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ABSTRACT

Translational selection is responsible for the unequal
usage of synonymous codons in protein coding
genes in a wide variety of organisms. It is one of the
most subtle and pervasive forces of molecular evolu-
tion, yet, establishing the underlying causes for its
idiosyncratic behaviour across living kingdoms has
proven elusive to researchers over the past 20 years.
In this study, a statistical model for measuring trans-
lational selection in any given genome is developed,
and the test is applied to 126 fully sequenced gen-
omes, ranging from archaea to eukaryotes. It is
shown that tRNA gene redundancy and genome
size are interacting forces that ultimately determine
the action of translational selection, and that an opti-
malgenome size exists for which this kind of selection
is maximal. Accordingly, genome size also presents
upper and lower boundaries beyond which selection
on codon usage is not possible. We propose a model
where the coevolution of genome size and tRNA
genes explains the observed patterns in translational
selection in all living organisms. This model finally
unifies our understanding of codon usage across
prokaryotes and eukaryotes. Helicobacter pylori,
Saccharomyces cerevisiae and Homo sapiens are
codon usage paradigms that can be better under-
stood under the proposed model.

INTRODUCTION

ThecontroversialideasofKimura(1)andofKingandJukes(2)on
neutral evolution led some early detractors to postulate that
usage of synonymous codons in protein coding genes is not
necessarily random and that codon composition could be biased
towards codons that would match the tRNA pool of the host
organism (3). This prediction was partially confirmed when the
first genes were sequenced, in particular for the ribosomal genes
of Escherichia coli (4). Soon after, Grantham et al. (5,6) com-
piled codon usage tables for all sequenced genes at that time, and
proposed that each genome has a particular codon usage signa-
ture that reflects particularevolutionary forces acting within that
genome. This genome hypothesis was soon adopted, and exten-
sive studies were performed in yeast and other microorganisms
(7,8) that confirmed thisview. However, it wasnotuntil Ikemura

(9,10) performed his elegant experiments on E.coli that the
hypothesisofcodonadaptation to the tRNA poolwasconfirmed,
giving a plausible explanation for the presence of codon usage
bias in highly expressed genes and leading to rapid development
in this area of research. These early discoveries led to the formu-
lation of a yeast–E.coli paradigm, establishing that highly exp-
ressed genes use a subset of optimal codons in accordance with
their respective major isoacceptor tRNA levels. The evolution-
ary force responsible for this was coined translational selection.

However, when attempts were made to extend the findings
from unicellular microorganisms to higher eukaryotes, the
situation became confusing. Organisms such as humans
seem to have their codon usage determined solely by genomic
GC content or isochore composition, while others such as
the fly or worm, seem to present an intermediate degree of
selection partly determining their codon usage. A mutation–
selection balance theory of synonymous codon usage was
developed to explain these observations (11,12,13).

Although there have been detailed studies on particular
organisms and attempts to find trends in larger groups
(14,15,16,17), those studies have failed to explain the reasons
for the disparity in the action of selection on codon usage
across different genomes, giving rise to the notion that the
study of codon usage is one of the most controversial areas of
molecular evolution (18). After all, why do certain organisms
such as Helicobacter pylori or humans (19,20) present no
evidence of translational selection while others such as
E.coli or worms show a marked codon bias due to selection
(21,10)? The problem is aggravated since there seems to be no
formal measure available for estimating translational selection
on a whole genome basis. Such a measure would help in the
investigation of the factors shaping translational selection and
the trends underlying its idiosyncratic behaviour across living
kingdoms could be better understood. The 20-year-old puzzle
of the high diversity in codon usage across genomes might
then be settled. In this paper, a statistical test for translational
selection is developed and applied to a large subset of fully
sequenced genomes. As a result, a unified framework is pre-
sented for the understanding of translational selection and
codon usage trends in prokaryotic and eukaryotic genomes.

