A retroviral provirus closely associated with the Ren-2 gene of DBA/2 mice

David W.Burt, Alistair D.Reith and William J.Brammar

ICI/University Joint Laboratory, Department of Biochemistry, University of Leicester, Leicester LE1 TRH, UK

Received 6 September 1984; Revised and Accepted 19 October 1984

Abstract

We have determined the entire nucleotide sequence of an intra-cisternal A particle (IAP) genome, assoclated with the Ren-2 gene of DBA/2 mice. This genome (MIARN) displays features common to other IAP retroviral-like genomes. Long terminal repeats (LTRs) are approximately 430 base pairs (bp) in length and show typical retroviral U3-R-U5 organisation, though the R-region, at 120 bp, is much larger than the average IAP. This difference probably arose by the anplification of a pyriaidine-rich sequence, by a slippage-alspairing mechanism. Flanking the 5^{\prime} LTR is a sequence complementary to a phenylalanine tRNA, strongly conserved in all rodent IAP genomes and probably required to prime the initiation of (-) strand synthesis. Flanking the 3^{\prime} LTR, is a purine~rich sequence probably required for $(+)$ strand synthesis. The tRNA binding site (TBS) is flanked by six tandea coples of a sequence homologous to the TBS. The relationship of the MIARN element to other IAP genomes and the significance of its association with the highly expressed Ren-2 is discussed.

INTRODUCTION

The genomes of most strains of nice contain copies of retroviral sequences (1.2) that code for potentially infectious virus particles, capable of replicating in murine cells. In addition, the mouse genose contains a fanily of approximately 1000 copies of sequences, homologous to the RNA of intra-cisternal A particles (LAPs, 3). The latter are non-infectious retrovirus-like structures (4,5) found generally in early mouse-enbryos $(6,7,8)$ and mouse tumours $(9,10,11)$, and, very rarely, in normal tissues (12). The mode of retrovirus replication, by way of a DNA interaediate (13), enables then to insert proviral DNA sequences at randon sites throughout the host genome. It has been demonstrated that the integration/transposition of these genomes can alter the expression of cellular genes, and in recent years both infectious and non-infectious forms have been associated with such changes. Murine leukemia viruses (MuLVs) have been associated with cont colour (14) and developmental mutants of the mouse $(15,16)$. A cellular oncogene, c-myc has been shown to be activated in bursal lyaphomas by insertion of complete or partial proviral copies after infection by avian leukosis virus (17,18,19,20).

Nucleic Acids Research

Recently, iAP genomes have also been associated with both inactivated and activated cellular genes. For example, lanunoglobulin C_{k} genes were inactivated by IAP integration in a hybridoma line (21.22), a transposed $\alpha-g l o b i n$ pseudogene ($\alpha * 3$) was associated with flanking IAP genomes (23) and the c-mos oncogene was activated in a plasmacytoma line by insertion of an IAP element (24,25.26),

Inbred mouse strains can be divided into two groups on the basis of submaxillary gland (SMG) renin activities (27). This strain difference has been mapped to a single genetic locus, Rnr, the renin regulator, on chromosome 1 (28) and biochemical studies (29.30,31) show that low-renin producing strains (eg c57BL/10) contain a single renin gene, Ren-1, whilst high renin-producers (eg DBA/2) have two, Ren-1 and Ren-2. Comparison of renin genes from high and low SKG renin-producing strains suggest that the low producers evolved from the high renin-producer after deletion of Ren-2 (32). This comparison, together with the analysis of renin cDNA clones (33), suggests that Ren-2 is expressed at higher levels than Ren-1 in the submaxillary gland.

Physical comparison of the Ren-1 and Ren-2 genes from DBA/2 (31) revealed at least 14 kb of sequence homology, with an interruption of 3 kb in the 3^{\prime} flanking region of Ren-2. In this paper we characterise this $3 k b$ element further and identify it as an IAP genome. This apparent association between an IAP insertion and high level expression of a cellular gene is of considerable Interest because it may be an example of gene activation by a discrete genetic element.

MATERIALS AND METHODS

General Techniques. The methods for restriction and ligation of DNAs and gel electrophoresis of DNA fragments are described in ref. (34).
DNA Sequencing. Cloning into M13mp10 and mpil was used in conjunction with the chain-teraination sequencing reactions of Sanger (35). General techniques used are described in ref. (36).
Construction of pDBRn3 and pDBRn3s. To facilitate the quantitative analysis of the $3 k b$ elenent in mouse genomic DNA, an internal 1700bp HindIII fragment fron the $3 k b$ element was cloned into pUCs to generate pDBRn3. To remove LTR sequences from pDBRn3, plasmid DNA was treated with EcoRI and the resulting plasmid, pDNRn3A, was used as a probe, specific for internal MIARN DNA sequences.

