TFD: The transcription factors database

David Ghosh

National Center for Biotechnology Information, NLM, NIH, Bethesda, MD 20894, USA

Since its inception (1), a number of changes (2) have occurred to the Transcription Factors Database, some details of which will be described here. This database is designed to capture and contain information about the properties of transcription factors, their interrelationships, the nucleic acid and amino acid sequences that encode them, and the DNA sequences they recognize. This information has been sequestered into different tables so that, through the use of relational database management systems, the existence of relationships between the various entities represented in the database may be apprehended. Figure 1 presents an ERD (Entity-Relationship Diagram), and Figure 2 the corresponding data dictionary, for release 4.2 of this database, which became available in February 1992. Since release 1.0, five new tables N_POINTERS, (METHODS. POLYPEPTIDES. REFERENCES, and X_POINTERS) have been added, one table (ELEMENTS) has been removed, and the name of one table has been changed (from CDNAS to CLONES). The reference number (ref___n) fields in the various tables have been maintained from the original database definition, but these fields now contain a Medline Unique Identifier (UID), avoiding the need for maintaining a local reference numbering scheme. In release 4.2, the database contains 1658, 929, 434, 1511, 1887, 34, 2552, 5726, and 4872 records in the CLONES, DOMAINS, FA-CTORS, POLYPEPTIDES, SITES. METHODS, N_POINTERS, REFERENCES, and X_POINTERS tables, respectively.

A question that arises frequently is 'How many transcription factors are there?' Though it is difficult to arrive at a single number that answers this question, the current numbers of entries in this database may provide some handle on this issue. Rat c-Jun, mouse c-Jun, and human c-Jun may be considered as three distinct transcription factors, although in a particular cell line or tissue source, only one of these proteins would be expressed. Furthermore, since Jun only has function within the context of the loosely defined entity termed AP-1, c-Jun could be considered, rather, as a subunit of a transcription factor. A central issue in answering the question of 'How many transcription factors' is whether one defines a transcription factor as an activity or as a molecule, but one answer to this question can be found in the entries of the TFD POLYPEPTIDES table, which currently corresponds to 1447 distinct polypeptide species.

A number of commercial and noncommercial tools now exist for using the sequence information contained in these tables (3). A slightly different class of tools has also been under development. These tools are designed to provide a groundwork for the use of 'visual reasoning' in studying relationships between objects having precomputed positions on large genomes, and are designed to provide graphic workbenches for the study of genome sequences, such as that of the organism *E. coli* (4). The use of the TFD SITES table for this category of analysis (5) may be of some value for the study of the long continuous and contiguous sequences that are now being produced by genome sequencing efforts (6).

Figure 3 presents sample entries in a number of TFD tables. In a typical SITES entry (3A), there exist a number of fields (trn_unit, locat_ref, and n_prob) which did not exist in the 1.0 release. The locat_ref field now serves to distinguish locations that are defined relative to an mRNA start site from those that are defined relative to other numbering schemes such as arbitrary fragment or full genome coordinates. The n_prob field contains a precomputed value that estimates the probability that the SITES entry will occur by chance in a random sequence of identical length, and the values in this field can be used in different ways. For example, sequence analysis datasets are now generated whose contents are restricted to SITES entries whose n_prob values fall below a certain threshold. The n_prob field can also be used, subsequent to a sequence analysis, to compute the statistical significance of a match to a specific SITES entry. In a DOMAINS entry (3B), a distinction now exists between the structural and functional classifications of the respective entries, which are represented by the struc_clas and func_clas fields. In release 4.2, the DOMAINS table contains 412 zinc finger entries, 299 homeodomain entries, 85 helix-turn-helix entries, and 133 entries of other classes.

A principal difference between the 4.2 release and the 1.0 release is in the existence of pointers tables. These tables (N_POINTERS and X_POINTERS) might also be considered

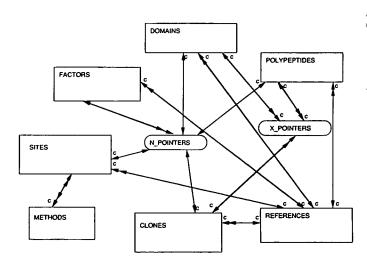


Figure 1; Entity-relationship diagram for eight tables in the 4.0 TFD release, one-to-one relationships are represented by links with single arrows at both ends. Instances of one-to-many relationships are indicated in the cases where one end of the link contains a double arrow. Conditional relationships are indicated by a 'c' character.