MATERIALS AND METHODS

The tRNA adaptation index

The tRNA adaptation index (tAI) (22) is a measure of the tRNA
usage by coding sequences inspired by the codon adaptation
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index of Sharp and Li (23). In order to develop this index, we
take advantage of the fact that the tRNA gene copy number
across some genomes has a high and positive correlation with
tRNA abundance within the cell (9,24,14,25) and with
codon preferences in such genomes. Since tRNA abundance
may be thought of as the driving force for translational selec-
tion, it is reasonable to speculate that measuring the tRNA
usage of a gene may provide an indirect way for detecting
translational selection according to how well the gene in ques-
tion is adapted to the tRNA gene pool. In order to calculate this
index, the absolute adaptiveness value Wi for each codon i is
defined as

Wi =
Xni

j=1

1 � sij

� �
tGCNij, 1

where ni is the number of tRNA isoacceptors that recognize the
ith codon, tGCNij is the gene copy number of the jth tRNA that
recognizes the ith codon, and sij is a selective constraint on the
efficiency of the codon–anticodon coupling. To build a table of
Wi values, it is best to sort the codons as shown in Figure 1 and
to analyse the way in which each tRNA recognizes its parti-
cular codons. It can be seen that the 64 codons that comprise
the genetic code can be clustered into groups of four elements,
which reflect the natural way in which tRNAs recognize them.
Based on Figure 1, a simple set of formulae for calculating all
Wi values can easily be drawn taking into account Crick’s
wobble rules (26) for codon–anticodon pairing (Table 1).
From the Wi values the relative adaptiveness value wi of a
codon is obtained as

wi =
Wi=Wmax if Wi „ 0

wmean else

�
, 2

where Wmax is the maximum Wi value and wmean is the
geometric mean of all wi with Wi „ 0. The tRNA adaptation
index tAIg of a gene g is defined as the geometric mean of the
relative adaptiveness values of its codons

tAIg =
Ylg
k=1

wikg

 !1=lg

, 3

where ikg is the codon defined by the kth triplet in gene g and lg
is the length of the gene in codons (except the stop codon).
Consequently, tAIg estimates the amount of adaptation of a
gene g to its genomic tRNA pool.

The relationship of tAI to Nc

The effective number of codons (Nc) is a measure that quan-
tifies the departure of a gene from the random usage of
synonymous codons (27). Nc is related to the amount of
entropy in the codon usage of a sequence. It reaches is
maximal value (61) when all codons are used equally and
its minimal value (20) when only one codon is used per
amino acid. Since the effect of selection is a reduction of

Figure 1. Genetic code and general codon–anticodon recognition rules for tRNA genes. This table simply summarizes all the theoretically possible interactions
between the coding codons and the extant tRNA sequences in the organisms analysed in this work. The interested reader is advised to refer to the literature (47,46) for a
detailed description of codon–anticodon pairings.

Table 1. Formulas for calculating Ws according to Crick’s wobble rules (26)

n Anticodon Codon W

i INN NNU (1 � sI:U)tGCNi + (1 � sG:U)tGCNi+1

i + 1 GNN NNC (1 � sG:C)tGCNi+1 + (1 � sI:C)tGCNi

i + 2 UNN NNA (1 � sU:A)tGCNi+2 + (1 � sI:A)tGCNi

i + 3 CNN NNG (1 � sC:G)tGCNi+3 + (1 � sU:G)tGCNi+2

I, inosine. The interested reader should refer to the literature (46,47) for a
detailed description of nucleoside modifications and codon–anticodon pairings.
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the entropy of codon usage in a sequence, Nc provides a
reliable way of testing this effect. Since the silent GC content
xg of a gene g affects its Nc value, an equation to approx-
imate this relationship under the hypothesis of no selection
was proposed by Wright (27):

Ncg = f xg

� �
, 4

where

f xg

� �
= 2 + xg +

29

x2
g + 1 � xg

� �2
: 5

This model can easily be extended to account for the selec-
tion effect jg on the codon usage of gene g and for uncontrol-
lable, random factors eg

Ncg = f xg

� �
� jg + eg, 6

since the effect of selection is to reduce the value of Nc, it has
been assigned a negative value in Equation 6. The random
element eg simply represents sources of variation on Nc that
cannot be accounted for by selection or silent GC content
alone, and that cannot be controlled in this study. Since in
practical terms we can only calculate Ncg and f(xg) for every
gene, terms jg and eg in Equation 6 are confounded, and
cannot be estimated independently. Consequently, the amount
of selection acting on the codon usage of gene g cannot be
estimated directly, but the confounded factor, yg = jg � eg can
be estimated as

yg = f xg

� �
� Ncg: 7

We can use tAIg and yg to estimate the degree of co-
adaptation between the codon usage of a set of genes and the
genomic tRNA pool. If a sample of genes from a given genome
G is obtained, then the vectors tAIG = (tAIg) and CG = (yg)
can be calculated. The correlation S between tAIG and CG

measures this co-adaptation. In fact, the squared correlation
coefficient S2 is the proportion of the variance in codon bias
explained by tRNA adaptation that cannot be explained by GC
content variation (xg) or other factors (eg) alone. The correla-
tion S is a convenient indicator of the amount of selection due
to tRNA adaptation since it is a single number between �1 and
1. It can be seen that the stronger the action of selection, the
higher the correlation coefficient. If this test is applied to a
representative set of genes in any given organism, a measure of
the intensity of translational selection that has acted upon the
evolution of its genome will be obtained.

