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ABSTRACT

The BLAST programs are widely used tools for
searching protein and DNA databases for sequence
similarities. For protein comparisons, a variety of
definitional, algorithmic and statistical refinements
described here permits the execution time of the
BLAST programs to be decreased substantially while
enhancing their sensitivity to weak similarities. A new
criterion for triggering the extension of word hits,
combined with a new heuristic for generating gapped
alignments, yields a gapped BLAST program that runs
at approximately three times the speed of the original.
In addition, a method is introduced for automatically
combining statistically significant alignments pro-
duced by BLAST into a position-specific score matrix,
and searching the database using this matrix. The
resulting Position-Specific Iterated BLAST (PSI-
BLAST) program runs at approximately the same
speed per iteration as gapped BLAST, but in many
cases is much more sensitive to weak but biologically
relevant sequence similarities. PSI-BLAST is used to
uncover several new and interesting members of the
BRCT superfamily.

INTRODUCTION

Variations of the BLAST algorithm (1) have been incorporated
into several popular programs for searching protein and DNA
databases for sequence similarities. BLAST programs have been
written to compare protein or DNA queries with protein or DNA
databases in any combination, with DNA sequences often
undergoing conceptual translation before any comparison is
performed. We will use the blastp program, which compares
protein queries to protein databases, as a prototype for BLAST,
although the ideas presented extend immediately to other
versions that involve the translation of a DNA query or database.
Some of the refinements described are applicable as well to
DNA–DNA comparison, but have yet to be implemented.

BLAST is a heuristic that attempts to optimize a specific
similarity measure. It permits a tradeoff between speed and
sensitivity, with the setting of a ‘threshold’ parameter, T. A higher
value of T yields greater speed, but also an increased probability
of missing weak similarities. The BLAST program requires time
proportional to the product of the lengths of the query sequence
and the database searched. Since the rate of change in database
sizes currently exceeds that of processor speeds, computers
running BLAST are subjected to increasing load. However, the
conjunction of several new algorithmic ideas allow a new version
of BLAST to achieve improved sensitivity at substantially
augmented speed. This paper describes three major refinements
to BLAST.

(i) For increased speed, the criterion for extending word pairs
has been modified. The original BLAST program seeks short
word pairs whose aligned score is at least T. Each such ‘hit’ is then
extended, to test whether it is contained within a high-scoring
alignment. For the default T value, this extension step consumes
most of the processing time. The new ‘two-hit’ method requires
the existence of two non-overlapping word pairs on the same
diagonal, and within a distance A of one another, before an
extension is invoked. To achieve comparable sensitivity, the
threshold parameter T must be lowered, yielding more hits than
previously. However, because only a small fraction of these hits
are extended, the average amount of computation required
decreases.

(ii) The ability to generate gapped alignments has been added.
The original BLAST program often finds several alignments
involving a single database sequence which, when considered
together, are statistically significant. Overlooking any one of
these alignments can compromise the combined result. By
introducing an algorithm for generating gapped alignments, it
becomes necessary to find only one rather than all the ungapped
alignments subsumed in a significant result. This allows the T
parameter to be raised, increasing the speed of the initial database
scan. The new gapped alignment algorithm uses dynamic
programming to extend a central pair of aligned residues in both
directions. For speed, earlier heuristic methods (2,3) confined the
alignments produced to a predefined strip of the dynamic
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programming path graph (4). Our approach considers only
alignments that drop in score no more than Xg below the best
score yet seen. The algorithm is able thereby to adapt the region
of the path graph it explores to the data.

(iii) BLAST searches may be iterated, with a position-specific
score matrix generated from significant alignments found in
round i used for round i + 1. Motif or profile search methods
frequently are much more sensitive than pairwise comparison
methods at detecting distant relationships. However, creating a
set of motifs or a profile that describes a protein family, and
searching a database with them, typically has involved running
several different programs, with substantial user intervention at
various stages. The BLAST algorithm is easily generalized to use
an arbitrary position-specific score matrix in place of a query
sequence and associated substitution matrix. Accordingly, we
have automated the procedure of generating such a matrix from
the output produced by a BLAST search, and adapted the BLAST
algorithm to take this matrix as input. The resulting Position-
Specific Iterated BLAST, or PSI-BLAST, program may not be as
sensitive as the best available motif search programs, but its speed
and ease of operation can bring the power of these methods into
more common use.

After describing these refinements to BLAST in greater detail,
we consider several biological examples for which the sensitivity
and speed of the program are greatly enhanced.

STATISTICAL PRELIMINARIES

To analyze the BLAST algorithm and its refinements, we need
first to review the statistics of high-scoring local alignments.
BLAST employs a substitution matrix, which specifies a score sij
for aligning each pair of amino acids i and j. Given two sequences
to compare, the original BLAST program seeks equal-length
segments within each that, when aligned to one another without
gaps, have maximal aggregate score. Not only the single best
segment pair may be found, but also other locally optimal pairs
(3,5–7), whose scores cannot be improved by extension or
trimming. Such locally optimal alignments are called ‘high-scor-
ing segment pairs’ or HSPs.

For the sake of the statistical theory, we assume a simple protein
model in which the amino acids occur randomly at all positions
with background probabilities Pi. We require that the expected

score for two random amino acids �
i,j

PiPjsij  be negative. Given

the Pi and sij , the basic theory (8,9) yields two calculable
parameters, λ and K, which can be used to convert nominal HSP
scores to normalized scores, thereby rendering all scoring
systems directly comparable from a statistical perspective. The
normalized score S′ for an HSP is given by the equation:

S� � �S� ln K
ln 2

1

In this paper, a nominal score is given without units, while a score
normalized by equation 1 is said to be expressed in bits (10,11).
When two random protein sequences of sufficient lengths m and
n are compared, the number E of distinct HSPs with normalized
score at least S′ expected to occur by chance is well approximated
by:

E� N�2S� 2

where N = mn is the search space size (8–10). If a protein is
compared to a whole database rather than a single sequence, n is
the database length in residues. Equation 2 may be inverted to
yield S′ = log2(N/E), the normalized score required to achieve a
particular E-value. In a typical current database search, a protein
of length 250 might be compared to a protein database of 50 000 000
total residues. To achieve a marginally significant E-value of
0.05, a normalized score of ∼38 bits is necessary.

While the theory just outlined has not been proved for gapped
local alignments and their associated scores, computational
experiments strongly suggest that it remains valid (3,12–15). The
statistical parameters λ and K, however, are no longer supplied by
theory but must be estimated using comparisons of either
simulated or real but unrelated sequences. To distinguish below
whether a given set of parameters λ and K refer to gapped or
ungapped alignments, we use the subscripts g and u respectively.

When gaps are not allowed, a further important theorem states
that within HSPs the aligned pair of letters (i,j) tends to occur with
the ‘target frequency’:

qi j
�PiPje

�usij 3

The qij  of equation 3 sum to 1; indeed, λu is calculated to be the
unique positive number for which this is the case (8,9). The scores
sij  are optimal for detecting alignments with these particular target
frequencies (8,10), and by inverting equation 3 to sij  =
[ln(qij /PiPj)]/λu, scores may be chosen, with arbitrary scale, that
correspond to any desired set of qij . The popular PAM (16,17) and
BLOSUM (18) substitution matrices are constructed with explicit
use of this log-odds formula. No corresponding result has been
established for gapped alignment scoring systems. However, if
the gap costs used are sufficiently large, it is expected that the
target frequencies observed in high-scoring local alignments of
random sequences will not differ greatly from those for the
no-gap case.

