVA, and those containing HindIII-D to LSU RNA, under the conditions employed. The fragments proved to be adjacent and each proved to contain g portion of the LSU RNA gene; the failure of HindIII-E to hybridize to LSU RNA is apparently due to the very low $G+C$ content of its portion of the gene (v.i.). Confirmation was provided by sequences obtained directly frcm gencmic DNA, and from a separately cloned Sau3A


Fig. 1. Sequencing strategy. The top line represents a 12.5 kbp stretch of Aedes mit DYA and shoas the HindIII sites used for the present work. The next line is an expanded version of the segments between these lindIIf sites with additional relevant restrictron sites indicated. Restriction enzymes denoted in the diagram by their farst 3 letters are spelled out below; distance is expressed as kbp from the left-most Psil in HindIII site. de next present the gene order, and dagran the varicus classes of sequence determinations. These are as follcas:
G. A cloned plasaid containing fragment lindili-f was labeled after digestion with HindIII; the insert was then purified and subjected io strand separation. b. A cloned plasmid containing HindIII-D was labeled ufter digestion with EcoRI; the EccRI-EccRI fragment was purified and subjected to strand separation.
c. As for b, except that after labeling the preparation was subjected to secondary digeation with HandII or HaeIII, and appropriate fragoents were purified.
d. The same plasmad was labeled after digestion with HindIII, and the subjected to secondary digestion with EccRI or Haelll and purification of appropriate fragments.
e. As for d, except that labelang was performed after Sau3A digestion, and secondary digestion was with EceRI.
f. The lindIII-D insert was purified from the above plasmid, labeled after digestion with SuujA plus AhallI, and appropriste fragments were purified. g. As for f, except that labeling was performed after digestion with Hpari plus AhalII; or after digestion with llpall, followed by secendary digestion with HaeIII.
h. A cloned plasmid containing a 1.2 kbp mit Sau3A fragment was labeled at the plasmid EccRI site, subjected to digestion with PstI, and the appropriate fragment was purified.
i. EcoRI-Psti fragments of genomic DNA were labeled at the EccRI sites and appropriate fragments dere purified.

In general, two or three separate sets of sequencing reactions were performed on each class of labeled fragment.
fragment. The strategy is outlined in Pig. 1 . We present in Fig. 2 the sequence determined, from the residue adjacent to the upstream HindIII site of fragment $E$ to about the middle of the HindIII-D fragment; the sense strand is shown. The only ambiguity involves residue T 1193 , which in a minority of analyses gielded a slightly positive $C$ reaction. The residue on the antisense

TCAGTATAOTTTTAGTATTTTTTAAAGAAATAATAATTTTAATAATAGTTTATTTOTATTOTAAAABAABATTGAAATAATTTGAAAAATTTTTATTTTAAAAGAAAATTTAMTTTATTO I 120
 240

ATQAAATOTTAATCOTTTTAAAATATATCTABTTTTTTAAGAAATAAATTTAATTTAGATTTATAAATTAAAAQTATTATTTATTTAATATTTTTAATTTATAAAATTAATATTTTAAOG $4 Z O$ Hind III 360

Ahom




600
Mon 1
AATTATATATTCACCTOTTTATCAAAMACATGTCTTTTTGTATTTAATTTAAAGTCTAACETGCCCACTGGTAGATATTAAAGQGCCOCAGTATTKTGACTGTQCGAAGQTAGCATAATC $7 B O$ 720
 840

QACCCTATAGAICTTTATTTTTTTTAATTATAABTTAAAAAGAATAATTAAATTTATAGTTTTATAAAAAATTTTACTGGGOTGGTATTAAAATTTAATTAACTTTTATTATTTGTTTAC $10 Z O$ ATTAATATATOTATATTTGATCCAATTTTATTGATTAAAAAATTAAOTTACCTTADOAATAACAGCOTAATTTTTTTTTAOAGTTCTTATCGACAAAAAAOATTGCOACCTCOATOTTOS 1140





strand corresponding to 61234 of Fig. 2 gielded no chemical reaction when analyses were done on cloned DNA, presumably due to its methylation by the dcm methylase; it yielded a normal $C$ reaction in analyses of genomic DNA.