DNA Dot Blots. Dot Blots were ade as follows. Spleen and pDBRn3 DNA were digested with Alul and then purified by phenol extraction and ethanol

[^0]

Figure 1. Physical Map of the Ren-1 and Ren-2 regions, showing the position of the 3 kb element. Restriction enzyme cutting sites are represented as follows: P= PstI, Hz HindIII, R=EcoRI. The exons and introns of the renin genes, detersined by comparitive sequencing of genomic and cDNA clones (32), are represented as open boxes and lines, respectively. The MIARN LTRs are shaded.
precipitation. DNAB were dissolved in $5 \mu \mathrm{l}$ 1M NaCl, $0.1 \mathrm{M} \mathrm{NaOH}, 1 \mathrm{mM}$ EDTA and varying arounts of sheared salmon sperm DNA were added. The amount of total DNA was kept constant ($5 \mu \mathrm{~g}$) for each sample applied. Samples were bofled for 5 min and applied to nitrocellulose filters, pre-hybridised as described for genonic blots in ref. (31). Meabranes were air-dried for 30 ain, rinsed in $3 x S S C$ for 2 aln at room temperature, blotted dry and baked at $80^{\circ} \mathrm{C}$ for 4 hours. Meabranes were then treated in the same way as genomic blots in ref. (31).

Computer Analysis of Nucleotide Sequence Homologies. Dot-plots were obtained using a diagonal-traverse homology search algorithm based on that described in ref. (37). The program is written in compled Microsoft BASIC and runs on a SIRIUS 116 bit microcomputer. Screen displays can be dumped to any Epson FX printer.

RESULTS

Association of a 3 kb DNA element with Ren-2

The composite physical maps of Ren-1 and Ren-2, deduced from restriction enzyme mapping and DNA sequencing of genomic clones from a high renin-producing strain (DBA/2), are shown in figure 1 . The extensive region of homology between Ren-1 and Ren-2 is interrupted by an extra 3kb of DNA in the 3^{\prime} region flanking Ren-2. This was shown clearly in heteroduplexes between Ren-1/Ren-2 genonic clones as a 3kb deletion/substitution loop (31).

Estimation of the copy number of the 3 kb elenent

A reconstruction DNA dot blot technique was used to estiate the number of sequences homologous to the 3 kb element in the genome of the mouse. This

Table 1. Copy Number Measureaents of the Ren-2 3 kb element.

ng Mouse DNA	cpa probe bound	ng pDBRn3	
4000	3007	100	105432
2000	1475	50	56907
1000	1107	25	29663
500	1033	12.5	27207
250	728	6.25	17665

Dot-blots mere made (see MATERIALS AND METHODS), with mouse or pDBRn3D DNA In amounts shown above. Each blot was hybridised to an internal 3kb element probe ($\mathrm{pDBR} 3 \Delta$). The individual dots were counted in scintillant; the cpa are shown. The two sets of data were analysed by linear regreasion. The results of regression are as follows: 0.580 cpn probe bound/ng of mouse DNA ; 929 cpa probe bound/ng of pDBRn3 D DNA. Thus, within ing of mouse DNA, 0.06% ($0.580 / 929 \times 100 \%$) is homologous to the pDBRn3A probe. The mouse haploid genome is 3×10^{9} bases, so $\left(3 \times 10^{5}\right) \times(0.0006)=1.8 \times 10^{6}$ bases are homologous to the pDBRn3 DNA. The plasaid pDBRn3 contalns a l300bp EcoRI/BindIII DNA frageent from within the 3kb element, thus, within the mouse genome there are approximately $1400\left(1.8 \times 10^{6} / 1300\right)$ sequences related to the pDBRn3A probe per mouse haploid genome.
involved quantitating the amounts of mouse DNA and $3 k b$ element DNA required to hybridise to the same amount of internal probe (pDBRn3A). The data are presented in table 1 , and the conputational detaila are in the legend. The data show that the mouse genone contains approxiantely 1400 copies of sequences related to the 3 kb element per haploid mouse genone.
The 3 kb element 1 s an IAP genone
To examine the $3 k b$ element further, we sub-cioned this element from λ genomic clones into the plasmid pUCB. DNA from these sub-clones was then cloned into m13 vectors for sequence analysis. To determine the boundaries of the DNA insertion, the homologous region from Ren-1 was also sequenced. The entire DNA sequence of the $3 k b$ element and the target site in Ren-1 are shown (Figures 2 and 3 , respectively).

Comparison of the 3 kb DNA sequence with itself in the form of a dot-plot, (Figure 4) clearly shows directly repeating sequences of approximately 430 base pairs (bp) at each end of the unit. These LTR sequences show extensive homology (83-88\%) with the LTRs of other IAP genones from Hus musculus and internal sequences flanking the LTRs also show homology with regions sequenced in other IAP genomes (22, 24 and 38).