The statistical significance of S can be assessed by a per-
mutation test. The method consists in permuting the assign-
ment of wi values to their respective codons. The permuted set
is then used to calculate tAI and S and the process is repeated
iteratively until a sufficiently large sample of S-values is
generated to estimate its probability distribution under the
assumption of no selection. P-values for the significance
of the naturally observed S-values can be obtained from
this re-sampling distribution.

Non-parametric regression of S

In order to understand how genome size and tRNA gene copy
number contribute to explaining selection on codon usage in

genomes, a non-parametric regression of S on these variables
was performed. A Gaussian processes model (28) was applied
to the data since it provides a very flexible and powerful way to
analyse data with unusual properties such as highly correlated
predictors (such as genome size and tRNA gene number in this
case). Gaussian processes are specified by a covariance struc-
ture that determines how response values at neighbouring
points influence each other. A fully Bayesian treatment of
the parameters describing the covariance structure is possible
by a Monte Carlo Markov Chain (MCMC) algorithm. Random
surfaces are generated according to how well they fit the
observed data points, and a consensus regression surface is
then obtained by averaging.

Although the smoothness of the surface is essentially
derived from the data, it can be influenced by setting a
prior on the scale parameter. We intentionally chose a
prior that encouraged a smooth appearance of the regression
surface. An advantage of the Bayesian approach is that
parameters of interest can be given a probabilistic interpreta-
tion. For example, we were interested in locating the point of
maximum translational selection in the regression surface.
A density plot of the most likely location of this point can
be easily obtained from the MCMC samples of surfaces by
evaluating their maxima.

A logarithmic transformation was used to scale tRNA
gene numbers and genome sizes to appropriate values in
the regression analysis. Also, a generalized additive model
(GAM) (29) was fitted to the data as an independent regression
model to confirm the quality of the analysis. Both models
agree reasonably well, but the Gaussian model was preferred
due to its robustness, so the GAM analysis is not discussed any
further.

Genomic sequences

In this work, 126 genomes were analysed for the presence
or absence of translational selection. All protein coding
sequences from bacterial genomes and yeast species
(Saccharomyces cerevisiae and Schizosaccharomyces
pombe) were retrieved from NCBI (ftp://ftp.ncbi.nih.gov/
genomes/), sequences from Homo sapiens and Arabidopsis
thaliana were retrieved from RefSeq (http://www.ncbi.nih.
gov/RefSeq/), Mus musculus sequences from the Mammalian
Gene Collection (http://mgc.nci.nih.gov), Plasmodium
falciparum sequences from PlasmoDB (http://plasmodb.org),
Neurospora crassa sequences from (http://www.broad.mit.
edu/annotation/fungi/neurospora), Drosophila melanogaster
sequences were obtained from flybase (http://flybase.bio.
indiana.edu/) and Caenorhabditis elegans sequences from
wormbase (http://www.wormbase.org). A detailed list of all
organisms studied and their accession numbers is provided as
supporting material. Genomic tRNA information was obtained
from the Genomic tRNA Database (http://lowelab.ucsc.edu/
GtRNAdb/), and from scanning individual genomes with
tRNAscan-SE (30).

Software

Statistical analyses were done using the R software for statis-
tical computing (http://www.r-project.org), and the Flexible
Bayesian Modeling program suite (R. Neal, http://www.cs.
toronto.edu/~radford/fbm.software.html). A modified version
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of CodonW (J. Penden, unpublished data; http://www.molbiol.
ox.ac.uk/cu/) was used to estimate Nc and GC content of the
sequences analysed; the modification eliminates the restriction
on Nc values bigger than 61. All software developed specific-
ally for this work is publicly available (http://people.
cryst.bbk.ac.uk/~fdosr01/tAI/).

