IS6110, an IS-like element of Mycobacterium tuberculosis complex

D. Thierry, M.D.Cave ${ }^{2}$, K.D.Eisenach ${ }^{2}$, J.T.Crawford ${ }^{2}$, J.H.Bates ${ }^{2}$, B.Gicquel ${ }^{1}$ and J.L.Guesdon Laboratoire des Sondes Froides and ${ }^{1}$ Unité de Génie Microbiologique, Institut Pasteur, 75724 Paris Cedex 15, France and ${ }^{2}$ McClellan Memorial Veterans Hospital and University of Arkansas for Medical Sciences, Little Rock, AR, USA

Submitted December 6, 1989
GenBank accession no. M29899

Mobile genetic elements are useful genetic tools. They have been found in most organisms which have been examined (for recent reviews see 1). IS900 was isolated from M. paratuberculosis (2) and IS6100 from a M. fortuitum strain (our unpublished results). IS elements have been used as taxonomic markers useful for diagnostic purposes, $(2,3)$. From a iA. tuberculosis cosmid library constructed in pHC79 (4), an IS-like element, IS6110, was identified as a repeated sequence, by screening the library with labelled M. tuberculosis total DNA. This sequence (1361 nt) possesses characteristics of IS elements, i.e., inverted (28 bp with 3 mismatched bp) and direct (3 bp) repeats of the target sequence at its extremities. A search in the EMBL data bank has revealed homologies with $I S 3411$, an insertion element from E. coli (5). Cross-hybridization was observed between IS6110 and a repeated sequence previously isolated from M. tuberculosis (6). IS6110 has been found in M. tuberculosis and M. bovis but not in any of the other mycobacteria tested (our unpublished data). Therefore, IS6110 will be used as probe for the identification of the M. tuberculosis complex.

ACKNOWLEDGEMENTS

We are grateful to A.Brisson-Noel, M.Ranes, A.Ullmann and J.Davies for helpful discussions and encouragement and to V.Vincent-Lévy-Frébault for providing M. tuberculosis DNA. This investigation was supported by Institut Pasteur.

REFERENCES

1. Berg,D.E. and Howe,M.M. in Mobile DNA, American Society for Microbiology. Washington DC.
2. Green,E.P., Tizard,M.L.V., Moss,M.T., Thompson,J., Winterbourn,D.J., McFadden,J.J. and Hermon-Taylor,J. Nucl. Acids Res. in press.
3. Park,I., Saurin,W. and Ullmann,A. (1988) FEMS Microbiol. Letters 52, 19-24.
4. Hohn, B. and Collins,J. (1980) Gene 11, 291-298.
5. Ishiguro,N. and Sato,G. (1988) J. Bacteriol. 170, 1902-1906.
6. Eisenach,K., Crawford,J.T. and Bates,J.H. (1988) J. Clin. Microbiol. 26, 2240-2245.
```
DR INV.REP.
CGATGAACCG CCCCGGCATG TCCGGAGACT CCAGTTCTTG GAAAGGATGG GGTCATGTCA GGTGGTTCAT
CGAGGAGGTA CCCGCCGGAG CTGCGTGAGC GGGCGGTGCG GATGGTCGCA GAGATCCGCG GTCAGCACGA
TTCGGAGTGG GCAGCGATCA GTGAGGTCGC CCGTCTACTT GGTGTTGGCT GCGCGGAGAC GGTGCGTAAG
TGGGTGCGCC AGGCGCAGGT CGATGCCGGC GCACGGCCCG GGACCACGAC CGAAGAATCC GCTGAGCTGA
AGCGCTTAGC GGCGGGACAA CGCCGAATTG CGAAGGGCGA ACGCGATTTT AAAGACCGCG TCGGCTTTCT
TCGCGGCCGA GCTCGACCGG CCAGCACGCT AATTAACGGT TCATCGCCGA TCATCAGGGC CACCGCGAGG
GCCCCGATGG TTTGCGGTGG GGTGTCGAGT CGATCTGCAC ACAGCTGACC GAGCTGGGTG TGCCGATCGC
CCCATCGACC TACTACGACC ACATCAACCG GGAGCCCAGC CGCCGCGAGC TGCGCGATGG CGAACTCAAG
GAGCACATCA GCCGCGTCCA CGCCGCCAAC TACGGTGTTT ACGGTGCCCG CAAAGTGTGG CTAACCCTGA
ACCGTCAGGG CATCGAGGTG GCCAGATGCA CCGTCGAACG GCTGATGACC AAACTCGGCC TGTCCGGGAC
CACCCGCGGC AAAGCCCGCA GGACCACGAT CGCTGATCCG GCCACAGCCC GTCCCGCCGA TCTCGTCCAG
CGCCGCTTCG GACCACCAGC ACCTAACCGG CTGTGGGTAG CAGACCTCAC CTATGTGTCG ACCTGGGCAG
GGTTCGCCTA CGTGGCCTTT GTCACCGACG CCTACGCTCG CAGGATCCTG GGCTGGCGGG TCGCTTCCAC
GATGGCCACC TCCATGGTCC TCGACGCGAT CGAGCAAGCC ATCTGGACCC GCCAACAAGA AGGCGTACTC
GACCTGAAAG ACGTTATCCA CCATACGGAT AGGGGATCTC AGTACACATC GATCCGGTTC AGCGAGCGGC
TCGCCGAGGC AGGCATCCAA CCGTCGGTCG GAGCGGTCGG AAGCTCCTAT GACAATGCAC TAGCCGAGAC
GATCAACGGC CTATACAAGA CCGAGCTGAT CAAACCCGGC AAGCCCTGGC GGTCCATCGA GGATGTCGAG
TTGGCCACCG CGCGCTGGGT CGACTGGTTC AACCATCGCC GCCTCTACCA GTACTGCGGC GACGTCCCGC
CGGTCGAACT CGAGGCTGCC TACTACGCTC AACGCCAGAG ACCAGCCGCC GGCTGAGGTC TCAGATCAGA
GAGTCTCCGG ACTCACCGGG GCGGTTCACGA
INV.REP.
    DR
```

Figure 1. Complete nucleotide sequence of IS6110. Direct (DR) and inverted (INV.REP.) repeats are shown by lines.