The 5' 59 residues of the sequence correspond to residues 14 through the $3^{\prime}$ end of Aedes mit tRNA Ual (HsuChen and Dubin, unpublished data).

The 5'-terminus of the LSU RNA gene was determined by comparison with 5'end labeled LSU RNA. Essentially all label ( $>95 \%$ ) was released as pU after RNAse $P_{1}$ digestion (19). When samples were subjected to partial enzymatic digestion with RNases $A, C l_{3}, U_{2}$ or $T_{1}$ followed by ladder gel analysis (2), the following sequence was obtained:

UAAAUUUUAU JUAYUAAYYY UAYYUAYYUA AGUAYUAUAY YUAA
This localizes the 5' end of the gene to the second $T$ after the trival gene. To facilitate discussing the rRNA, we begin numbering at this $T$ residue.

Determining the $3^{\prime}$-terminus of the gene was more difficult, due to the polyadenylation of the RNA. The most precise results were obtained by analysis of ladder gel patterns obtained after treatment of $3^{\prime}$-end labeled RNA with RNase $T_{1}$, or with RNase A. As illustrated in Fig. 3, complete digestion with each enzyme released complex arrays of banda, in accord with the expected heterogeneity of post-transcriptionally added poly A moieties. However, band counts indicated that the $T_{1}$-released family was 19 residues longer than the RNase A-released family. E.g., the two most abundant RNase A-released bands ran as expected for ollgonucleotides $\mathrm{N}_{35^{C}} \mathrm{C}$ and $\mathrm{N}_{36} \mathrm{C}$ p, whereas the correspondingly abundant RNase $T_{1}$-released oligonucleotides ran as expected for $\mathrm{N}_{54} \mathrm{C} p$ and $N_{55} \mathrm{Cp}$. We infer that the last $G$ of the gene is 19 residues upstream from the last pyrimidine; inspection of the DNA sequence near the following gene (that for trNa leug) indicates that the $G$ in question is $G 1313$ and the pyrimidine is T1332. Support was provided by partial enzymatic ladder sequencing (not shown), which revealed a second cluster of $T_{1}-s e n s i t i v e ~ s i t e s ~ 34$ residues further upstream; these are presumed to arise from G1278, G1279.

A second approach to establishing the $3^{\prime}$-end of the gene involved $S_{1}$ nuclease protection analysis. For these studies, we used either of two restriction fregreants spanning the presumed rRNA-tRNA gene junction: a 337 bp EcoRI-HaeIII fragment or a 1.1 kbp EcoRI-HindIII fragment (Fig. 1); the two gave the same rasults. Dila, $3^{\prime}$ end labeled at the FcoRI gite, was hybridized with LSU RNA, followed by treatment with $j_{1}$ nuclease. Preliminary experiments showed that temperatures of 450 or above for either hybridization or pnzyme treatment yielded no protection, presumably due to the low $G+C$ content of the potential hybrid. However, as illustrated in fig. 4, incubation at $37^{\circ}$ yiel-

Pig. 3. Sizing of oligonucleotides released from 3'-end labeled LSU RNA by RNases A and $T_{1}$. Aliquots of RNA were digested with RNase A ( 10 pg/ug of RNA) or $T_{1}$ ( 0.8 units/ug of RNA) prior to electrophoresis through a sequencing gel. Ine portion of each was run for 6 h at 2 kv (Lanes $1-4$ ) and a second was run for 3 h (Lanes 5-8). Lanes $1,3,5$ and 7 show patterns for the Aedes mit SSU RNA, which provided markers as noted (2); the cther Lanes show the LSU RNA patterns. Lanes 3, 4, 5 and 5 represent RNase $T_{1}$ digests and 1, 2, 7, and 3 RNase A digests. Humbering of the bands in lane 2 was based on comparison with the $A_{5} / A_{6} \cdot G_{2} C p$ marikers, and numbering of the bands in Lane 4 was based on comparison with lane 2. Autoradiography was for 19 h ; longer exposures provided better visualization of the smaller oligonucleotides released from LSU RNA.
ded complex arrays of protected segments. Control incubations (not shown) showed that protection was dependent on the presence of LSU RNA. The protected segments were aized by running in parallel lanes samples of the same DNA