RESULTS

Choosing appropriate s-values for calculating tAI

One of the most challenging issues when computing tAI is the
selection of a meaningful set of sij-values (Equation 1). Since
tRNA usage should be maximal for highly expressed genes, it
would be natural to find the set of sij-values that maximize the
correlation between expression levels and tAI values for any
given organism. In this study, microarray data from yeast were
obtained (31) and used to optimize these values. A set of
highly expressed genes was selected using the criteria chosen
previously (32), and tAI was calculated for every one of them,
assuming the initial sij-values as shown in Table 2. The cor-
relation between the obtained tAI values for each gene and its
corresponding expression level was then calculated iteratively
using an implementation of the Nelder and Mead algorithm (R
package) until the optimal set of sij-values that maximized this
correlation (here, Rfinal = 0.71) was obtained (Table 2). A
similar method was used with E.coli microarray data (33)
to obtain an appropriate s-value for the recognition of AUA
by LAT in prokaryotic genomes (Table 2).

Optimization of Wright’s Nc

A puzzling issue in the study by Wright on Nc (27) is the fact
that it is not explained how Equation 5 ( f (xg)), was obtained.
Although this formula fits some experimental data, it seems to
be biased towards higher Nc values than would be expected.
Since an unbiased estimator is needed in Equation 7 to calcu-
late S, its accuracy needs to be reviewed. In order to achieve
this goal, each E.coli K-12 open reading frame (ORF) was
simulated according to the following rules: (i) the amino acid
composition should remain intact, (ii) the codon that codes for
any given amino acid will be chosen randomly according to a
silent set GC content for its gene, (iii) the silent GC content of
any given gene will be chosen randomly from a uniform dis-
tribution. In order to obtain a sufficiently large dataset, each
gene was simulated three times. The result of this simulation is
a set of genes whose codon usage is solely determined by their
GC content. As can be seen in Figure 2, the equation suggested
by Wright has certainly deviated not only from the simulated
results but also from real data. The problem was then finding a

better fit for the simulated data utilizing the method of mini-
mum squares. For simplicity, it was assumed that the structure
of Equation 5 is right but that the constants present in it are
inaccurate; based on this, Equation 5 was redefined as

f1 xg

� �
= a + xg +

b

x2
g + c � xg

� �2
, 8

where a, b and c are constants with unknown values. The
problem was reduced to finding the set of values for these
constants that minimize the sum of squares of the residuals
for the fitted curve:

Sum of squares =
Xn

g=1

f1 xg

� �
� Ncg

� �2
, 9

where n is the total number of simulated sequences. Notice that
in this case E[ f1(xg) � Ncg] = 0 as expected, since the effect of
selection has effectively been eliminated by the simulation
process. The actual minimization of Equation 9 was done
using an implementation of the Nelder and Mead algorithm
(R software). The obtained parameter values are shown in
Table 3. In order to exclude any possible ‘organism’ effect
on the estimation of a, b and c, the simulation experiment and
the optimization process were repeated again using human
genes (Table 3). We have found that Equation 8 is robust

Table 2. Optimized s-values

s Fixed s Initial Final

sI:U 0.0 sG:U 0.50 0.41
sG:C 0.0 sI:C 0.50 0.28
sU:A 0.0 sI:A 0.25 0.9999
sC:G 0.0 sU:G 0.50 0.68
— — sL:A 0.50 0.89

L, lysidine.

Figure 2. Nc-plot for yeast and simulated E.coli K12 genes. Grey points,
simulated E.coli K12 genes; red points, actual yeast genes; dashed line,
Wright’s proposed function (Equation 5); bold line, the function proposed
herein (Equation 8) with optimized parameters.

Table 3. Optimized parameters for Equation 8

par E.coli K12 H.sapiens Suggested

a �6.459 �6.650 �6.0
b 34.01 34.43 34.0
c 1.023 1.028 1.025
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for broad values of a and b, but is very sensitive to small
deviations of c.

Distribution of translational selection across
prokaryotic and eukaryotic genomes

To illustrate how the S-test can be used, S-values were calcul-
ated for five organisms in which codon usage has been
well studied: H.pylori, E.coli, S.cerevisiae, Caenorhabditis
elegans and H.sapiens (19,9,7,21,20). As expected (Figure 3),
S.cerevisiae and E.coli show the highest S-values, C.elegans
shows a moderate S-value, while H.pylori and H.sapiens
show no sign of translational selection acting on their genomes.

A total of 126 genomes were tested for translational selec-
tion. The organisms analysed ranged in genome size from
0.58 Mb (Mycoplasma genitalium) up to �3000 Mb (H.
sapiens), with total tRNA gene copy numbers ranging from
29 (Mycoplasma pulmonis) to 620 (A.thaliana). We found that
the presence or absence of translational selection is indepen-
dent of the kingdom being considered; both eukaryotes and
prokaryotes presented organisms whose codon usage is deter-
mined mainly by selection or mainly by mutational processes.
S-values ranged from �0.28 (Halobacterium sp.) up to 0.82
(S.pombe). In total, 36 genomes have values of S statistically
different from zero (P < 0.05). A complete table with all the
estimated S-values for each genome and their statistical
significance is available as supporting material.