REFINEMENT OF THE BASIC ALGORITHM: THE
TWO-HIT METHOD

The central idea of the BLAST algorithm is that a statistically
significant alignment is likely to contain a high-scoring pair of
aligned words. BLAST first scans the database for words
(typically of length three for proteins) that score at least T when
aligned with some word within the query sequence. Any aligned
word pair satisfying this condition is called a hit. The second step
of the algorithm checks whether each hit lies within an alignment
with score sufficient to be reported. This is done by extending a
hit in both directions, until the running alignment’s score has
dropped more than X below the maximum score yet attained. This
extension step is computationally quite costly; with the T and X
parameters necessary to attain reasonable sensitivity to weak
alignments, the extension step typically accounts for >90% of
BLAST’s execution time. It is therefore desirable to reduce the
number of extensions performed.

Our refined algorithm is based upon the observation that an
HSP of interest is much longer than a single word pair, and may
therefore entail multiple hits on the same diagonal and within a
relatively short distance of one another. (The diagonal of a hit
involving words starting at positions (x1, x2) of the database and
query sequences may be defined as x1 – x2. The distance between
two hits on the same diagonal is the difference between their first
coordinates.) This signature may be used to locate HSPs more
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Figure 1. The sensitivity of the two-hit and one-hit heuristics as a function of
HSP score. Using the BLOSUM-62 amino acid substitution matrix (18), and the
target frequencies qij  implied by equation 3 and the background amino acid
frequencies Pi of Robinson and Robinson (20), 100 000 model HSPs were
generated for each of the nominal scores 37–92, corresponding to normalized
scores 19.9–45.1 bits. It was determined by inspection whether each HSP failed
to contain two non-overlapping length-3 word pairs with nominal score at least
11, and within a distance 40 of one another, or a single length-3 word pair with
nominal score at least 13. The corresponding probabilities of missing an HSP
using the two-hit heuristic with T = 11, and the one-hit heuristic with T = 13,
are plotted as a function of normalized HSP score. The two-hit method is more
sensitive for HSPs with score at least 33 bits.

efficiently. Specifically, we choose a window length A, and
invoke an extension only when two non-overlapping hits are
found within distance A of one another on the same diagonal. Any
hit that overlaps the most recent one is ignored. Efficient
execution requires an array to record, for each diagonal, the first
coordinate of the most recent hit found. Since database sequences
are scanned sequentially, this coordinate always increases for
successive hits. The idea of seeking multiple hits on the same
diagonal was first used in the context of biological database
searches by Wilbur and Lipman (19).

Because we require two hits rather than one to invoke an
extension, the threshold parameter T must be lowered to retain
comparable sensitivity. The effect is that many more single hits
are found, but only a small fraction have an associated second hit
on the same diagonal that triggers an extension. The great
majority of hits may be dismissed after the minor calculation of
looking up, for the appropriate diagonal, the coordinate of the
most recent hit, checking whether it is within distance A of the
current hit’s coordinate, and finally replacing the old with the new
coordinate. Empirically, the computation saved by requiring
fewer extensions more than offsets the extra computation
required to process the larger number of hits.

To study the relative abilities of the one-hit and two-hit methods
to detect HSPs of varying score, we model proteins using the
background amino acid frequencies of Robinson and Robinson
(20), and use the BLOSUM-62 substitution matrix (18) for
sequence comparison. Given these Pi and sij , the statistical
parameters for ungapped local alignments are calculated to be
λu = 0.3176 and Ku = 0.134. Using equation 3 above, we may
calculate the qij  for which the scoring system is optimized, and
employ these target frequencies to generate model HSPs. Finally,

Figure 2. The BLAST comparison of broad bean leghemoglobin I (87)
(SWISS-PROT accession no. P02232) and horse β-globin (88) (SWISS-PROT
accession no. P02062). The 15 hits with score at least 13 are indicated by plus
signs. An additional 22 non-overlapping hits with score at least 11 are indicated
by dots. Of these 37 hits, only the two indicated pairs are on the same diagonal
and within distance 40 of one another. Thus the two-hit heuristic with T = 11
triggers two extensions, in place of the 15 extensions invoked by the one-hit
heuristic with T = 13. Because this is just one example, the relative numbers of
hits and extensions at the various settings of T correspond only roughly to the
ratios found in a full database search. An ungapped extension of the leftward
of the two hit pairs yields an HSP with nominal score 45, or 23.6 bits, calculated
using λu and Ku.

we evaluate the sensitivity of the one-hit and two-hit BLAST
heuristics using these HSPs.

The one-hit method will detect an HSP if it somewhere contains
a length-W word of score at least T. For W = 3 and T = 13, Figure
1 shows the empirically estimated probability that an HSP is
missed by this method, as a function of its normalized score. The
two-hit method will detect an HSP if it contains two non-
overlapping length-W words of score at least T, with starting
positions that differ by no more than A residues. For W = 3, T = 11
and A = 40, Figure 1 shows the estimated probability that an HSP
is missed by this method, as a function of its normalized score. For
HSPs with score at least 33 bits, the two-hit heuristic is more
sensitive.

To analyze the relative speeds of the one-hit and two-hit
methods, using the parameters studied above, we note that the
two-hit method generates on average ∼3.2 times as many hits, but
only ∼0.14 times as many hit extensions (Fig. 2). Because it takes
approximately one ninth as long to decide whether a hit need be
extended as actually to extend it, the hit-processing component of
the two-hit method is approximately twice as rapid as the same
component of the one-hit method.

TRIGGERING THE GENERATION OF GAPPED
ALIGNMENTS

Figure 1 shows that even when using the original one-hit method
with threshold parameter T = 13, there is generally no greater than
a 4% chance of missing an HSP with score >38 bits. While this
would appear sufficient for most purposes, the one-hit default T
parameter has typically been set as low as 11, yielding an
execution time nearly three times that for T = 13. Why pay this
price for what appears at best marginal gains in sensitivity? The
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Figure 3. A gapped extension generated by BLAST for the comparison of broad bean leghemoglobin I (87) and horse β-globin (88). (a) The region of the path graph
explored when seeded by the alignment of alanine residues at respective positions 60 and 62. This seed derives from the HSP generated by the leftward of the two
ungapped extensions illustrated in Figure 2. The Xg dropoff parameter is the nominal score 40, used in conjunction with BLOSUM-62 substitution scores and a cost
of 10 + k for gaps of length k. (b) The path corresponding to the optimal local alignment generated, superimposed on the hits described in Figure 2. The original BLAST
program, using the one-hit heuristic with T = 11, is able to locate three of the five HSPs included in this alignment, but only the first and last achieve a score sufficient
to be reported. (c) The optimal local alignment, with nominal score 75 and normalized score 32.4 bits. In the context of a search of SWISS-PROT (26), release 34
(21 219 450 residues), using the leghemoglobin sequence (143 residues) as query, the E-value is 0.54 if no edge-effect correction (22) is invoked. The original BLAST
program locates the first and last ungapped segments of this alignment. Using sum-statistics with no edge-effect correction, this combined result has an E-value of
31 (21,22). On the central lines of the alignment, identities are echoed and substitutions to which the BLOSUM-62 matrix (18) gives a positive score are indicated
by a ‘+’ symbol.

a b

c

reason is that the original BLAST program treats gapped
alignments implicitly by locating, in many cases, several distinct
HSPs involving the same database sequence, and calculating a
statistical assessment of the combined result (21,22). This means
that two or more HSPs with scores well below 38 bits can, in
combination, rise to statistical significance. If any one of these
HSPs is missed, so may be the combined result.