Fig. 4. $S_{1}$ protection analysis. Aliquots of the EcoRI-HindIII fragment of HindIII-D (Fig. 1) were hybridized with LSU RNA followed by treatment with varying concentrations of nuclease $S_{1}$, as described in Methods. Lanes 1,2 , 4, 5 and 6 represent aliqucts.treated with $10,000,5,000,2,000,1,000$ or 500 units/ml, respectively (a somewhat smaller sample being processed for this last reaction). Lane 3 represents a "C+T" sequencing reaction performed on a sixth aliquot of the same $3^{\prime}$ end labeled DNA sample. Ye indicate bands correspending to $A 1336, G 1343$ and $G 1344$ of the sequence of Fig. 2 (i.e., the complementa of the sequence as read from the ladder), and (by arrows) the protected bands corresponding to $113 j 6$ (see Text). The sequence ladder represents an exposure time about 10 -fold that of the other lanes.
fragment, but previcusly subjected to partial chemical degradation as for sequencing. Lane 3 of Fig. 4 shows the " $C+T$ " reaction for the DNA used in this run; in designating the bands, we have converted the sequence to that of the sense strand. A1335 would correspend to the thecretical protected fragment,

## Nucleic Acids Research

If the predominant LSU RNA transcripts terminated at 71332 or any of the following four A residues. Levels of $S_{1}$ in the range 500 to 2000 unitg/ml yielded fragments that were predominantly slightly larger then such a segmert. However, the sizes of protected segments became progressively smaller with nigher levels of enzyot and at 10,000 units/ml there was a prominent band running just behind $A 1336$, as expected for the above theoretical protected segment. These reaults ure similar to those obtained by Van Etten et al (21) for murine mit rRNA genes, both the sanall and the large riboscmal subunit RNA, genes. In view of the fact that the transcribed moiety of mumralian mit small subunit RNA is quite homogeneous at its $3^{\prime}$ end $(9,21)$, the multiplicity of bands and the slight extension of protection into DNA corresponding to downstrequ genes were considered in this case to be artifacta related to $3^{\circ}-$ termanal oligoadenylation (21). Since the Aedes mit LSU RNA is polyadenylated, $2 t$ is likely that such artifacts affect sur $S_{1}$ results as well. Thus, the patterns of Fig. 4 are compatible with the end of the LSU RNA gene being T1332 נ one of the immediate downstream A residues, and certainly show that the end $1 s$ in this general vicinity; but they cannot be taken to indicate heterogeneous transcribed maieties.

We infer from the above resulta, taken together, that transcription of the majority (at least) of Aedes mit LSU RiNA molecules terminates at T1332 of Fig. 2 and/or immediately doanstrean A residues; and that these transcripts are post-transcriptionally adenylated, yielding $S^{\prime}-t e r m i n a l ~ p o l y ~ A ~ t r a c t s ~ a v e-~$ raging 35 to 36 in chain length. In the following sections, we take the LSU RNA gene to correspond to residues 1 through 1335 of Fig. 2. The gene is thus about 200 residues shorter than corresponding mammalian uit genes (23-26), which of course are themselves unusually short for LSU RNAs.