The non-parametric regression of S on genome size and
tRNA gene copy number explains �60% of the variation
observed in S-values. Genome size and tRNA gene copy num-
ber interact to form a landscape (Figure 4a) that determines
where selection is operative. This landscape can be repre-
sented as a thermal image (Figure 4b) that shows the hot
regions of selection activity. This landscape shows a conspic-
uous hot spot where the activity of selection on silent site
evolution is maximal, and cooler, marginal regions of little
selection. Small bacterial genomes (such as H.pylori or
Borrelia burgdorferi) and big eukaryotic genomes (like
those of H.sapiens or M.musculus) fall in these marginal
regions. The yeast genomes fall within the hot spot region.
This thermal image is a pan-genomic picture that depicts for
the first time where translational selection is operative. It can
be used to predict the presence of translational selection in any
given genome, provided that genomic size and the number of
resident tRNA genes are known. The maximum observed in

the regression surface is highly stable as indicated by the
MCMC simulation (Figure 4c).

DISCUSSION

The classic approach to test for natural selection at the mole-
cular level has been through alignments of nucleotide
sequences and the estimation of the number of synonymous
and non-synonymous substitutions that have occurred during
the evolution of those sequences. Since codon usage is a par-
ticular characteristic of every genome, usually there is not
enough polymorphism data available of sequences within
genomes to perform this kind of analysis (13), so indirect
approaches such as measuring different sorts of codon bias
indexes have been the norm in these types of study. Since these
indirect approaches do not measure selection itself, most stu-
dies embracing larger groups of organisms have focused on the
effect of nucleotide composition (such as GC content) on
codon usage, and have paid scant attention to the problem
of translational selection (16,17).

Presented in this paper is our development of the first con-
sistent method to test for translational selection in any given
genome, with some very interesting findings. This provides a
framework for partially understanding the original observations
of Grantham et al. (5) and their genome hypothesis. Further-
more, for the first time, the importance of considering the roles
of tRNA gene redundancy and genome size in the mutation–
selection balance theory of codon usage is emphasized.

Genome size and tRNA gene redundancy are
interacting forces that determine the action of
natural selection on codon usage bias

Perhaps the most important contribution of this work to the
understanding of codon usage is the unexpected finding that
genome size and tRNA gene redundancy interact to determine
the action of natural selection on codon usage in all living
organisms. Our findings suggest that an optimal combination
of these factors exists, for which the action of translational
selection is maximal. It is now possible to readily predict the
presence of translational selection in any given genome given
that we know its size and the number of tRNA genes it con-
tains. Perhaps Paramecia will provide a good model system to
test these predictions. For example, Paramecium aurelia has a
genome size of �190 Mb, while P.caudatum has a genome

Figure 3. tAI versus f1(x)–Nc for five organisms for which codon usage has been well studied.
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size of �8900 Mb, so, our model predicts that the former will
have a codon usage bias similar to that of fly, i.e. with selection
moderately shaping codon usage in highly expressed genes,
while the latter should have a codon usage resembling humans,
i.e. with no evidence of translational selection.

The lack of tRNA gene redundancy is responsible
for the absence of translationally selected codons
in small genomes

The adaptation of codon usage to the genomic tRNA gene pool
is a well-known phenomenon in various organisms where

translational selection is known to be present. In fact, some
authors have discussed how the redundancy in the gene num-
ber of certain tRNA isoacceptors matches the frequencies of
the preferred set of codons in yeast and worm (24,25). How-
ever, what does not appear to have been discussed so far, is
how the lack of duplicated tRNA genes might explain the
absence of translationally selected codons in bacteria with
small genomes, although the idea has been framed previously:
Kanaya et al. (14) made a detailed analysis of codon usage and
tRNA abundance in 18 unicellular microorganisms, calculat-
ing a Z-index of codon usage for protein genes in the genomes