The approach taken here allows BLAST to simultaneously
produce gapped alignments and run significantly faster than
previously. The central idea is to trigger a gapped extension for
any HSP that exceeds a moderate score Sg, chosen so that no more
than about one extension is invoked per 50 database sequences.
(By equation 2, for a typical-length protein query, Sg should be set
at ∼22 bits.) A gapped extension takes much longer to execute
than an ungapped extension, but by performing very few of them
the fraction of the total running time they consume can be kept
relatively low.

By seeking a single gapped alignment, rather than a collection
of ungapped ones, only one of the constituent HSPs need be
located for the combined result to be generated successfully. This
means that we may tolerate a much higher chance of missing any
single moderately scoring HSP. For example, consider a result
involving two HSPs, each with the same probability P of being
missed at the hit-stage of the BLAST algorithm, and suppose that
we desire to find the combined result with probability at least

0.95. The original algorithm, needing to find both HSPs, requires
2P – P2 ≤ 0.05, or P less than ∼0.025. In contrast, the new
algorithm requires only that P2 ≤ 0.05, and thus can tolerate P as
high as 0.22. This permits the T parameter for the hit-stage of the
algorithm to be raised substantially while retaining comparable
sensitivity—from T = 11 to T = 13 for the one-hit heuristic. (The
two-hit heuristic described above lowers T back to 11.) As will be
discussed below, the resulting increase in speed more than
compensates for the extra time required for the rare gapped
extension.

In summary, the new gapped BLAST algorithm requires two
non-overlapping hits of score at least T, within a distance A of one
another, to invoke an ungapped extension of the second hit. If the
HSP generated has normalized score at least Sg bits, then a gapped
extension is triggered. The resulting gapped alignment is reported
only if it has an E-value low enough to be of interest. For example,
in the pairwise comparison of Figure 2, the ungapped extension
invoked by the hit pair on the left produces an HSP with score
23.6 bits (calculated using λu and Ku). This is sufficient to trigger
a gapped extension, which generates an alignment with score 32.4
bits (calculated using λg and Kg) and E-value of 0.5 (Fig. 3). The
original BLAST program locates only the first and last ungapped
segments of this alignment (Fig. 3c), and assigns them a
combined E-value >50 times greater.
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THE CONSTRUCTION AND STATISTICAL
EVALUATION OF GAPPED LOCAL ALIGNMENTS

The standard dynamic programming algorithms for pairwise
sequence alignment perform a fixed amount of computation per
cell of a path graph, whose dimensions are the lengths of the two
sequences being compared (23–25). In order to gain speed,
database search algorithms such as Fasta (2) and an earlier gapped
version of BLAST (3) sacrifice rigor by confining the dynamic
programming to a banded section of the full path graph (4),
chosen to include a region of already identified similarity. One
problem with this approach is that the optimal gapped alignment
may stray beyond the confines of the band explored. As the width
of the band is increased to reduce this possibility, the speed
advantage of the algorithm is vitiated.

We have accordingly taken a different heuristic approach to
constructing gapped local alignments, which is a simple general-
ization of BLAST’s method for constructing HSPs. The central
idea is to consider only cells for which the optimal local alignment
score falls no more than Xg below the best alignment score yet
found. Starting from a single aligned pair of residues, called the
seed, the dynamic programming proceeds both forward and
backward through the path graph (Zheng Zhang et al., manuscript
in preparation) (Figs 3a and 4). The advantage of this approach
is that the region of the path graph explored adapts to the
alignment being constructed. The alignment can wander arbitrari-
ly many diagonals away from the seed, but the number of cells
expanded on each row tends to remain limited, and may even
shrink to zero before a boundary of the path graph is encountered
(Fig. 4). The Xg parameter serves a similar function to the
band-width parameter of the earlier heuristic, but the region of the
path graph it implicitly specifies be explored is in general more
productively chosen.

An important element for this heuristic is the intelligent choice
of a seed. Given an HSP whose score is sufficiently high that it
triggers a gapped extension, how does one choose a residue pair
to force into alignment? While more sophisticated approaches are
possible, the simple procedure we have implemented is to locate,
along the HSP, the length-11 segment with highest alignment
score, and use its central residue pair as the seed. If the HSP itself
is shorter than 11, a central residue pair is chosen. For example,
the first ungapped region in the alignment of Figure 3c constitutes
the HSP that triggered the alignment. The highest-scoring
length-11 segment of this HSP aligns leghemoglobin residues
55–65 with β-globin residues 57–67. Thus the alanine residues at
respective positions 60 and 62 are used as the seed for the gapped
extension illustrated in Figure 3a. As discussed in the perform-
ance evaluation section below, this procedure is extremely good
at selecting seeds that in fact participate in an optimal alignment.

Most gapped extensions are triggered by chance similarities,
and are therefore likely to be of limited extent, as illustrated in
Figure 4. The reverse extension in this example explores ∼2000

Figure 4. The path graph region explored by BLAST during a gapped extension
for the comparison of broad bean leghemoglobin I and the E1B protein small
T-antigen from human adenovirus type 4 (89) (SWISS-PROT accession no.
P10406). The Xg dropoff parameter is the nominal score 40, used in conjunction
with BLOSUM-62 substitution scores and 10 + k gap costs. The 22.7 bit HSP
that triggers this extension, involving leghemoglobin residues 119–140 and
adenovirus residues 101–122, is merely a random similarity, and not part of a
larger and higher-scoring alignment. The gapped extension is seeded by the
alignment of residues 124 and 106. The optimal alignment score through points
in the path graph drops steadily as one moves beyond the triggering HSP, and
the reverse extension terminates before the beginning of either protein is
reached. A total of 2766 path graph cells are explored, with the reverse
extension accounting for 2047 of these cells.

path graph cells, so that a typical two-way gapped extension that
does not encounter the end of either sequence is expected to
involve ∼4000 cells. Because Sg is set so that a gapped extension
is invoked less than once per 50 database sequences, fewer than
80 cells need be explored per database sequence.

The execution time required for a gapped extension is ∼500
times that for an ungapped extension. However, by triggering
gapped extensions in the manner described, while simultaneously
raising T for the single-hit version of BLAST from 11 to 13,
approximately one gapped extension is invoked for every 4000
ungapped extensions avoided. Because the number of ungapped
extensions is reduced by about two thirds, the total time spent on
the extension stage of BLAST is cut by well over half. Of course,
the two-hit strategy described above reduces the time needed for
the ungapped extensions still further. Once program overhead is
accounted for, the net speedup is a factor of about three.

For any alignment actually reported, a gapped extension that
records ‘traceback’ information (25) needs to be executed. To
increase BLAST’s accuracy in producing optimal local align-
ments, these gapped extensions use by default a substantially
larger Xg parameter than employed during the program’s search
stage.

Table 1. Relative times spent by the original and gapped BLAST programs on various algorithmic stages

Overhead: database
scanning, output, etc.

Calculating whether hits
qualify for ungapped extension

Ungapped extensions Gapped extensions

Original BLAST 8 (8%) 92 (92%)

Gapped BLAST 8 (24%) 12 (37%) 5 (15%) 8 (24%)
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The times required by various steps of the BLAST algorithm
vary substantially from one query and one database to another.
Table 1 shows typical relative times spent by the original and the
gapped BLAST programs on various algorithmic stages. The
‘original BLAST’ program is represented, here and below, by a
variant form of blastp version 1.4.9, modified so that it uses the
same edge-effect correction (22) and background amino acid
frequencies as the ‘gapped BLAST’. The times represent the
average for three different queries, with the time for the original
BLAST program normalized in each instance to 100 units.