able	Field	Length	Description	Table	Field	Length	Description
lones	clone_id	6	Clones entry identifier	n_pointers	tablel	15	name of first TFD table for this pointer
lones	fac_name	20	Name of factor	n pointers	id 1	7	identifier for TFD entry 1
lones	clone_type	7	Type of clone (cdna or genomic)	n pointers	table2	15	name of second TFD table for this pointer
lones	source	10	Source of clone	n_pointers	id 2	7	identifier for TFD entry 2
lones	clone_name	10	Name of plasmid	-	-		-
lones	na seq1	200	Base pairs 1-200	polypeptides	polypep id	6	Polypeptides entry identifier
lones	na_seq2	200	Base pairs 201-400	polypeptides	fac name	20	Name given to factor
lones	na seq3	200	Base pairs 401-600	polypeptides	subunit	10	Name of this subunit
lones	na seq4	200	Base pairs 601-800	polypeptides	organism	20	Species name corresponding to biological sour
lones	na seq5	200	Base pairs 801-1000	polypeptides	aa seql	200	Residues 1-200
lones	segment	2	segment identifier	polypeptides	aa seq2	200	Residues 201-400
lones	comments	80	Comments	polypeptides	aa seq3	200	Residues 401-600
lones	main ref	60	Literature reference	polypeptides	aa seq4	200	Residues 601-800
lones	ref_n	8	Reference number (medline uid)	polypeptides	aa seq5	200	Residues 801-1000
		-		polypeptides	segment	2	Which 1000 residue entry of complete sequence
omains	domain id	6	Domains entry identifier	polypeptides	seq extent	10	Partial or complete ?
omains	fac name	20	Name of factor	polypeptides	comments	80	Comments
omains	struc clas	20	Structural or motif classification	polypeptides	main ref	60	Reference
omains	domain num	2	Number of domain relative to amino terminus	polypeptides	refn	8	A reference number
omains	seq type	1	Individual or consensus sequence	P1P-P		-	
omains	aa start	4	Start position in protein	references	title	200	Title of publication
omains	aalend	4	Stop position	references	author	200	Authors of publication
omains	aa seq	150	Amino acid sequence entry (one-letter code)	references	journal	100	Citation entry corresponding to publication
omains	func clas	15	Functional classification	references	abstract	200	First 200 characters of abstract
omains	comments	80	Comments	references	uid	8	Eight-digit NLM unique identifier
lomains	main ref	60	Primary reference	101010000	414	5	bight bigit has shiqte identified
omains	ref n	8	A reference number	sites	site id	6	Sites entry identifier
lomains	organism	20	Organism source	sites	fac name	25	Name of factor
	organizo			sites	seg name	30	Name of sequence or element
actors	factor id	6	Factors entry identifier	sites	na seq	45	Nucleic acid sequence
actors	fac name	20	Name of factor	sites	seq type	1	Individual or consensus sequence
actors	distrib	5	Tissue distribution of factor	sites	system	10	System or organism
actors	system	5	System or organism	sites	genome	1	Viral or cellular genome
actors	clone	ī	Existing genomic or cdna?	sites	trn unit	20	Name of transcription unit
actors	seq spec	1	Sequence-specific?	sites	comments	50	Comments
actors	dna bindin	1	DNA-binding?	sites	main ref	70	Primary reference
actors	modifs	15	Modifications	sites	fac source	16	Source of factor used to map site
actors	function	25	Function	sites	locat ref	20	Reference point for coordinates in "location"
actors	comments	80	Comments	sites	location	20	Location relative to mRNA start
actors	main ref	60	Primary reference	sites	method	11	Method used to map site
actors	source	21	Source for isolation of factor	sites	n prob	8	Precomputed probability of site occurrence
actors	mw	6	Molecular weight of protein	sites	ref n	8	A reference number
actors	SYNS	16	Synonymous or related factors	sites	strand	1	Coding or noncoding
actors	ref n	8	A reference number	sites	binding	1	Binding or non-binding
actors	derivation	15	Description of how identitiy of the factor as a biochemical entity is derived	x pointers	tfd table	15	Name of TFD table referenced by this pointer
actors	organism	20	Organism source of the factor	x pointers x pointers	tfd_id x db	6 10	Identifier of the TFD entry External database identifier
ethods	full	50	experimental method	x_pointers	x release	4	Release of database referenced in "x db"
nethods	tfdcode	2	two-letter code used by TFD	x_pointers x_pointers	x_ac	10	Accession number of the X_db entry referenced by this pointer
				x_pointers	x_entry	10	Entry name of the X_db entry referenced by this pointer

Figure 2. Data dictionary for TFD release 4.0, including (from left to right) table name, field name, length of field, brief field description.