Structural features of LTR and flanking sequences

The renin IAP genome (MIARN), in common with other IAP genomes, shares many structural features with other groups of retroviral LTRs (40). These IAP LTRs include many highly conserved regions, each containing possible regulatory sequences. The sequence TTAAAA, which matches a consensus

Figure 2. DNA Sequence of the Ren-2 IAP Genome, MIARN. Possible regulatory sequences are boxed: IR at 98 and 2704; GRE at 148 and 2754; Core Enhancer at 156 and 2762; CAT-box at 269 and 2853; TATA-box at 311 and 2895; Poly(A) recognition signal at 455 and 3029 ; Poly(A)-addition site at 471 and 3045 ; TBS at 529; 5, intron splice-sites at 876, 951 and 1026 . Repeats are underlined. Direct-repeats between positions 696 and 855 are inperfect, showing 92t homology with each other. Between positions 866 and 1046 , two types of direct-repeats are distingulshed by open and closed arrow heads.

AGCCAGTAAGCAGCACCCCTCC: ACGGCCTCTACATCAG: CTCCTGCCTACAGGTTTCTGTC E E-1

Figure 3. (a) Ren-1 DNA sequence hogologous to the Ren-2 region contajning the site of integration of the Ren-2 associated IAP genome, MIARN. (b) Site of integration of the Ren-1 mobile-like element.
"TATA-box" (TATA ${ }_{T} A^{A}{ }_{T}$, 41) is present in both LTRs (Figure 2, positions 313 and 2895). The sequence CCAAT (the so called "CAAT" box, 41), is present in both LTRs 42bp upstream from each "TATA" box: together these define an RNA polynerase II promoter in both LTRs (41). The sequence AATAAA, a polyadenylation signal present at positions 455 and 3029 (Figure 2), probably directa the post-transcriptional cleavage event prior to polyadenylation (42) and precedes the dinucleotide CA, a preferred polyadenylation site (Figure 2 , positions 471 and 3045). In addition, there 18 a conserved sequence (figure 2 , positions 156 and 2762), that matches closely a core-enhancer sequence (GTGGTATATAT, 43). Such enhancers commonly occur in the v3 region of retroviral LTRs, often (not in the case of MIARN) as part of a larger direct repeat (13). Adjacent to this conserved sequence is the sequence TGTTCT (Figure 2, positions 148 and 2754), which matches a consensus

Figure 4. Dot-plot of the DNA sequence of the $3 k b$ element to itself, showing the long terminal repeats (LTRs). Dots around the border mark off increments of 50bp. The linits of the LTRs are indicated by four sets of parallel lines on each axis.
glucocorticoid-responsive element (GRE, 44. 45). In the LTRs of MATV, there is a similar close association between enhancer and GRE sequences (46) and such an arrangement is hormone-responsive (47). It will be of interest to determine whether the MIARN sequences also define a horaone-responsive element and whether this may influence the expression of neighbouring genes.

The retroviral LTR structure can be sub-divided into 3 regions, U3-R-U5 (40). The lengths of U3 regions are 247 bp for the 5 'LTR and 224 bp for the 3'LTR. The difference in size is not due to a simple tanden duplication of DNA in the 5 'LTR, but an imperfect, palindromic duplication of 26 bp centred at position 265bp. The R region always starts with a G and is usually followed by C, approximately 30bp downstrean of the "TATA" box and ends with the poly(A) addition site, CA. The length of the R region varles between IAP genomes (39), that in MIARN being the largest. This size variabllity is the result of amplification of an 8 bp unit (TTCTCTTG), probably involving a slippage-mispairing mechanisa (48), which would be facilitated by the base asynaetry and high A / T composition of this region. The lengths of the US regions are short, 54 bp for both 5^{\prime} and 3^{\prime} LTRs, a feature common to all IAP genomes.

Four kinds of tRNA: Trp, Pro, Lys (40) and Phe (39), have been identified as primer tRNAs for reverse transcription of retroviral genomes. The nucleotide sequences of the tRNA-binding site (TBS) of MIARN were complenentary to the last 17 nucleotides of a mamalian phenylalanine tRNA (50 and 51) again a conserved feature for IAP genomes (22, 24 and 38). Adjacent to the TBS are $81 x$ tandem repeats of $15 b p$ basic unit, closely related to the TBS itself. As with other tandew repeats, this probably evolved by a base slippage-nispairing mechanism (48).

Adjacent and upstrean fron the 3 'LTR is a conserved purine-rich sequence, 17bp in length. It has been speculated that this region aight be involved in the initiation of plus strand synthesis (40).