More concretely, to search SWISS-PROT (26), release 34
(59 576 sequences; 21 219 450 residues), with the length-567
influenza A virus hemagglutinin precursor (27) as query, the
original BLAST program requires 45.8 s, and the gapped BLAST
program 15.8 s. This timing experiment, and others referred to
below, was run on one 200 MHz R10000 cpu processor of a
lightly loaded SGI Power Challenge XL computer with 2.5
Gbytes of RAM. This machine runs the operating system IRIX,
version 6.2, which is an implementation of UNIX. We used the
standard SGI C compiler, with the -O flag for optimization, to
compile all versions of the programs. The times reported are the
user times given by the time command, and are for the better of
two identical runs.

A closely related type of gapped extension routine to that used
here was developed by G. Myers during the evaluation of the
original BLAST algorithm. It was not included in the publicly
distributed code primarily because the then current strategy of
extending every hit decreased the algorithm’s speed unduly for the
relatively small gain in sensitivity realized (1).

As discussed above, the statistical significance of gapped
alignments may be evaluated using the two statistical parameters
λg and Kg. The current version of the Fasta program (2) estimates
these parameters on each run, by analyzing the distribution of
alignment scores produced by all the sequences in the database.
BLAST gains speed by producing alignments for only the few
database sequences likely to be related to the query, and therefore
does not have the option of estimating λg and Kg on the fly.
Instead, it uses estimates of these parameters produced before-
hand by random simulation (3). A drawback of this approach is
that the program may not accept an arbitrary scoring system, for
which no simulation has been performed, and still produce
accurate estimates of statistical significance. The original BLAST
programs, in contrast, because they dealt only with ungapped
local alignments, could derive λu and Ku from theory for any
scoring matrix (8,9).

ITERATED APPLICATION OF BLAST TO
POSITION-SPECIFIC SCORE MATRICES

Database searches using position-specific score matrices, also
called profiles or motifs, often are much better able to detect weak
relationships than are database searches that use a simple
sequence as query (28–38). Employing these methods, however,
frequently has involved the use of several different programs and
a fair degree of expertise. Accordingly, to render the power of
motif searches more readily available, we have written a
procedure to construct a position-specific score matrix automati-
cally from the output of a BLAST run, and modified BLAST to
operate using such a matrix in the place of a simple query. The
resulting PSI-BLAST program often is substantially more
sensitive than the corresponding BLAST program, but for each

iteration takes little more than the same time to run. In related
work, Henikoff and Henikoff (39) have described how, short of
modifying BLAST so that it may operate on a position-specific
score matrix, a single artificial sequence that approximates such
a matrix may be used as a query with the original BLAST
programs.

The construction of a position-specific score matrix is a
multi-stage process, and at each stage a choice must be made
among a number of alternative routes. We have been guided by
the goals of automatic operation, speed of execution, and general
simplicity. The issues discussed below are: (i) general architec-
ture of the score matrix; (ii) construction of the multiple
alignment from which the matrix is derived; (iii) weights for
sequences within the multiple alignment, and evaluation of the
effective number of independent observations it constitutes;
(iv) estimation of target frequencies, and the construction of
matrix scores; (v) applying BLAST to a position-specific matrix,
and the statistical evaluation of search results. We do not claim
our current implementation is optimal, and it is likely that over
time some of its details will change.

Score matrix architecture

The alignment of a simple sequence with a pattern embodied by
a position-specific score matrix is almost completely analogous
to the alignment of two simple sequences. The only real
difference is that the score for aligning a letter with a pattern
position is given by the matrix itself, rather than with reference to
a substitution matrix. For proteins, a query of length L and a
substitution matrix of dimension 20 × 20 are replaced by a
position-specific matrix of dimension L × 20. Position-specific
gap costs may be defined as well (34,40). As with pairwise
sequence comparison, one may choose among finding the best
global alignment of the matrix and the simple sequence (23),
finding the best alignment of the complete matrix with a segment
of the sequence (41), and finding the best local alignment of the
matrix and sequence (24).

Position-specific protein score matrices draw their power from
two sources. The first is improved estimation of the probabilities
with which amino acids occur at various pattern positions, leading
to a more sensitive scoring system. The second is relatively
precise definition of the boundaries of important motifs. By
demanding the complete alignment of one or more motifs, rather
than seeking an arbitrary local alignment, the size of the search
space may be greatly reduced, thereby lowering the level of
random noise. Unfortunately, there are many obstacles to
automating well the delineation of a set of motifs from the output
of a database search. The query sequence may contain a variety
of different domains, and share different subsets of them with
different proteins in the database. Furthermore, defining the
proper extent of even a single motif may be challenging (42).

Accordingly, we have chosen to forgo the potential advantages
of restricting the length of our derived matrices, and then
demanding that they be completely aligned with segments of
database sequences (41). Instead, each matrix we construct has
length precisely equal to that of the original query sequence.
When searching the database with such a matrix, we seek local
alignments, in full analogy to those sought by BLAST when used
for straightforward sequence–sequence comparison. Finally, we
do not attempt to derive position-specific gap scores for use with
our position-specific substitution scores. Instead, in each iteration
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Figure 5. (a) The multiple alignment generated by PSI-BLAST when the human fragile histidine triad (HIT) protein (61) (SWISS-PROT accession no. P49789) is
compared to SWISS-PROT. All pairwise local alignments have E-value ≤0.01, and are identified in SWISS-PROT as belonging to the HIT family. Thick bars within
the six database sequences represent segments that align with various segments from the query. In constructing sequence weights for the indicated multiple alignment
column, corresponding to residue 108 of the query, only the shaded portions of the multiple alignment are used. (b) A local alignment of the human HIT protein and
H.influenzae galactose-1-phosphate uridylyltransferase (63) (SWISS-PROT accession no. P31764). In its first position-specific iteration, PSI-BLAST gives this
alignment a score of 45.4 bits, corresponding to an E-value of 4 × 10–5. ‘+’ symbols reflect positive BLOSUM-62 matrix scores, even though a position-specific matrix
is used to construct the alignment. (c) A local alignment of the human HIT protein and yeast 5′,5′′′ -P1,P4-tetraphosphate phosphorylase I (64) (SWISS-PROT accession
no. P16550). In its second position-specific iteration, PSI-BLAST gives this alignment a score of 43.4 bits, corresponding to an E-value of 2 × 10–4.

a b

c

of PSI-BLAST, we employ the same gap scores that are used in
the first, simple BLAST run. Our reasons are that there is no good
theory for deriving gap costs from a multiple alignment and that,
as will be discussed below, by eschewing position-specific gap
costs we can make a reasonable estimate of the statistical
significance of the resulting local alignments.

Multiple alignment construction

To produce a multiple alignment from the BLAST output, we
simply collect all database sequence segments that have been
aligned to the query with E-value below a threshold, by default
set to 0.01. The query is used as a master, or template, for
constructing a multiple alignment M. Any row (i.e., database
sequence segment) identical to the query segment with which it
aligns is purged, and only one copy is retained of any rows that
are >98% identical to one another. Pairwise alignment columns
that involve gap characters inserted into the query are simply
ignored, so that M has exactly the same length as the query.
Because we are dealing with local alignments, the columns of M
may involve varying numbers of sequences, and many columns
may include nothing but the query. We make no attempt to
improve M by comparing database sequences with one another,
or by any other true multiple alignment procedure.