Analysis of RNA by denaturing acrylamide gel electrophoresis yielded an apparent chain length of 1420 using hamster mit rRNA as aize markers (ref. 2), in acceptable agreement with these inferences. The nucleotide composition of purified RHA (Table 1) was, similarly, in agreement with these inferences, and with the sequence as presented in Fig. 2.

In mammalian mit genomes (23-26) the gene following the LSU RNA gene is that for tRNAUAA. The Aedea wit LSU RNA gene is also followed by a tRNA leu gene, but, curiously, by that for the isoacceptor with a UAG, rather than a UAA, anticodon. Kammalian mit tRNA ${ }_{U A A}^{\text {eu }}$ is unusual among mammalian mit tRAAs in that all or almost all of the invariant or semi-invariant residues of conventional tRiNA (28) are conserved. In contrast, Aedes mit tRMA leu (Fig. 5) resembles the majority of mamalian mit tRNAs, and all dipteran mit tRNAs

Table 1. Nucleotide Compesition of Aedes mit LSU RNA.

|  | From Rea | Prom DIA Sequence |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | "Overall" | 1-1335 | 1-634 | 635-1290 | 1291-1335 |
| A | 39.4 | 40.2 | 38.8 | 42.3 | 34.5 | 53.3 |
| G | 10.8 | 11.1 | 11.4 | 7.4 | 15.9 | 2.2 |
| C | 5.3 | 5.6 | 5.7 | 1.7 | 9.9 | 0. |
| $\mathrm{U} / \mathrm{T}$ | 43.6 | 43.1 | 44.1 | 48.6 | 39.8 | 44.4 |
| $\mathrm{G}+\mathrm{C}$ | 17.1 | 16.7 | 17.1 | 9.1 | 25.8 | 2.2 |

The RNA data are those summarized in ref. 1. The "overall" DAA composition was derived fron that of the gene plus 32 post-transcriptionally added A residues. The other compositional data are designated by range of residue numbers. Values are mele ${ }_{\mathrm{b}}$.
sequenced (e.g, refs. $10,11,29-32$ ), in lacking most such conserved residues. Following the tRNA leu gene are a 9 -residue spacer and an extended reading frame that show good homology to sequences published earlier for Drosophile mitochondrial genomes (29). As shown in Fig. 6, our results are in agreement with the inference (29) that the reading frame corresponds to mammalian mit URF1, and support one of two possible translation initiation sites proposed for Drosophila (29,32): namely, the first ATA after the tRNAleu gene. The alternative site in Drosophila is an ATT triplet four amino acid reaidues downstream, but in the Aedes sequence this latter site unambiguously codes for leucine. It is interesting that the $N$-terminal octapeptide of a fungal mit URF1 counterpart (33) is highly ( $63 \%$ ) homologous to the corresponding Aedes region (Fig. 6).
2. The rRNA-Coding Sequence.

Analysis of the rRNA gene proper revealed a remarkable dichotomy with


Fig. 5. Presumed secondary structure of Aedes mit thinleu.






Fig. 6. The tRNA ${ }_{\text {UAG }}$-URFi junction in Aedes and Drosophila mitcohondrial genomes. The Aedes results are from Fig. 2 and the Drgsophila from ref. 32 ; the ends of the tRNA genes are boxed. Drosophila nucleotides corresponding to Aedes are shown by dots. For comparison, we present the $N$-terminal regions of human (23) and Aspergillus nidulans (33) mitochondrial URP1.
regard to sequence conservaton. Comparisons were made mainly to E. coli 23 S RNA, the most extensively studied LSU RNA and the prokaryotic prototype, and to murine mit rRNA, as a representative of mammalian mit LSU RNA. As shown in Fig. 7, below, the 3' portion of the Aedes molecule (residues 635 through 1290) contained numerous regions of primary sequence homology to these other rRNAs; in contrast, we could find little such apparent sequence conservation in the $5^{\prime}$ portion. This difference is correlated with average nucleotide composition (Table 1): the poorly conserved portion is much lower in $G$ and $C$ than the conserved portion. In fact, one might have scored the 5' 60 residues as high A-T spacer if not for the RNA data.