Most retroviral genomes contain a 5^{\prime} intron splice-site near the TBS region. A search for probable 5' intron splice sequences (52) reveals three possibilities at positions 873 , 947 and 1027 with $8 / 9$ matches with the published consensus, AAGGTAAGT (52). Sequences extending from the 5 ' terminus of viral RNA up to the first 5 ' intron aplice-site are thought to serve as an untranslated leader sequence which is spliced onto sub-genomic aRNAs (53). The target site for MIARN integration

Because the Ren-2 gene and its flanking regions are highly homologous with the closely linked $R e n-1$ gene, presumably via tandem duplication, it is possible to deduce the sequence of the target site into which the MIARN

Nucleic Acids Research

proviral sequence integrated. Comparison shows a duplication of 6bp, GAACAA, flanking both LTRs, in the Ren-2 region, and that is present in only one copy In the homologous Ren-1 region (Figure 3a). Although the sequences flanking the integrated IAP genomes are non-homologous, the duplication of target DNA is always $6 \mathrm{bp}(22,24$ and 38). Such an arrangenent is typical of prokayotic and eukaryotic nobile elements (40).

In addition, this comparison also shows a 16 bp sequence in Ren-1 that is not present in the Ren-2 sequence (Pigure 3 b). A duplication of $4 \mathrm{bp}, \mathrm{CTCC}$. flanks this sequence, however, only one copy of which was present in the homologous Ren-2 region (at pusition 3138). These features are characteristic of insertion elements and suggest an insertion event may have occurred in the 3^{\prime} flanking region of the Ren-1 gene.

DISCUSSION

Comparison of the structure of IAP genomes
IAP genomes have been classified into two groups on the basis of restriction mapping and DNA heteroduplex analysis (54, 55 and 56). Type 1 , the major group (91\% of total) of IAP genomes, are mostly 7.2 kb in length. Genomes in the einor group, type II, are chiefly 4.8 kb in length and contain a 500bp sequence not present in type I genomes. The restriction map of MIARN has been compared to the BindIII/EcoRI/PgtI naps of other IAP genomes (Figure 6) and internal homologies are evident indicating their retroviral origin. This conclusion was supported by copy nuaber measurenents using an internal MIARN probe, a value was obtained close to that found for other IAP geneomes. As with other rearrangents involving IAP genomes. MIARN has probably undergone a deletion of internal sequences. A deletion of 4 kb , beginning approximately 1-2kb from the 5^{\prime} LTR, has removed internal IAP sequences from the original MIARN IAP genome. However, a 1.5 kb region flanking the 3^{\prime} LTR has been conserved in all re-arranged IAP genomes (57, 58 and 59). This feature is also true of other retrovirus genomes and the retained element is known as the constant region, C. The internal rearrangements of IAPs are generally in the same position and inspection of the MIARN DNA sequence reveals three pertinent features. A pair of 77 bp imperfect direct-repeats between positions 696 and 855, display 92* homology with each other and are each flanked by 3bp direct-repeats (Figure 2). Direct-repeats are also found between positions 866 and 1046 and sequences between 1050 and 1450 are $A / T-r i c h$, with A and T residues showing DNA strand asymetry (Pigure 2). It is interesting to note the unusual pattern of these direct-repeats, consisting of three repeats of 31 bp interrupted by repeats of 75 bp (Figures 2 and 4). The 31 bp repeats

Table 2. A pairwise comparison of IAP LTR sequences.

		MIARN 3'	MIA14 5^{\prime}	MIA14 3'	MIAX24 5^{\prime}	MIAX24 3^{\prime}	L20 5'	H10 5'
MIARN	5'	. $02 \pm .01$. $17 \pm .03$. $16 \pm .02$. $15 \pm .02$. 19*. 03	$\begin{gathered} .22 \pm .03 \\ (2.78) \end{gathered}$	$\begin{aligned} & .61 \pm .06 \\ & (1.53) \end{aligned}$
MIARN	$3{ }^{\prime}$. $16 \pm .02$. $15 \pm .02$. $14 \pm .02$	$.18 \pm .03$	$\begin{array}{r} .22 \pm .03 \\ (2.75) \end{array}$	$\begin{aligned} & .61 \pm .06 \\ & (1.53) \end{aligned}$
MIA14	5^{\prime}			.08土. 02	. $07 \pm .02$. $10 \pm .02$	$\begin{aligned} & 25 \pm .03 \\ & (3.13) \end{aligned}$	$\begin{array}{r} .65 \pm .07 \\ (1.63) \end{array}$
MIA14	$3{ }^{\prime}$. $02 \pm .01$.08t. 02	$\begin{gathered} .23 \pm .03 \\ (2.85) \end{gathered}$	$\begin{array}{r} .62 \pm .07 \\ (1.56) \end{array}$
MIAX24	51					.07土. 01	$\begin{aligned} & .22 \pm .03 \\ & (2.74) \end{aligned}$	$\begin{aligned} & .61 \pm .06 \\ & (1.53) \end{aligned}$
MIAX24	$3{ }^{\prime}$						$\begin{aligned} & .25 \pm .03 \\ & (3.11) \end{aligned}$	$\begin{aligned} & .60 \pm .06 \\ & (1.51) \end{aligned}$
L20	$5{ }^{\prime}$							$\begin{array}{r} .58 \pm .06 \\ (1.45) \end{array}$

The nuaber of base substitutions per site (together with standard errors) as estimated by using the three-substitution-type model of Kimura (64). These were calculated using aligned LTR sequences (Figure 5). In brackets estimates of base substitution rate are given as number of base substitutions per site per year ($\times 10^{\circ}$), where divergence tiaes are known (Mus musculus vs mus caroli, 4 million years and hus species vs Hesocricelus auratus, 20 million years. 49). References for LTRs follow :MIARN this work; MIA14 (22), MIAX24 (24), Hus caroli, L20 (63) and Hesocricelus auratus, H10 (39).
contain consensus 5^{\prime} splice sites (Figure 2). These sequence features may be related to the apparent instability of this region.