As will be discussed, the matrix scores constructed for a given
alignment column should depend not only upon the residues
appearing there, but upon those in other columns as well. To make
this dependency easy to formulate, however, we need to prune our
raw multiple alignment M to a simpler ‘reduced’ one. This
pruning is done independently for each column, so the reduced
multiple alignment MC will in general vary from one column C
to the next. To construct MC, we first specify the set R of
sequences it includes to be exactly those that contribute a residue
to column C. We then define the columns of MC to be just those
columns of M in which all the sequences of R are represented. By
construction, the reduced multiple alignment MC has residues or

gap characters in every row and column (Fig. 5a), and is therefore
amenable to the various manipulations described below.

Sequence weights

When constructing a score matrix from a multiple alignment, it
is a mistake to give all sequences of the alignment equal weight.
A large set of closely related sequences carries little more
information than a single member, but its size alone may allow it
easily to ‘outvote’ a small number of more divergent sequences.
One way past this difficulty is to assign weights to the various
sequences, with those having many close relatives receiving
smaller weight. The many sequence weighting methods that have
been proposed (43–51) often produce roughly equivalent results.
Because of its speed and simplicity, we have implemented a
modified version of the sequence weighting method of Henikoff
and Henikoff (47). Gap characters are treated as a 21st distinct
character, and any columns consisting of identical residues are
ignored in calculating weights. In speaking of a column’s
observed residue frequencies fi, we shall henceforth mean its
weighted rather its raw frequencies.

In constructing matrix scores, not only a column’s observed
residue frequencies are important, but also the effective number
of independent observations it constitutes: a column consisting of
a single valine and a single isoleucine carries different informa-
tion than one consisting of five independently occurring instances
of each. Accordingly, we need to estimate the relative number NC
of independent observations constituted by the alignment MC. A
simple count of the number of sequences in MC is a poor measure,
for 10 identical sequences imply fewer independent observations
than do 10 divergent ones. We thus propose as a simple first
estimate for NC the mean number of different residue types,
including gap characters, observed in the various columns of MC.
This estimate is clearly not ideal, as it saturates at 21 no matter
how many independent sequences are contained in MC. However,
for the data we are likely to encounter, NC is typically much
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smaller than 21, and therefore perhaps a good enough approxima-
tion for our purposes. As will be seen, it is not the absolute value
of NC that is important, but rather its relative value from one
column to another. NC is essentially the same measure of
alignment variability as that proposed by Henikoff and Henikoff
(52) for use in a different manner.

Target frequency estimation

Given a multiple alignment, many methods for generating score
matrices have been advanced (28–37,42,52–54). The prescrip-
tion with perhaps the best theoretical foundation is that the scores
for a specific pattern position be of the form log (Qi/Pi), where Qi
is the estimated probability for residue i to be found in that column
(29,30,32,33,36,37,42,52–54). This leaves open the question
how best to estimate the Qi.

Given a multiple alignment involving a large number of
independent sequences, the estimate of Qi for a specific column
should converge simply to the observed frequency of residue i in
that column. However, in addition to the sequence weighting
issues discussed above, factors that complicate estimating the Qi
include small sample size (30), and prior knowledge of relation-
ships among the residues (16,37,53). Various studies suggest that
the best currently available method for estimating the Qi is that of
Dirichlet mixtures (52–56). However, because it often performs
nearly as well (52), and due to its relative simplicity, we have
implemented the data-dependent pseudocount method intro-
duced by Tatusov et al. (37). This method uses the prior
knowledge of amino acid relationships embodied in the substitu-
tion matrix sij  to generate residue pseudocount frequencies gi,
which are averaged with the observed frequencies fi to estimate
the Qi.

Specifically, for a given column C, we construct pseudocount
frequencies gi using the formula:

gi ��
j

fj

Pj
qij 4

where the qij  are the target frequencies implicit in the substitution
matrix, and given by equation 3. Intuitively, those residues
favored by the substitution matrix to align with the residues
actually observed receive high pseudocount frequencies. We then
estimate Qi by:

Qi �
�fi� �gi

�� �
5

where α and β are the relative weights given to observed and
pseudocount residue frequencies. So that the scores we construct
will reduce to sij  in columns where nothing has been aligned to the
query sequence, we let α = NC – 1. β remains an arbitrary
pseudocount parameter; the larger its value, the greater the
emphasis given to prior knowledge of residue relationships vis a
vis observed residue frequencies. We have found empirically that,
in conjunction with our method for calculating α, a reasonably
good setting for β is 10.

BLAST applied to position-specific score matrices

The initial step of the BLAST algorithm is the construction of a
list of words that align to query words with score at least T. Only
minor modifications to the code are necessary for this step to be

performed on a query consisting of a position-specific matrix
rather than a simple sequence. The same holds for the ungapped
and gapped extension steps of BLAST. One important issue is
whether key parameters such as T and Xg, used at various heuristic
stages of the algorithm and tuned to simple sequence comparison,
can be applied unchanged to position-specific matrices without
degrading unduly either the speed or sensitivity of database
searches. We approach this problem by ensuring that the scale λu
of the matrix scores produced internally by PSI-BLAST corre-
sponds to that of the substitution matrix sij . In other words, we
calculate the scores for a column of the matrix as [ln(Qi/Pi)]/λu.

There is no analytic theory with which to estimate the statistical
significance of a gapped alignment of a position-specific score
matrix and a simple sequence. However, one may hypothesize
that for a score matrix constructed to the same scale as sij , a given
set of gap costs should produce the same gapped alignment scale
parameter λg as for sij . This would be convenient, because then
PSI-BLAST could estimate statistical significance without
expending after each iteration the substantial time required to
estimate λg and Kg by random simulation. To test this hypothesis,
we performed a number of statistical tests on PSI-BLAST
generated score matrices, scaled to have λu = 0.3176, the value
applicable to previously published BLOSUM-62 simulations (3).

First, we searched SWISS-PROT using as query the length-567
influenza A virus hemagglutinin precursor (27), and captured the
score matrix constructed by PSI-BLAST from the 128 local
alignments with E-value ≤ 0.01. We then compared this matrix to
10 000 random sequences of length 567, generated using the
background amino acid frequencies of Robinson and Robinson
(20). A gap of length k was charged a cost of 10 + k. Counts of
the optimal local alignment scores, calculated using an appropri-
ately modified version of the Smith–Waterman algorithm (24),
are plotted in Figure 6. Also shown is the best fitting extreme
value distribution (3,15) which, using the edge-effect correction
described by Altschul and Gish (3), has statistical parameters λg
= 0.251 and Kg = 0.031. It is apparent that the distribution fits the
random trial reasonably well; a χ2 goodness-of-fit test with 34
degrees of freedom has value 41.8, which is lower than one would
expect 20% of the time even were the theory precisely valid. This
supports the idea that the statistical theory described above
applies to local alignments of position-specific score matrices and
simple sequences. Furthermore, the estimate λg ≈ 0.251 ± 0.003
agrees to within experimental error with the value 0.255
previously published for these gap costs (3). Similar agreement
was obtained with a number of other protein sequences as initial
query (results not shown), and in all cases the much less important
Kg parameter could be estimated accurately as well. In general,
values of λg for the comparison of position-specific score
matrices with simple sequences appear to differ by <2% from the
values for simple pairwise sequence comparison. Using these
precomputed values for λg should thus entail an error of less than
one bit for PSI-BLAST scores <50 bits, corresponding to a factor
of less than two in the estimation of statistical significance.