The conserved stretches of primary structure in the $3^{\prime}$ half of the molecule guided us in drawing secondary structure models encompassing short and long range interactions (Fig. 7) that are similar to those believed to cocur in 关. celi 235 RNA. In particular, we used as a framework a recently published "revised" 233 RNA model (34), which takes into account data from direct chemacal studies plus comparisons with cther LSU RNA classes (3-5). as shown in the figure, residues $536-843$ yielded a structure, bcunded by long range interaction " 51 ", that resembles $25 S$ SNA domain " $V$ " (4); and residues 390-1250 yielded a structure, bcunded by long range interaction "63", that is highly homologous to $23 S$ SIA domain "VI" (4). This latter domain is especially highly conserved, and $1 s$ considered to contribute to the structure of the peptidyl transferase center of ribcsoaes (see refs 3-6).

The $3^{\prime}$ pcrtion of the Aedes sequence, although much higher in $G+C$ than the $5^{\prime}$ half, is still significantly lower in $G+C(26 j)$ than comparable stretches of $23 S$ RNA ( $54 \%$ ) or mammalian mit RNA (about 40\%). There 13 no preferential usage of $G$ and $C$ in putative helical, vs. single-stranded, regions. Thus many of the Aedes helices are substantially richer in $A, U$ or $G, U$ base pairs than are their bacterial, or mammalian oitochondrial, homologues. We have indicated in Fig. 7 several sites at which highly conaerved G-C or C-G


Fig. 7. Aedes mit LSU RNA gecondary structure. Structures were patterned after those of $E$. coli $23 S$ RNA, as described in the Text. Major features are numbered accurding to the system of Kaly \& Brimacombe (Fig. 5 of ref. 34); those supported by primary sequence homology are designated by encircled numbers, these not, by bracketed ones. The Aedes nucleotides are numbered as in Fig. 2; some corresponding numbers are alsc given for E. coli $23 S$ RNA (suffix E) and nurine mit LSU RNA (suffix A). D. yakuba residue numbers (suffix D) are from ref. 32 , and do not reflect position in the rRNA. Heavy lines dencte stretches whose primary sequence homelogy to $E$. Coli and murine mit RHA aided in recognizing and substantiating secondary interactions; thin lines denote additional stretches of primary sequence homology to murine mit LSU RNA. The thick arrows indicate $A-U$ or $U-A$ pairs that replace highly conserved $G-C$ or $C-G$ pairs in other LSU RHAs; dots denote resiJues involved in chloramphenicol resistance in mammalian and yeast mitochondria (see ref. 35 for sumary); the crcss denctes the residue involved in erythromycin resistance in yeast mitochondria (8) and Staphylccoccus aureus (37); and the asterisks denote methylated resijues. The encircled letters in Panel $\overline{\text { B indicate putative dipteran- }}$ specific atructures and the thin arroxs here designate base pairs involved in compensating changes between Aedes and Drosophila. Panel A, Aedes residues 631-438; Panel 3 , residues 398 to the $5^{\top}$-end.
para are replaced in the Aedes model with A-U or U-A pairs. There are many other helical stretches in the other LSU RXAs that lack conserved $0, C$ pairs at particular sites, but that are nevertheless quch higher overall in $\overrightarrow{3}, C$ pars then corresponding Aedes stretches. For example, Aedes mit helices 54, 56, $65,65,77,73$ and 35 range in $3+C$ content from 5 to $26 ;$, compared to 20 to $17!$ for murine wit and 40 tc $71 \%$ for $\underline{E}$. coli. The many compensating nucleo-
tide changes involved in the Aedes helices provide strong support for their reality in both conventional, and mitochondrial, rRINA.