If the general organisation of IAP genomes is siallar to that of other retroviral genomes, 5 'I,TR:PBS.gag, pol,env, $c, P U: 3$ LTR, (40) then our findings would suggest that only the terainal sequences remain within the MIARN elenent. This suggestion is supported by the lack of open reading frames between the two LTRs (data not shown).

Evolution of the Rar locus in the mouse
A model of renin gene evolution in the mouse involving gene duplication of an ancestral gene approximately 13 afllion years ago has been proposed (60). Recently, we have isolated and characterised a renin gene from a low renin-producing mouse strain (32). This gene was calculated to be more closely related to the Ren-1 (1.5x sequence divergence) gene of a high renin-producer than a Ren-2 (10\% sequence divergence) gene. These findings supported a model of gene duplication approximately θ million years ago, followed by a recent

	110	120	130	110	150	160	170	160°	190	200
5' HIARM	-66ECAGITT	-----TCC6	6C-CATGTGT	ic--T6CIIT	ICCCGIGATG	ACAACTESAE	TMTAACESC	agactatal	TCCIEAT-66	AEETA
3' miam	: -6S-CA-ITT	---..-TCCC	EC-CAIGTGT	IC-- F6CIII	ICCCGIGAIG	ACAACTSC--			-ccoaigso	CIG-cagcta
5' M1A14	AESEIGETTC	-CCIA	CITCATGTES	[CACTECCCT	ccccoteacg	TCAACTCE5-			-ccgatego	cti-casta
3' MIAl4	AESGIAGGTI	-cICA	CICMIETEC	ICA-GECII	ccccigacg	TCAACICG--			cccalgeg	As-ca
3 Mims]										
5) Maxzi	- MEGGTAGSIT	- - - CICA	cichatgige	IC--TECCII	ccccgicach	ICAMCICEG-			-cccatesa	CIG-casca
3' maxCa	: MGEGTAICT	--AIGA	ctacatitc:	It--TECCIT	clechigace	TCAC160--			CCEAT-66	16-cagCa
5' MIA3. 2										
5' 120	1-GEGTAGTT	-----CCCA	CCCCATETEC	IC--TGCCIT	iccegicatc	ACAACTCTEO			-cIGAIEE6	CTE-CAEGA
51 HIO	CTGCIGTCAG	tTGGAGTIAA	CCGTTIAASC	16--TECCTC	tcccotesch	ICATCTSSAS			--tcatgig	chactacta

	210	220	230	20		250	260	270	280	290	300
5' MIARN	ATHEGGAGT	matacgicli	AgGcgencoa	TAATICICOI	[AAM		6656T:TiG6	caticitict	cticilict	igitctigit	IT6
3' MIARA	ATEASESAGT	AATACETCCI	ASESG6AESA	TAATTCTC中	TAASd	SSCAC	G6E6TITIGS	catictitici	CIIESITHCI	T6TtCitg--	IVICTE6
5 M Malt	ATCAESEAGT	gacacgicct	ASCSGAMTA	TMACICTC	AnWa	SSCA6	6GSGTTTCG-				1 CT
$3{ }^{\prime}$ miala	ATCAGSEAET	bhilactert	A6EG6MAESA	IAATTCTCOT	TAATS	56546	EGEETIICG-				-THTCT-
3 MIMEI				gattcicqi	TAMS	TGAS	CGGGITICG.				-ititer--
5' miax26	AItabgeaet	GACACGTECT	A6G65AAEGA	IASTICTCOT	Iatid	65646	66E6TTTC6-				-tilicicg
3^{1} MIAX24		EACACGTCCG	ASGCGMGGA	64ATGCTCO	TAAG	56595	Ggagitice				-titicice
5' MlA3. 2			-666A	TAACESTCOT	AAATA	S66A6	EGESTITSG.				-TITICICE
5' 27	: ATAESEASI	GACAC-TCCG	AGCCGGAG6A	CAGICCTCO	IAMAL	56, $0^{4} 6$	GSGESTCCG*				C.-.-16ICG
5' HIO	AITCCELIC	tacacitic	ACICSGAECT	CCTAGECT ${ }^{\text {c }}$	TATA	5665	T6EGTTCTT			651	-.--16666

$310320330 \quad 300350 \quad 360 \quad 3 \pi \quad 300 \quad 395 \quad 100$

Figure 5. Comparison of LTR sequences from IAP genomes. Dashes indicate gaps inserted to maximise the alignment of homologous regions of the sequences. Conserved sequences at the terminil and possible regulatory sequences are boxed. References for LTR sequences are as follows :MIA14 (22); MIANSI (38): MIA3.2 (38); L2O (63) and H10 (30).