PERFORMANCE EVALUATION

To test more directly the statistics used by PSI-BLAST, we
compared query sequences from 11 large and well characterized
protein families to the SWISS-PROT database, and then ran the
position-specific score matrices generated against a shuffled
version of the same database. For each query, we recorded the
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Figure 6. The distribution of optimal local alignment scores from the
comparison of a position-specific score matrix with 10 000 random protein
sequences. The score matrix was constructed by PSI-BLAST from the 128 local
alignments with E-value ≤0.01 found in a search of SWISS-PROT using as
query the length-567 influenza A virus hemagglutinin precursor (27) (SWISS-
PROT accession no. P03435). The random sequences, each of length 567, were
generated using the amino acid frequencies of Robinson and Robinson (20).
Optimal local alignment scores were calculated using the position-specific
matrix in conjunction with 10 + k gap costs. The extreme value distribution that
best fits the data (3,15) is plotted. A χ2 goodness-of-fit test with 34 degrees of
freedom has value 41.8, corresponding to a P-value of 0.20.

lowest E-value found, as well as the number of shuffled sequences
yielding E-values ≤1 and 10. For comparison, we performed the

identical shuffled-database test on the gapped and original
versions of BLAST. To reduce the probability that high-scoring
alignments were missed due to the heuristic nature of the
algorithms, we performed these tests with T = 9 rather than the
default value of 11. The results are given in Table 2. For the 11
queries, the median of the low PSI-BLAST E-values was 0.87,
which corresponds to a median P-value of 0.58 (8,9). The mean
numbers of shuffled database sequences with E-values <1 and 10
were 1.0 and 8.7, respectively, within 20% of the expected values
of 1.0 and 10.0. The equivalent tests for the ungapped and gapped
versions of BLAST also yielded results that diverged from theory
by <50%.

The ability to estimate with reasonable accuracy the signifi-
cance of gapped local matrix-sequence alignments permits us to
automate the construction of position-specific score matrices
during multiple iterations of the PSI-BLAST program. After each
iteration, we generate a new multiple alignment simply by
collecting those alignments with E-value lower than a defined
threshold. An interactive version of PSI-BLAST allows the user
to override either the inclusion or exclusion of specific local
alignments. Once a given database sequence has been used in the
generation of a position-specific score matrix, low E-values for
this sequence are virtually guaranteed in future iterations, for the
sequence is to a certain extent being compared with itself. The
biological relevance of PSI-BLAST output thus depends criti-
cally on avoiding the inappropriate inclusion of sequences in the
multiple alignment constructed. Specifically, the utility of the
score matrix produced is immediately vitiated by the inclusion of
any alignment involving a region of highly biased amino acid
composition (57,58).

Table 2. The comparison of various query sequences with a shuffled version of SWISS-PROT

Protein family SWISS-PROT Original BLAST Gapped BLAST PSI-BLAST
accession no. Low No. of seqs Low No. of seqs Low No. of seqs
of query E-value with E-value E-value with E-value E-value with E-value

≤1 ≤10 ≤1 ≤10 ≤1 ≤10

Serine protease P00762 0.86 1 7 3.0 0 4 0.94 1 8

Serine protease inhibitor P01008 3.9 0 4 0.078 1 9 1.5 0 9

Ras P01111 3.4 0 8 3.4 0 7 1.1 0 9

Globin P02232 2.4 0 7 2.8 0 5 8.2 0 2

Hemagglutinin P03435 0.11 2 11 0.46 3 16 0.87 1 8

Interferon α P05013 2.4 0 6 0.27 2 4 0.11 2 11

Alcohol dehydrogenase P07327 1.5 0 2 0.80 1 5 1.5 0 9

Histocompatibility antigen P10318 0.91 1 7 0.13 1 7 0.0031 2 6

Cytochrome P450 P10635 0.84 2 5 8.5 0 3 0.46 1 15

Glutathione transferase P14942 1.0 1 10 3.3 0 3 0.30 2 9

H+-transporting ATP synthase P20705 0.012 1 8 0.26 2 14 0.79 2 10

Average (median or mean) 1.0 0.7 6.8 0.80 0.9 7.0 0.87 1.0 8.7

The original and gapped BLAST comparisons use BLOSUM-62 substitution scores (18). All three programs use threshold T parameter set to 9, but the gapped
BLAST and PSI-BLAST programs use the two-hit method to trigger ungapped extensions. The original BLAST program has the X dropoff parameter set to nominal
score 23. The gapped BLAST and PSI-BLAST comparisons charge gaps of length k a cost of 10 + k. They have Xu set to 16, and Xg set to 40 for the database search
stage and to 67 for the output stage of the algorithms. Gapped alignments are triggered by a score corresponding to ∼22 bits. For PSI-BLAST, the query is first com-
pared to the SWISS-PROT database, and the position-specific score matrix generated is then compared to a shuffled version of SWISS-PROT. The median is used
for the average of the low E-values, and the mean otherwise.
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Table 3. The number of SWISS-PROT sequences yielding alignments with E-value ≤0.01, and relative running times, for Smith–Waterman and various versions
of BLAST

Protein family Query Smith–Waterman Original BLAST Gapped BLAST PSI-BLAST

Serine protease P00762 275 273 275 286

Serine protease inhibitor P01008 108 105 108 111
Ras P01111 255 249 252 375
Globin P02232 28 26 28 623
Hemagglutinin P03435 128 114 128 130
Interferon α P05013 53 53 53 53
Alcohol dehydrogenase P07327 138 128 137 160
Histocompatibility antigen P10318 262 241 261 338
Cytochrome P450 P10635 211 197 211 224
Glutathione transferase P14942 83 79 81 142
H+-transporting ATP synthase P20705 198 191 197 207

Normalized running time 36 1.0 0.34 0.87

To score and evaluate the significance of the alignments found, the original BLAST program uses BLOSUM-62 substitution scores (18) and sum-statistics (21,22).
The Smith–Waterman and gapped BLAST programs use BLOSUM-62 substitution scores, 10 + k gap costs, and the statistics of equations 1 and 2, in conjunction
with the experimentally determined parameters λg = 0.255 and Kg = 0.035 (3). PSI-BLAST uses the same gap costs and λg, but applied to the position-specific score
matrix constructed from the output of the gapped BLAST run. Only one PSI-BLAST iteration is executed. All three BLAST programs use the same parameter settings
as in Table 2, except that T is set to 11. Normalized running times are the mean ratio of program running time to that for the original BLAST. The time for PSI-BLAST
includes the time for the initial BLAST search.

To compare the performance of the new gapped version of
BLAST and its PSI-BLAST extension to that of the Smith–
Waterman algorithm (24) and the original ungapped BLAST
algorithm, we employed the same 11 query sequences that were
used above to investigate the accuracy of PSI-BLAST statistics.
Because, as shown, these statistics are quite accurate, we may use
the number of statistically significant sequences found in a
database search as a reasonable measure of algorithm sensitivity.
We employed the ssearch program, version 2.0u54, from the
Fasta package (2) as our implementation of the Smith–Waterman
algorithm. Using each of the 11 queries, we searched SWISS-
PROT with each of the four programs. We show in Table 3 the
numbers of sequences found with E value ≤0.01, as well as the
average ratio of running time to that for the original BLAST
program. Based upon SWISS-PROT annotation, all sequences
recorded in Table 3 appear to be true family members, with the
exception of one of the lowest-scoring alignments found by
Smith–Waterman when applied to the histocompatibility antigen
query, and the lowest-scoring alignment found by the original
BLAST applied to the hemagglutinin query. While some
alignments involve hypothetical proteins, the pattern of con-
served residues in all such cases suggests a true positive.