Ansther neteacrthy facet of the Aedes secondary structure model 13 the high conservation of harpin 0 . Analogy to manmalian mit LSU KNA (7) and to $23 S \mathrm{RHA}$ (4) Indicates that this is the site of the sole methylated subsequence of Aedes mit LSU RHA, Jm•Gm•U (1). The loop of halrpin 69, tne site of the only other methylated subsequence in Janraglian dit LSiJ RNA (7), is also conserved, suggesting that its failure to be methylated in the Aedes system is a function of enzyme, rather than substrate, avallability. We note ulso that the erythromycin sensitivity locus of both the Aedes and the mamalian aitochondrial LSU RNAs falls nicely into an extension of helix 63, whereas in bacterial (3-5), eukaryotic (6) and fungal mitochondrial (36,33) LSJ RNA it falls just beyond this helix. Perhaps this apparent difference is related to the fact that mammalian mit rabosomes constitute an exception (see ref. 39) to the generalization that $a G$ in this position confers erythromycin resistance whereas an unmodified A confers sensitivity (37,38) , Examination of insect mit ribosomes for erythromycin sensitivity would be of considerable interest. The Aedes model of Fig. 7 differs from that of E. coli $23 S$ RNA in that structures $52,53,67,68$, and 71 through 76 of the latter are absent, and the loopa of structures 56 and 58 are markedly shortened; mammalian mit LSU RNA resembles the Aedes mitochondrial in this regard. When the corresponding subsequences (Table 2) are excluded from consideration, the Aedes mit LSU RNA stretch of Fig. 7 shows $51 \%$ primary sequence homology to E. coli, and $64 \%$ homology to murine mitochondrial, LSU RNAs.
D. yakuba mit DNA sequences are available for regions corresponding to

Table 2. Low Homology Subsequences in Conserved Regions of LSU RNA.

|  | Residue Number (structure) |  |
| :---: | :---: | :---: |
| Aedes mit | Hurine mit | E. coli |
|  |  |  |
| - | $826-830$ | $1679-1763(52,53)$ |
| - | $868-874$ | $1805-1819(56)$ |
| $733-736$ | $90-903$ | $185-1895(58)$ |
| - | $1088-1091$ | $2092-2093(65)$ |
| - | - | $2101-2187(67)$ |
| $1011-1034$ | $1192-1148$ | $2196-2227(68)$ |

Except for the pair Aedes 733-736:House 900-903, the tabulated stretches were excluded from the homology calculations cited in the Text. The numbers In parentheses (last column) indicate secondary structures in the 23 S RHA model of ialy \& Brimacombe (34) that contain the designated residues.

Table 3. Homology Relationships for Aedes and Drosophila Mit LSU RNA.

| Aedes | Drosophila | Insertions | Deletions | Homology |
| :---: | :---: | :---: | :---: | :---: |
| $1-29$ | $296-324$ |  | 0 | 0 |
| $30-68$ | $325-360$ | 1 | 4 | $93 \%$ |
| $69-140$ | $361-432$ | 0 | 0 | $54 \%$ |
| $1039-1290$ | $1-252$ | 0 | 0 | $93 \%$ |
| $1291-1335$ | $253-296$ | 1 | 2 | $94 \%$ |

Aedes residue numbers are from the present vork and Drosophila numbers are from refs. 29 and 32. Insertions and deletions refer to manipulations done on the Aedes sequence to maximize homology.
our rRNA residues 1 through 140, and 1039 to 1334 (refs. 29,32). The two sequences are quite similar over these stretches (average homology 88\%) and the Aedes rRNA gene sequence is thus likely to be representative of insect, or at least dipteran, mit LSU RNA as a class. However, as is true for the homology relationships among the $3^{\prime}$ portions of the Aedes mit, the murine mit, and the E. coli sequences (Fig. 7), the Aedes-Drosophila homology is patchy. There are three stretches of 93-94\% homology and two of 54 and $76 \%$ homology, as summarized in Table 3. It is interesting that secondery structure " $A$ " (Fig. 7), although correaponding to no structure in mammalian mit and E. coli sequences and occuring in a region of relatively poor Aedes-Drosophila primary sequence homology, is conserved in Drosophila by virtue of four compensating base changes (thin arrows in Pig. 7). This suggests that structure A indeed exists in dipteran mit LSU RNA. The putative Aedes mit structure "B" (Fig. 7) occurs where a conserved "quasi-attentuator" hairpin is found in mammalian mit ISU RNA genes (27), and a similar structure can be drawn for Drosophila mit LSU RNA (32). However, the dipteran mit structures lack the high G,C stems characteristic of the mamalian mit hairpins in question, and thair homology to the mammalian structures is dubious.