Figure 4. Action of natural selection on codon usage in the genomic landscape. (a) Fitted regression surface of S-values to tRNA gene number and genome size. Pink
dots, predicted S-values for every organism; red dots, organisms with S-values higher than predicted by the model; blue, organisms with S-values lower than
predicted. Vertical lines join each observed data point to its predicted value. (b) Thermal image (contour plot) of the same regression surface. The hottest (highest)
S-values are shown in white, while the cooler (lowest) values are in red. E, Eukaryota; B, Eubacteria; and A, Archaea. The contour lines reflect the estimated S-value
for a particular region. (c) Estimated probability density function for the presence of a maximum in the regression analysis. (d) Hypothetical evolution of codon usage
optimization. A small genome sized ancestor (0), suffered a series of genome expansions (1–4). During this evolutionary process, the phylogeny would move into, and
then out of the selective hot-spot. The process can be reverted at any time if selection for genome size or tRNA set reduction is present, such as in non-free living
organisms e.g. H.pylori (5) or P.falciparum (6).
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studied. It was found that the relative bias in Z-values between
ribosomal and non-ribosomal proteins was proportional to the
total number of tRNA genes in the genome; furthermore, these
data suggest that such bias is effectively zero for genomes with
low tRNA gene numbers. The conclusion presented was that
‘ . . . codon usage in most bacteria, if not all, is constrained by
translation efficiency’; however, the aforementioned data
appear to suggest the contrary. A vivid example of this is
presented in the genome of H.pylori, where the absence of
translationally selected codons is well documented (19);
H.pylori presents only 36 tRNA genes with only one tRNA
species presenting two copies, it is this lack of tRNA gene
duplication that determines the absence of translational selec-
tion in that organism. It can be argued that it is the need for
translational optimization and hence codon usage that shapes
the tRNA pool of organisms (34). However, we contend that
selection favouring small genome size implies an overall
reduction of the ‘redundancy’ of the whole genome, i.e. reduc-
tion of duplicated genes of any kind (tRNA, rRNA, protein
genes, repetitive elements, etc.), and it is this kind of selective
force, not codon usage itself, that shapes tRNA redundancy.

Genome size presents upper and lower boundaries
beyond which selection on synonymous codon
usage is not possible

Since genome size and genomic tRNA number are highly
correlated (R = 0.85), it seems logical to think that both factors
co-evolve in a concerted way. The evolution of genome size
has largely been related to the evolution of repetitive DNA
(35), so the mechanisms that explain the increase in copy
number of selfish genes within genomes might be taken
into account to explain the evolution of tRNA genes. In
fact, the association between tRNAs and transposable ele-
ments is well documented in eukaryotic genomes (36,37),
and the evolution of tRNA genes themselves have been
described as a repetitive process (38). Since a particular gen-
ome size perhaps limits the maximal number of tRNA genes it
contains, it is this factor which imposes limits to the action of
selection on codon usage. As discussed above, it becomes
clear why small genomes lack translationally selected
codon usage bias; however, why large genomes also show
similar behaviour is puzzling. A possible explanation might
be related to the fact that the length of the cell cycle is posi-
tively correlated with genome size (39), i.e. the larger the
genome, the longer the cell division cycles. After all, E.coli
cells might divide thousands of times in a few hours, while
human cells in culture may only divide a few times. Transla-
tional optimization for expression of large proteins might be
advantageous to E.coli, although of little value to human cells.
Another possible explanation might exist if the effective popu-
lation size (Ne) of an organism is correlated to its genome
size. Whether this should be so is unclear, but it is well known
that a substantially large Ne is needed (11) for selection to be
effective in shaping codon usage.

The findings presented in this paper permit the following
conjecture of how codon usage optimization might have
evolved. First a hypothetical ancestor (Figure 4d) with a
small genome and a reduced set of tRNA genes suffered a
series of genome expansions that led to an increased set of
tRNA genes. As successive expansions took place, the

redundancy of the tRNA set increased and selective pressure
for codon optimization started to be operative. From this, the
first medium genome sized bacterial genomes originated, simi-
lar to E.coli. Further expansions might have produced the first
eukaryotic genomes such as yeast, where codon optimization
is highly developed. As genome size increased further, other
ecological variables progressively hindered the action of selec-
tion on codon usage, generating the large modern genomes
such as those of mammals. Selection for reduction of genome
size or tRNA redundancy in certain non-free living organisms
would invert the process. This conjectural model might be
used as a plausible framework onto which research into codon
usage may be devised.