As can be seen, the gapped BLAST program runs on average
three times faster then the original, and in all but one case
examined finds a greater number of statistically significant
alignments. It runs >100 times faster than Smith–Waterman, but
for the combined 11 queries misses only eight of the 1739
significant similarities found by the rigorous algorithm. Of these
eight, only one has an E-value <0.001, and another appears to be
a random as opposed to a biologically meaningful similarity. The
scores produced by gapped BLAST for the 1731 similarities it
finds differ from those produced by the Smith–Waterman
algorithm in only two instances. The discrepancy arises in both
cases from an Xg parameter that is too low rather than from an
incorrect choice of seed. Thus despite its simplicity, the
seed-selection heuristic is extremely accurate.

A search that includes a single PSI-BLAST iteration still runs
faster than the original BLAST, and 40 times faster than
Smith–Waterman, but can in many cases be much more sensitive.
It finds every true positive returned by Smith–Waterman, but
frequently many others as well. Here only a single PSI-BLAST
iteration has been considered but, as will be seen below, multiple
iterations can yield even better results. Furthermore, we have
found PSI-BLAST to perform better on searches of the non-
redundant protein sequence database maintained by the NCBI
(59) than on searches of SWISS-PROT, because of the greater
number of significant similarities that are found by the initial
BLAST run.

For the particular examples in Table 3, the PSI-BLAST
iteration takes noticeably longer than the gapped BLAST
iteration, due primarily to the time needed to construct the
position-specific score matrix from the large number of signifi-
cant local alignments found by BLAST. For queries that return a
small number of significant alignments, each PSI-BLAST
iteration requires more nearly the same time as BLAST.

PSI-BLAST EXAMPLES

In many instances, PSI-BLAST is able automatically to uncover
biologically interesting similarities that elude simple database
searches. Multiple iterations of PSI-BLAST are sometimes required
to recognize the more distantly related protein family members. We
here consider two representative cases in greater detail.

HIT proteins

Holm and Sander (60) describe how a comparison of three-dimen-
sional structures is able to identify significant similarity between
histidine triad (HIT) proteins and galactose-1-phosphate uridylyl-
transferase (GalT) proteins. Indeed, using the human HIT protein
(61) as query, a BLAST search of SWISS-PROT reveals hits with
E-value <0.01 only to other HIT proteins (Fig. 5a). An alignment to
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the rat GalT protein (62) has the only marginally significant E-value
of 0.012. A PSI-BLAST search, using the score matrix generated
from the six alignments illustrated in Figure 5a, can immediately
cement confidence in the biological relevance of this similarity. The
E-value of the similarity with rat GalT drops to 2 × 10–4, and an
alignment to Haemophilus influenzae GalT (63) (Fig. 5b) receives
the even more significant E-value of 4 × 10–5. These similarities, of
course, are uncovered using no structural information. In addition,
on the next iteration, PSI-BLAST finds a strongly significant
alignment (Fig. 5c; E-value 2 × 10–4) to yeast 5′,5′′′ -P1,P4-tetra-
phosphate phosphorylase I (64), for which no structure is available.

BRCT proteins

Proteins containing one or multiple copies of the BRCT domain
form a superfamily many of whose members are involved in DNA
damage-responsive cell cycle checkpoints (65–67). While detailed
analysis is needed to delineate completely this diverse set of
proteins, PSI-BLAST is able to automatically identify most of the
superfamily. We used the C-terminal 215 residues of human
BRCA1 (68), which includes two BRCT domains (65), as the
initial query for a search of NCBI’s non-redundant protein
sequence database. Using the default cutoff E-value of 0.01, the
initial BLAST search recognized as significant only alignments to
other BRCA1 sequences, and the previously described BRCT
protein BARD (69) (Table 4). Subsequent PSI-BLAST iterations,
however, retrieved all the proteins recorded in Table 4; additional
close homologs are omitted from the table. Almost all the BRCT
proteins described by Bork et al. (66) were recognized. Not found
were the retinoblastoma family, whose putative BRCT domain is
particularly divergent, worm R13A5.13, which was not in the
database searched, and human DNA-ligase III. PSI-BLAST did
report yeast RAD9 and YGR103w, the Kluyveromyces lactis
RAP1 homolog, worm ZK675.2, and various terminal deoxynu-
cleotidyltransferases and poly(ADP-ribose) polymerases, but all
with E-values >0.01 (Table 4). Detailed examination of the
alignments produced suggests that the only likely false positives
involved a trypanosome EST (70) and the Methanococcus
jannaschii  mutT protein (71), the latter despite its involvement in
DNA repair (Table 4).

Seven recent additions to the protein databases are reported here
as members of the BRCT superfamily (Table 4). (i) Arabidopsis
T10M13.12 (72), is the first plant protein observed to contain
BRCT domains. (ii) KIAA0259 (73) is a large human protein of
unknown function with eight BRCT domains, the greatest number
so far observed within a single protein. (iii) T13F2.3 (74) is a worm
protein with a 500-residue low-complexity (57) N-terminus.
(iv) SPAC6G9.12 (75) is a fission yeast protein strongly similar to
the previously recognized (66) yeast BRCT protein L8543.18 (76).
(v) C36A4.8 (74) is a worm protein whose C-terminus contains a
single BRCT domain, and whose N-terminus, containing a RING
finger domain, is strongly similar to that of BRCA1. The similar
organization to BRCA1 makes this protein of particular interest.
(vi) Synechocystis sp. D90904 (77) is the first bacterial BRCT
protein that is not a bacterial ligase. While it failed to pass the cutoff
E-value of 0.01, its C-terminal BRCT domain is very similar to that
of several bacterial ligases, which presumably led to its incorrect
classification as such in the databases. Most of the protein
N-terminal to its BRCT domain consists of a coiled-coil domain.
The actual Synechocystis sp. DNA ligase (77,78) is found by
PSI-BLAST on the 13th iteration, with an E-value of 0.002.

Figure 7. The location of BRCT domains within human BRCA1 (68),
Arabidopsis T10M13.12 (72), human KIAA0259 (73), worm T13F2.3 (74),
fission yeast SPAC6G9.12 (75), worm C36A4.8 (74), Synechocystis sp.
D90904 (77) and human Pescadillo (79). BRCA1 and C36A4.8 each have, in
addition, an N-terminal RING finger domain. The near identity to other worm
sequences of a short region directly preceding the BRCT domain of C36A4.8
suggests the possibility that this protein has been misassembled.

(vii) Pescadillo is a human protein whose zebrafish ortholog is
essential for embryonic development (79), and whose yeast
ortholog YGR103w (80) has been previously recognized as a
BRCT protein (66,67). It failed to pass the cutoff E-value of 0.01,
but appeared with near-significant E-values in PSI-BLAST output
from the 5th iteration onward. The approximate positions of the
BRCT domains within BRCA1 and the seven newly identified
BRCT proteins are illustrated in Figure 7.

DISCUSSION AND CONCLUSION

In addition to the major algorithmic changes described above, we
have modified an aspect of the original BLAST program’s output
routine that on occasion caused important similarities to be
overlooked. When a very large number of statistically significant
alignments was found, BLAST would typically report only the top
scoring 500. These alignments, however, might all involve one
domain of the query that occurred frequently within the database.
Interesting but weaker relationships to other regions of the query
might simply be forced off the bottom of the list. Accordingly,
following the general idea of Sonnhammer and Durbin (81), we
have limited the number of alignments reported that involve each
region of the query, but set no overall upper limit.

The BLAST programs are unlikely to remain static, and there
are many possible avenues for future improvement. We discuss
three of them briefly here.