Figure 6. Physical comparison of IAP genones. Restriction enzyme cutting sites are represented as follows: $\quad=P a t I, \Delta=H i n d I I, O=E c o R I . \quad()=$ deletion. References: clones 81 and 19 (53); clones MiA14-63 (65).
(1.2 million years) deletion event renoving the Ren-2 gene.

The MIARN genome can be treated as a member of a large multigene family, the IAP genomes and sequence divergence between the various unita may be used to estimate when integration and divergence of various IAP genes took place. An japortant consequence of the mechanise of retrovirus replication and integration is the generation of Identical LTR sequences (13). Thus, the difference in sequence between 5^{\prime} and 3^{\prime} LTRs must be a result of randoa mutation in each LTR, following integration. We have calculated 0.02 ± 0.01 base substitutions per site from a comparison of the MIARN LTRs (Table 2). Comparison of MIARN and L20 LTRs, from species thought to have diverged fron a comon ancestor 4 -illion years ago (49), yielded an estinated mutation rate of 2.8×10^{-0} base substitutions per aite per year. Assuming that the mutation rate of the MIARN LTRs is equal to this, then the integration event occurred approximately 0.7 million years ago. This date must be a minimum estimate, since homogenisation events (61), between and within IAP genomes, would reduce the degree of divergence seen in pairs of LTRs. This date would suggest that both the Ren-2 deletion and MIARN integration are both relatively recent events. These conclusions then support the following model of evolution for the Rnr locus in the mouse. Approximately 9-13 million years ago a Ren-1 like gene was duplicated to generate the Ren-1/Ren-2 gene arrangement, followed recently by the integration of the MIARN genome into the 3^{\prime} flanking region of Ren-2. If this event took place before the Ren-2 deletion, then the latter nust also remove the MIARN genome. Alternatively, the two events took place in separate groups of mice.

The number of base substitutions per site observed between pairs of lap LTRs (Table 2), together with an estimated mutation rate of $2.8 \times 10^{-8} /$ site/year, provide ainimum estinates of the times of divergence. Apparently, the Husculus musculus IAP genomes have diverged fros a coman ancestor, approximately 3-7 million years ago. Also, these LTR sequences are all equally related to the L20 LTR sequence from Husculus carolif (Table 2), suggesting a common ancestor for these LTRs, 4 iflifon years ago (49). These mouse LTRs all seen to share a comon ancestor with the H10 LTRs of Hesocricelus auratus, some 20 willjon years ago (39).

Comparisons of LTRs within individual IAP genomes suggest that the times of integration are relatively recent (0.7 to 2.9 aillion years ago), however these tiaes are probably gross underestimates due to processes of honogenisation (61) between pairs of LTRs. The comparison of LTRs within and between the IAP genomes of MIA14 and MIAX24 seems to show that the 3^{\prime} LTR of MIA14 1 s more similar to the 5^{\prime} LTR of MJAX24 than it is to that of MIA14. This could be evidence of homogenisation between IAP genomes within a given species, possibly by a mechanisn of gene conversion.

The rates of base substitutions observed between pairs of IAP LTRs is at least 10 -fold greater than that charscteristic of functional genes (64). This would suggest that the terainal repetitions of the proviral elements examined are no longer subject to strong functional constraints.
Association of an LAP genome with the Ren-2 gene.
Renin cDNA clones have been used to investigate the organization of renin gene sequences in aice of high and low renin strains (29 and 30). The physical maps given for Ren-1 and Ren-2 (Figure 1), show that the 8.8kb, 3.9kb pair are derived from the Ren-1 region and the $9.2 \mathrm{~kb}, 4.4 \mathrm{~kb}$ pair from the Ren-2 region. Sequence analysis of renin cDNAs and Ren-1/Ren-2 genomic sequences $\{32$ and 33), Indicate that Ren-1 codes for a kidney renin and Ren-2 codes for the major renin mRNA species in the SMG. The physical map of the Ren-2 region also indicates that the 4.4 kb EcoRI fragments detected in high renin stralns is due to the 3 kb insertion and is therefore diagnostic for the association of this element with the highly expressed $R e n-2$ gene. The three low renin-producing strains Balb/c, C3H and C57BL/6 all have 3.9 kb and 8.8 kb EcoRI fragaents in Southern blots (30), while the three high renin-producers DBA/2, AKR and SWR have four EcoRl fragments of $3.9 \mathrm{~kb}, 4.4 \mathrm{~kb}, 8.8 \mathrm{~kb}$ and 9.2 kb (29 and 30). These findings then demonstrate an association between high SMG renin expression and the presence of on IAP genome flanking the highly expressed gene, Ren-2. Given the well established correlation between proviral LTRs and altered expression of closely linked genes (17-20), it seems possible that the elevated
expression of Ren-2 in the SMG of high-producer strains is due to the close proximity between that structural gene and the provirus. Since Ren-2 expression has only been described in the SMG, it is not yet possible to argue whether any possible enhancing effect is tissue-specific.