2092

Nucleic Acids Research,

Vol. 20, Supplement

	SITE ID	501874
۹.	FAC NAME	Kruppel
	SEQ NAME	eve-stripe2-kr5
	NA SEO	TTAATCCGTT
	SEQ TYPE	I
	SYSTEM	DROS
	GENCHE	с
	TRN UNIT	even-skipped Science 254: 1385-7 (1991)
	LOCAT RET	RNA start site
	LOCATION	-1562/-1553
	METHOD	DF
	N PROB	9.54e-07
	REFN	92073911

A

в	DOMAIN_ID	D00293	
	FAC NAME	c-Myc	
	STRUC CLAS	AS helix-loop-helix	
	DOMAIN NUM	1	
	SEQ TYPE	I	
	AA START	346.00	
	AA_END	405.00	
	AA_SEO	VKRRTHNVLERØRRNELKRSFFALRDØIPELENNEKAPKVVILKKATAYILSVØAEEOKL	
	FUNC_CLAS	dimerization	
	COMMENTS	Myc similarity region	
	MAIN_REF	Genes Dev 4: 167-79 (1990)	
	REF_N	90249724	

С	TFD TABLE	polypeptides
-	TFD ID	P00221
	х дв	PIR
	X RELEASE	27.0
	- X AC	A28263
	X ENTRY	TVRTFS

Figure 3. Sample TFD entries in the SITES (3A), DOMAINS (3B), and $X_POINTERS$ (3C) tables.

as 'relation matrices' or 'correlation tables', and can be used as hard links between any of a number of molecular biology databases (Genbank, EMBL, SwissProt, PIR, Genpept, NCBI-Backbone) and TFD. A TFD X_POINTERS entry is presented (Figure 3C) which shows a typical cross-reference between TFD and an external database, which in this case is between a TFD POLYPEPTIDES entry (P00221, rat AP-1/c-Fos) and an entry in the NBRF-PIR database.

Though the ELEMENTS table is no longer contained in TFD, an initial set of cross-references between TFD SITES and EPD (reference 7, the Eukaryotic Promoter Database) has been produced. EPD is linked directly to the EMBL nucleotide sequence database, and it is possible, for those entries which correspond to naturally-occurring promoter sequences, to establish maps between TFD SITES entries and the general purpose nucleotide sequence databases such as Genbank and EMBL. Database retrieval tools that would access these links and cross-references are now under development.

The TFD database is available as a set of flat ASCII text files (each corresponding to a TFD table), or as a simple ASN.1 (Abstract Syntax Notation) file from the NCBI repository, or from the EMBL file server, as well as a number of different CD-ROMS. At NCBI the contents of these files have been loaded into a number of database managers, including Xbase (dBASE, Foxbase, dBXL, etc.), Paradox, Oracle, Sybase, and 4th Dimension, but in principle the flat text files may be imported into any standard relational database manager. SITES datasets as well as amino acid sequence (DOMAINS, POLYEPTIDES) datasets, intended for sequence analysis, are also available from the NCBI server. The internet address for downloading the files by anonymous FTP from the NCBI repository is 'ncbi.nlm.nih.gov' (numerical address 134.14.20.1); the files specific to TFD are located in the repository/TFD directory on this file server.

ACKNOWLEDGEMENTS

I thank Tim Clark and Dennis Benson for their helpful comments on this manuscript. The mention of commercial organizations or products does not imply endorsement by the NCBI or the US Government.

REFERENCES

- 1. Ghosh, D. (1990) Nucleic Acids Res 18, 1749-1756.
- 2. Ghosh, D. (1991) Trends Biochem Sci 16, 445-447.
- These tools include, for SITES analysis, Dynamic, Signalscan (public domain software), and GCG, Ig/Suite, and IBI/Macvector (commercial products); for DOMAINS/POLYPEPTIDES analysis, the FASTA and BLAST families of programs.
- Rudd, K.E., W. Miller, C. Werner, J. Ostell, C. Tolstoshov, and S.G. Satterfield (1991) Nucleic Acids Res 19, 637-47.
- 5. Price, M., Hagstrom, R., and Overbeek, R. (1992), In preparation.
- Pearson, R.L., B. Maidek, M. Chipperfield, R. Robbins (1991) Science 254, 214-215.
- Bucher, P. (1992) Eukaryotic Promoter Database of the Weizmann Institute of Science. This database is also available from the NCBI repository and from the EMBL file server.