There is an inverse correlation between chain length and $G+C$ content of rRNA on the one hand, and relative amount and complexity of ribosomal proteins on the other (39). Nothing is known about dipteran mitochondrial ribosomes, but the present results lead us to expect that their protein complement, like their RNA, will prove to be most unusual, and different even from those of mammalian mit ribosomes.

## ACKHOULEDGMEATS

This vork was supported by grant GM-14957 from the National Institutes of Health. R.H.K. is a predoctoral trainee under Institutional National Research

Service Award CA-09069. We thank K. Timko and L. Moon-McDermott for expert technical assistance and J. Klausneyer for drawing the structure diagrams.

## REFERENCES

1. Dubin, D.T., Baer, R.J., Davenport, L.W., Taylor, R.H., and Timko, K.D. (1979) in Transmethylation, Usdin, E., Borchardt, R.T. and Creveling, C.R., Eds., pp. 389-398, Elsevier/North Hollend, N.Y.
2. Dubin, D.T. and HsuChen, C-C. (1983) Plasmid 9, 307-320.
3. Glotz, C., Zwieb, C., Brimacombe, R., Edwards, K., and Kossel, H. (1981) Hucl. Acide Res. 9, 3287-3306.
4. Branlant, C., Krol, A., Machatt, M. A., Pouyet, J., Ebel, J.P., Edwards, K., and Kössel, H. (1931) Hucl. Acids Res. 9, 4303-4324.
5. Noller, H.F., Kop, J., Wheaton, V., Brosius, J., Gutell, R.R., Kopylov, A.M., Dohme, F., Herr, H., Stahl, D.A., Gupta, R., and Woese, C.R. (1981) Nucl. Acids Res. 9, 6167-6189.
6. Veldman, G.M., Klootwijk, J., de Regt, V.C.H.F., Planta, R.J., Branlant, C., Krol, A., and Ebel, J.P. (1981) Nucl. Acids Res. 9, 6935-6952.
7. Baer, R.J., and Dubin, D.T. (1981) Nucl. Acids Res. 9, 323-337.
8. Sor, F., and Fukuhara, H. (1932) Nucl. Acids Res. 10, 6571-6577.
9. Dubin, D.T., HsuChen, C-C., Timko, K.D., Azzolina, T.M., Prince, D.L. and Ranzini, J.I. (1982) in Mitchondrial Genes, Attardi, G., Borst P. and Slonimski, P., Eds., pp. 89-98, Cold Spring Harbor press, Cold Spring Harbor, N.Y.
10. HsuChen, C-C., Cleaves, G.R. and Dubin, D.T. (1983) Nucl. Acids Res. 11 , 8659-8662.
11. HsuChen, C-C., and Dubin, D.T. (1984) Biochemistry International, 8, 385391.
12. Hanahan, D. and Meselson, M. (1980) Gene 10, 63-67.
13. Ruther, U., Koenen, H., Otto, K., and Muller-Hill, B. (1981) Fucl. Acids Res. 9, 4087-4098
14. Maniatis, T., Fritsch, E.F. and Sambrook, J. (1982) Molecular Cloning. A Laboratory Manual, Cold Spring Harbor Press, Cold Spring Harbor, New York.
15. Maxam, A.M., and Gilbert, W. (1980) in Methods in Enzymology, Grossman, I., and Moldave, K., Eds., Vol 65, pp. 449-560, Academic Press, New York.