Sequences homologous to IAP genomes have been detected in a wide range of mamals, including many rodent species, the bat, cat and monkey (62). These mobile genomes and their transcription-control signals may therefore play a significant role in fltering the expression of cellular genes in mamalian genomes.

ACKNOMLEDGEMENT

We are grateful for the skilled technical assistance of J. Brooks, H. George, J. Walker and J. Bridges, to many colleagues in Leicester for fruitful discussion and to I.C.I for encouragement and financial support.

REFERENCES

1. Chen, H.W., Bryan, T., Moore, J.L., Staal, S.P., Rowe, W.P and Martin, M.A. (1980) Proc. Natl. Acad. Sci. U.S.A.77, 5779-5783.
2. Jenkins, N.A., Copeland, N.G., Taylor, B.A. and Lee, B.K. (1982) J. Virol. 43. 26-36.
3. Lueders, K.K and Kuff, E.L. (1977) Cell 12, 963-972
4. Hall, W.T., Hartley, J.W. and Sanford, K.K. (1968) J.Virol. 2, 238-247.
5. Kuff, E.L., Wivel, N.A. and Lueders, K.K. (1968) Cancer Res. 28, 2137-2148.
6. Biczysko, W., Plenkowski, M., Solter, D. and Koprowsky, H. (1973) J. Nat. Cancer Inst. 51, 1041-1050.
7. Calarco, P.G. and Szollosi, D. (1973) Nature New Biol. 243, 91-93.
8. Chase, D.G. and Piko, L. (1973) J. Natl. Cancer Inst. 51, 1971-1973.
9. de Harven, E. and Friend, C. (1958) J. Biophys. Biochen. Cytol. 4, 151-156.
10. Perk, K. and Dahlberg, J.E. (1974) J. Virol. 14, 1304-1306.
11. Dalton, A.J., Potter, M. and Merwin. R.M. (1961) J. Natl. Cancer Inat. 26, 1221-1267.
12. Wivel, N.A. and Smith, G.H. (1971) Int. J. Cancer 7, 167-175.
13. Tenin, H.M. (1981) Cell 27, 1-3.
14. Copeland, N.G., Hutchinson, K.W. and Jenkins, N.A. (1983) Cell 33, 379-387.
15. Jaenisch. R., Harber, S.K., Schnieke, A., Lohler, J., Jahner, D., Grotkopp, D. and Hoffman, E. (1983) Cell 32, 209-216.
16. Schleke, A., Harbers, K. and Jaenisch, R. (1983) Nature (London) 304, 315-320.
17. Fung, Y, K., Fadly, A.M., Crittenden, L.B. and Kung, H.,-J. (1981) Proc. Natl. Acad. Sci. U.S.A 78, 3418-3422.
18. Hayward, M.S., Neel, B.G. and Astrin, S.M. (1981) Nature (London) 290, 475-479.
19. Jenkins, N.A., Copeland, N.G., Taylor, B.A. and Lee, B.K. (1981) Nature (London) 293, 370-374.
20. Nestaway, D., Payne, G. and Varmus, H.E. (1984) Proc. Natl. Acad. Sci. U.S.A 81, 843-847.
21. Hawley, R.G., Shulman, M.J., Murialdo. H., Gibson, D.M. and Hozuri. N. (1982) Proc. Natl. Acad. Sci. U.S.A 79, 7425-
22. Kuff, E.L., Feenstra.A., Lueders, K., Smith, L., Hawley, R., Hozumi, N. and Shulaan, M. (1983) Proc. Natl. Acad. Scl. U.S.A 80. 1992-1996.
23. Lueders, K.. Leder. A., Leder, P. and Kuff, H. (1982) Nature (London) 295, 426-428.
24. Canaani, E., Dreazen, O., Klar, A., Rechavi. G., Ran, D., Cohen, J.b., and Givol, D. (1983) Proc. Natl. Acad. Sci. U.S.A 80, 7118-7122.
25. Kuff, E.L., Feenstra, A., Lueders, K., Rechavi, G., Givol, D. and Canaan 1, E. (1983) Nature (London) 302, 547-548.
26. Rechavi, G., Givol, D. and Canaans. E. (1982) Nature (london) 300, 607-611.
27. Wilson, C.M., Erodos. E.G., Dunn, J.F. and Wilson, J.D. (1977) Proc. Natl. Acad. Sci. U.S.A 74, 1185-1189.
28. Wilson, C.M., Erdos, E.G., Wjlson. J.D. and Taylor, B.A. (1978) Proc. Natl. Acad. Sci. U.S.A 75, 5623-5626.
29. Piccini, N., Knopf, J.L. and Gross, K.W. (1982) Cell 30, 205-213.