Gap costs

Gapped alignments may be constructed using a variety of different
types of gap cost. Because a single mutational event may insert or
delete a large number of residues, it has been argued that long gaps
should not cost much more than short ones, and affine gap costs,
which assess a score –(a + bk) for a gap of length k (82–85), have
become the most widely used. A generalization of these costs has
been proposed, that allows a gap to involve residues in both
sequences rather than just one (86). Specifically, a gap in which k
residues are inserted or deleted and j pairs of residues are left
unaligned receives the score –(a + bk + cj). The algorithm necessary
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for using such costs is only a minor variant on that for traditional
affine gap costs. In many cases, the new gap costs generate local
alignments that are both more accurate and more statistically
significant (86). These costs are potentially of particular value for
use with PSI-BLAST, because by imposing alignment only where

it is justified, they may lead to the construction of more sensitive
position-specific score matrices. Whether it is desirable to use
generalized affine gap costs as the default for general purpose
database searches awaits detailed empirical study.

Table 4. PSI-BLAST protein database search results using the C-terminus of BRCA1 as query

Protein Species GenBank ID number PSI-BLAST iteration E-value

BARD Homo sapiens 1710175 0 2e-06

T10M13.12a Arabidopsis thaliana 2104545 1 4e-06

F26D2.bb Caenorhabditis elegans 1914176 1 4e-04

KIAA0259a H.sapiens 1665785 1 0.001

F37D6.1 C.elegans 1418521 2 4e-06

C19G10.07 Schizosaccharomyces pombe 1723501 2 6e-05

KIAA0170 H.sapiens 1136400 2 0.002

53BP1 H.sapiens 488592 2 0.008

T13F2.3a C.elegans 1667334 3 2e-07

K04C2.4 C.elegans 470351 3 3e-07

T19E10.1 C.elegans 1067065 4 7e-04

Rad4/Cut5 S.pombe 730470 4 0.002

REV1 Saccharomyces cerevisiae 132409 4 0.003

ECT2 Mus musculus 423597 5 1e-04

XRCC1 M.musculus 627867 5 6e-04

Crb2 S.pombe 1449177 5 0.002

RAP1 S.cerevisiae 173558 5 0.006

TcEST030c Trypanosoma cruzi 1536857 6 0.001

DPB11 S.cerevisiae 1352999 6 0.001

L8543.18 S.cerevisiae 1078075 6 0.010

SPAC6G9.12a S.pombe 1644324 7 4e-04

YM8021.03 S.cerevisiae 1078533 7 0.005

YHR154w S.cerevisiae 731729 7 0.008

C36A4.8a C.elegans 1657667 7 0.010

UNE452 S.cerevisiae 1151000 8 8e-04

DNA ligase IV H.sapiens 1706482 8 0.008

CDC9 Candida albicans 1706483 9 0.006

DNA ligase Thermus scotoductus 1352293 10 0.010

GNF1 Drosophila melanogaster 544404 11 0.004

mutTc M.jannaschii 2129134 15 0.008

RAD9 S.cerevisiae 131817 7 0.74

RAP1 homolog K.lactis 422087 9 0.21

ZK675.2 C.elegans 599712 13 3.5

D90904a Synechocystis sp. 1652299 15 0.17

TDT Mus domestica 2149634 15 0.46

YGR103w S.cerevisiae 1723693 16 0.017

Pescadilloa H.sapiens 2194203 16 0.017

PPOL Sarcophaga peregrina 1709741 16 0.060

Iteration zero refers to the initial BLAST run, using the 215 C-terminal residues of BRCA1 (68) (SWISS-PROT accession no.
P38398) as query. Subsequent PSI-BLAST iterations use derived position-specific score matrices in place of the query. The score
matrix for iteration i + 1 is constructed from alignments achieving an E-value ≤0.01 for iteration i. For each protein, the E-value is
that returned during the PSI-BLAST iteration indicated, and precedes the protein’s use for score matrix construction. Only one repre-
sentative is listed for families of closely related proteins. On its 16th iteration PSI-BLAST uncovered no new proteins with E-value
≤0.01, and therefore ceased iteration. At the end of the table are shown BRCT proteins returned by PSI-BLAST with E-value >0.01
but ≤10, listed for the iteration in which they achieved their lowest E-value.
aRecent additions to the database, first identified as BRCT proteins here.
bThe C.elegans F26D2.b protein (74) while a recent addition to the databases, is a close homolog of the previously recognized (66,67)
family of C.elegans BRCT proteins containing, for example, F37A4.4 (90).
cThe trypanosome EST (70) and the M.jannaschii mutT protein (71) are the only likely false positives.
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Position-specific score matrices as input to PSI-BLAST

PSI-BLAST performs three distinct operations: it constructs a
multiple alignment from BLAST output data; it processes this
alignment into a position-specific score matrix; and it uses this
matrix to search the database. A researcher may wish, however, to
bypass the first two of these operations, and provide a score matrix
as query directly to PSI-BLAST. The central difficulty is retaining
the ability to calculate reliable statistics; as described above,
PSI-BLAST imposes strict scaling rules on the matrices it generates,
permitting the use of precomputed λg to assess significance. Three
possible routes are open. (i) One may permit the specification of 20
target frequencies Qi for each position rather than 20 scores. These
can then be converted internally to log-odds scores with the
appropriate scale for precomputed statistical parameters to apply.
(ii) One may estimate by random simulation the statistical para-
meters for an input score matrix (3). An advantage is the
applicability to a greater range of scoring systems, including the
possible use of position-specific gap costs. A disadvantage is that
obtaining reasonably accurate estimates of the relevant statistical
parameters may increase the program’s execution time unduly.
(iii) One may abandon the statistical assessment of the alignments
produced. This gives the greatest scope to input scoring systems, but
precludes any reasonable scheme for automatic iteration of PSI-
BLAST. Much experimentation will be required to determine which
of these approaches is the most fruitful.

Realignment

After the initial BLAST run, or a later PSI-BLAST iteration, the
multiple alignment used for subsequent iterations can be con-
structed in a more sophisticated manner than described above.
Rather than coalescing all the pairwise alignments that pass the
threshold immediately into a multiple alignment, the most
significant among them can be used to build an initial multiple
alignment and associated position-specific score matrix, which
can then be used to rescore and realign database sequences that
received lower scores. This step can be iterated several times
before another full-scale database search is executed. There are
several potential advantages to this procedure. (i) Weaker
pairwise alignments, that may be somewhat inaccurate, can be
improved and perhaps extended before they are incorporated into
the evolving multiple alignment. (ii) Unrelated sequences that
received chance high scores can have their scores downgraded by
an improved matrix, and perhaps be rejected before they are
included in the alignment. (iii) Related sequences that received
relatively high alignment scores, but missed the threshold for
inclusion, can have their scores increased, and perhaps be
included in the multiple alignment. In short, the realignment
procedure can prevent inaccurate pairwise alignments from
corrupting the evolving multiple alignment, and can accelerate
the recognition of related sequences, all for very little computa-
tional cost. Preliminary studies suggest this line of development
to be a fruitful one.

In conclusion, the new gapped version of BLAST is both
considerably faster than the original one, and able to produce
gapped alignments. While the relevant statistical parameters can
no longer be calculated from theory, random simulation allows
them to be estimated beforehand for commonly used amino acid
substitution matrices and gap costs. For many queries, the
PSI-BLAST extension can greatly increase sensitivity to weak
but biologically relevant sequence relationships. PSI-BLAST

retains the ability to report accurate statistics, per iteration runs in
times not much greater than gapped BLAST, and can be used both
iteratively and fully automatically. These developments should
enhance significantly the utility of database search methods to the
molecular biologist.

Note

Source code for the new BLAST programs is available by
anonymous ftp from the machine ncbi.nlm.nih.gov, within the
directory ‘blast’, and the programs may be run from NCBI’s web
site at http://www.ncbi.nlm.nih.gov/
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