Limitations of the model

The statistical model presented in this study failed to explain
�40% of the variation observed in S-values in the genomes
studied. The reasons for this are many, and include some of a
technical, and others of a biological nature. The technical lim-
itations are statistical in their character, and relate to the choice
of regression model and the unusual structure of the data. tRNA
gene numbers and genome size are highly correlated, so ample
areas of ‘genomic landscape’ do not present data points, there-
fore, thepredictionsofthemodel in theupper left,andlowerright
corner of Figure 4 are extrapolations that might not necessarily
reflect the true behaviour of organisms in these regions. Another
unusual characteristic of the data is the excessive oversampling
of small genomes, which are easier and cheaper to sequence; this
certainly affects the model in the sense that densely packed areas
of data contribute more heavily to the shape of the regression
surface than areas with more scattered data. The choice of a
particular regression analysis is also a problem. Classical para-
metric analyses such as polynomial regressions tend to over-fit
the data as the degree of the polynomial is increased, and they
also tend to produce surfaces that vary wildly in areas where the
data is poorly represented. On the other hand, Gaussian pro-
cesses are robust against highly correlated predictors, discontin-
uous data structures, or biased samples. The final regression
surface seen in Figure 4 is an average of all the regression sur-
faces that explain the data ’equally’well, so the wild fluctuations
of classical regression surfaces over the areas where the data is
poorly represented is averaged out. Furthermore, the inclusion
of simulation and Bayesian analysis allows us to test the relia-
bility of the regression model, and obtain probability values for
the featuresobserved in it. If themodelpredicts amaximuminan
area where the data is poorly represented, this maximum will
have a very low probability because simulated surfaces in that
area will tend to produce random maxima and minima; only
regions that consistently produce the same feature are reliable.
However, Gaussian processes also present limitations; this is a
non-parametric model, and hence we lack a meaningful para-
metric equation to describe the data, and using it to predict
accurate S-values for new organisms with values outside the
range of the current data is not necessarily appropriate.

The model also failed to account for some biological vari-
ables. For example, secondary structure effects on codon pre-
ferences, or context-dependent mutational biases were not
explicitly taken into account, and are grouped together in
the error term of Equation 6. Another important variable
that was considered in preliminary analysis was the silent
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GC content; this variable can improve the predictive power of
the model to �70% but its inclusion does not change the shape
of the regression surface (data not shown). GC content and
codon usage have been widely discussed in the literature, and
it is known that highly biased mutational patterns can restrict
codon selection in certain organisms. Some bacteria with
extreme values of GC content, present low S-values despite
their intermediate genome sizes and tRNA numbers, e.g.
Clostridium tetani (GC = 0.29, S = 0.03), species of the genus
Streptomyces (GC > 0.70, S < �0.03) or B.burgdorferi
(GC = 0.29, S = 0.11) where asymmetrical replication is
the major source of codon usage variation (40), and where
the presence of translational selection has been debated (41).
We also ignored the fact that the proportion of tRNA isoac-
ceptors can vary as a function of growth rate, tissue type, etc.
and it has been suggested that genes accommodate their codon
usage according to their particular ‘tRNA environment’(42);
in this work, the overall genomic tRNA content was used to
calculate tAI and this might not always be appropriate. Also
particular taxonomic groups or organisms with similar forms
of life may show similar codon trends; e.g. thermophilic bac-
teria have been shown to have the same codon preferences
despite their large variations in overall GC content (43).

Perhaps the best way to exemplify the limitations of the
model is by analysing the case of Bacillus subtilis. This organ-
ism presents an S-value of �0.01, however, it has been
reported that translational selection is operative in its genome
(44). Previous analysis on codon usage in this organism (45)
showed that its genome can be divided into three gene classes
according to their codon composition. Class II, which repre-
sents only 4.6% of ORFs, comprises highly expressed genes
that show biased codon patterns that can be explained through
codon optimization to match the tRNA pool of this organism
(14). Classes I (82.3%) and III (13.1%), which comprise the
rest of the genome, show codon patterns determined by ame-
lioration and mutation-random drift equilibrium; this is in
contrast with the genome of E.coli K-12 where most of the
genome seems to be under translational selection (22). It is
evident that the selection effect on class II is hindered by
classes I and III in our analysis when we consider the
whole genome. Therefore, a small S-value for a whole genome
means that translational selection might be negligible at a
genomic scale, but it can nonetheless have a strong effect
on smaller scales, such as particular gene sets.

This model unifies our understanding of selection on
codon usage in prokaryotic and eukaryotic genomes

The findings presented in this paper coherently unify our
understanding of the action of natural selection on codon
usage in prokaryotes and eukaryotes. They show that there
are indeed conspicuous trends that explain the different roles
of selection and mutational biases across all living organisms.
It is now possible to trace the enigma of codon usage down to
the evolution of tRNA genes and genome size and organiza-
tion. We think two lines of research need to be pursued in order
to disentangle the codon usage riddle completely.