30. Panthler, J.J.. Holm, I. and Rougeon, F. (1982) EMBO J. 1 , 1417-1421.
31. MuJlins, J.J., Burt, D.W., Windass, J.D., McTurk, P., George, H. and Bramar. W.J. (1982) EMBO J. 1 , 1461-1466.
32. Burt. D.W., Beecroft, L.J., Muljins, J.J., Pioli, D. and Bramar, w.J. (1984) in preparation.
33. Panthier, J.J. and Rougeon, F. (1983) EMBO J. 2, 675-678.
34. Burt, D.W. and Brammar, W.J. (1982) Mol. Gen. Genet. 185, 462-467.
35. Sanger, F. (1980) J. Mol. Biol. 143, 161-178.
36. Sanger, F., Coulson, A.R., Hong, C.F., Hill, D.F. and Peterson, G.B. (1982) J. Mol. Biol. 162, 729-773.
37. White, C.T., Hardies. S.C., Hutchison III, C.A. and Edgell, M.H. (1984) Nucleic Acids Res. 12, 751-766.
38. Cohen, J.B., Unger, T., Rechavi, G.. Canaani, E. and Givol, D. (1983) Nature (London) 306. 797-799.
39. Ono, M. and Ohishi, H. (1983) Nucleic Acids Res. 11, 7169-7179.
40. Chen, H.R. and Barker, W.C. (1984) Nucleic Acids Res. 12, 1767-1778.
41. Breathnach, R. and Chambon, P. (1981) Annu. Rev. Biochem. 50, 349-362.
42. Montell, C., Fisher, E.F., Caruthers, M.H. and Berk, A.J. (1983) Nature (London) 305, 600-605.
43. Laimins, L.A., Kessel, M., Rosenthal, N. and Khoury, G. (1983) In Enhancers and Eukaryotic Gene Expression, Gluzaan, Y. and Shenk, T. Eds., pp28-37, Cold Spring Harbor, New York.
44. Buetti, E. and Diggelmann, H. (1983) EMBO J. 2, 1423-1429.
45. Scheidereit, C., Geisse, S., Westphal, H.M. and Reato, M. (1983) Nature (London) 304, 749-752.
46. Scheidereit, C. and Beato, M. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 3029-3033.
47. Chandler, V.L., Maler, B.A., and Yamamoto, K.R. (1983) Cell 33, 489-499.
48. Streisinger, G., Okada, Y., Emrich, J., Newton, J., Tsugita, A., Terzaghi, E. and Inouye, M. (1966) Cold Spring Harbor Syap. Quant. Biol. 31, 77-84.
49. Benveniste, R.E., Callahan, R., Sherr, C.J., Chapman, V. and Todaro, G.J. (1977) J. Virol. 21, 849-862.
50. Keith, G. and Dirheimer. G. (1978) Biochim. Biophys. Acta. 517, 133-149.
51. Roe, B.A., Anandaraj, M.P.J.S., Chia, L.S.Y., Randerath, E., Gupta, R.C. and Randerath, K. (1975) Blochen. Biophys. Res. Conmun. 66, 1097-1105.
52. Mount. S.M. (1982) Nucleic Acids Res. 10, 459-472.
53. Van Beveren, C.. Rands, E., Chat topadhyay, S.K., Lacy, D.R. and Verma. I.M. (1982) J. Virol. 41, 542-556.
54. Cole, M.D. Ono, M. and Huang, K.C. (1981) J. Virol. 38, 680-687.
55. Ono. M.. Cole, M.D., White, A.T. and Huang. R.C.C. (1980) Cell 21 , 465-473.
56. Sheng-Ong, G.L.C. and Cole. M.D. (1982) J. Virol. 42, 411-421.
57. Kominami, R. and Hatanaka, M. (1979) J. Vicol. 32, 925-933.
58. Kominasi, R., Tomita, Y., Connors, E.C. and Hatanaka, M. (1980) J. Virol. 34, 684-692.
59. Suzuki, A., Kitasato. H., Kawakami, M. and Ono, M. (1982) Nucleic Acids Res. 10, 5733-5746.
60. Hols. I.. Ollo, R., Panthier, J.-J. and Rougeon, F. (1984) EMBO J. 3. 557-562.
61. Brown, S.D.M. and Dover, G. (1981) J. Mol. Biol. 150, 441-466.
62. Lueders, K.K. and Kuff, E.L. (1981) Nucleic Acids Res. 9, 5917-5930.
63. Ono, M., Kitasato. H., Ohishi, H. and Motobayashi-Nakajina, Y. (1984)
J. Virol. 50, 352-358.
64. Kimura, M. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 454-458.
65. Lueders, K.K. and Kuff, E.L. (1980) Proc. Natl. Acad. Sci. U.S.A. 77, 3571-3575.

[^0]: 8580