16. Rubin, C.M., and Schmid, C.W. (1980) Nuc. Acids Res. 8, 4613-4619.
17. Dubin, D.T. (1974). J. Mol. Biol. 84, 257-273.
18. Dubin, D.T., Hontoya, J., Timko, K.D., and Attardi, G. (1982) J. Mol. Biol. 157, 1-19.
19. Dubin, D.T., and Baer, R.J. (1980) in The Organization and Expression of the Hitochondrial Genome, Kroon, A.H., and Saccone, C., Eds., pp. 231240, Elsevier/North Holland, New York.
20. Ojala, D., and Attardi, G. (1980) J. Hol. Biol. 138, 411-420.
21. Van Etten, R.A., Bird, J.W., and Clayton, D.A. (1983) J. Biol. Chem. 258, 10104-10110.
22. Dubin, D.T., Tirko, K.D., and Baer, R.J. (1981) Cell 23, 271 -278.
23. Anderson, S., Bankier, A.T., Barrell, B.G., de Bruijn, H.h.L., Coulson, A.R., Drouin, J., Eperon, I.C., Nierlich, D.P., Roe, B.A., Sanger, F., Schreier, P.H., Smith, A.J.H., Staden, R. and Young, I.G. (1981) Nature 290, 457-465.
24. Bibb, H.J., Van Etten, R.A., Wright, C.T., Walberg, H.W., and Clayton, D.A. (1981) Cell 26, 167-180.
25. Anderson, S., de Bruijn, H.H.L., Coulson, A.R., Eperon, I.C., Sanger, F. and Young, I.G. (1982) J. Hol. Biol. 156, 683-717.
26. Saccone, C., Cantatore, P., Gadaleta, G., Gallerani, R., Lanave, C., Pepe, G. and Kroon, A.F. (1981) Hucl. Acids Res. 9, 4139-4148
27. Kotin, R.H. and Dubin, D.T. (1984) Biochim. Biophys. Acta, in press.
28. Dirheimer, G., Keith, G., Sibler, A.-P., and Martin, R.A. (1979) in Transfer RNA: Structure, Properties and Recognition, Schimmel, P.R., S8ll, D. and Abelson, J.N., Eds. pp. 19-41. Cold Spring Harbor Press, Cold Spring Harbor, New York.
29. Clary, D.O., Goddard, J.M., Hartin, S.C., Fauron, C.M-R., and Wolstenholme, D.R. (1982) Nucl. Acids. Res. 10, 6619-6637.
30. Clary, D.O., and Wolstenholme, D.R. (1983) Nucl. Acids Res. 11, 4211-4227.
31. de Bruijn, M.H.L. (1983) Nature 304, 234-241.
32. Clary, D.O., Wahleithner, J.A., and Wolstenholme, D.R. (1984) Nucl. Acids Res. 12, 3747-3762.
33. Brown, T.A., Davies, R.W., Ray, J.A., Waring, R.B., and Scazzocchio, C. (1983) EMBO Journal, 2, 422-435.
34. Haly, P., and Brimacombe, R. (1983) Nucl. Acids. Res. 11, 7263-7286.
35. Blanc, H., Adams, C.W., and Wallace, D.C. (1981) Nucl. Acida Res. 9, 5785-795.
36. Sor, F., and Fukuhara, H. (1983) Nucl. Acids Res. 11,339-348.
37. Ranzini, A.C., and Dubin, D.T. (1983) Plasmid 10, 293-295.
38. Köchel, H.G., and Küntzel, H. (1982) Nucl. Acids Res. 10, 4795-4801
39. O'Brien, T.W., and Matthews, D.E. (1976) in Handbook of Genetics. Vol. 5, King, R.C., Ed., pp. 535-580. Plenum, New York.