(i) Explaining the poorly understood evolution of tRNA
genes and their role in fitness of an organism: do
they propagate within genomes in a selfish manner hence

determining codon usage, or do they indeed co-evolve
with codon usage itself (34)?

(ii) Studies of a more ecological nature are needed to under-
stand why eukaryotes tend to accumulate larger genomes,
and what variables correlated to genome size can explain
the lack of translational selection in the larger genomes.
Work still needs to be done in this area, but having a test
for translational selection will certainly help in tackling
these questions.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.

ACKNOWLEDGEMENTS

M.d.R. is currently being supported by a research studentship
awarded by the Biosciences and Biotechnology Research
Council, UK. Thanks to Dr Sean Eddy who kindly provided
the mouse tRNA table.

REFERENCES

1. Kimura,M. (1968) Evolutionary rate at the molecular level. Nature,
217, 624–626.

2. King,J.L. and Jukes,T.H. (1969) Non-Darwinian evolution. Science,
164, 788–798.

3. Clarke,B. (1970) Darwinian evolution of proteins. Science, 168,
1009–1011.

4. Post,L.E. and Nomura,M. (1980) DNA sequences from the str operon of
Escherichia coli. J. Biol. Chem., 255, 4660–4665.

5. Grantham,R., Gautier,C., Guoy,M., Mercier,R. and Pave,A. (1980)
Codon catalog usage and the genome hypothesis. Nucleic Acids Res.,
8, r49–r62.

6. Grantham,R., Gautier,C. and Guoy,M. (1980) Codon frequencies in 119
individual genes confirm consistent choices of degenerate bases
according to genome type. Nucleic Acids Res., 8, 1893–1912.

7. Bennetzen,J.L. and Hall,B.D. (1982) Codon selection in yeast. J. Biol.
Chem., 257, 3026–3031.

8. Guoy,M. and Gautier,C. (1982) Codon usage in bacteria: correlation with
gene expressivity. Nucleic Acids Res., 10, 7055–7074.

9. Ikemura,T. (1981) Correlation between the abundance of Escherichia
coli transfer RNAs and the occurrence of the respective codons in
its protein genes. J. Mol. Biol., 146, 1–21.

10. Ikemura,T. (1981) Correlation between the abundance of Escherichia
coli transfer RNAs and the occurrence of the respective codons in its
protein genes: a proposal for a synonymous codon choice that is optimal
for the E. coli translational system. J. Mol. Biol., 151, 389–409.

11. Bulmer,M. (1991) The selection–mutation–drift theory of synonymous
codon usage bias. Genetics, 129, 897–907.

12. Sharp,P.M., Stenico,M., Penden,J.F. and Lloyd,A.T. (1993) Codon
usage: mutational bias, translational selection or both? Biochem. Soc.
Trans., 21, 835–841.

13. Sharp,P.M., Averof,M., Lloyd,A.T., Matassi,G. and Penden,J.F. (1995)
DNA sequence evolution: the sounds of silence. Phil. Trans.
Biol. Sci., 349, 241–247.

14. Kanaya,S., Yamada,Y., Kudo,Y. and Ikemura,T. (1999) Studies of codon
usage and tRNA genes of 18 unicellular organisms and quantification
of Bacillus subtilis tRNAs: gene expression level and species-specific
diversity of codon usage based on multivariate analysis. Gene, 238,
143–155.

15. Kanaya,S., Yamada,Y., Kinouchi,M., Kudo,Y. and Ikemura,T. (2001)
Codon usage and tRNA genes in eukaryotes: correlation of codon usage
diversity with translational efficiency and with CG-dinucleotide usage
as assessed by multivariate analysis. J. Mol. Evol., 53, 290–298.

16. Knight,R.D., Freeland,S.J. and Landweber,L.F. (2001) A simple model
based on mutation and selection explains trends in codon and
amino-acid usage and GC composition within and across genomes.
Genome Biol., 2, research0010.1-0010.13.

Nucleic Acids Research, 2004, Vol. 32, No. 17 5043

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/32/17/5036/1333956 by guest on 24 April 2024



17. Chen,S.L., Lee,W., Hottes,A.K., Shapiro,L. and MacAdams,H.H.
(2004) Codon usage between genomes is constrained by genome-wide
mutational processes. Proc. Natl Acad. Sci. USA, 101, 3480–3485.

18. Brookfield,J.F.Y. (2003) Genome evolution. In Balding,D.J., Bishop,M.
and Cannings,C. (eds), Handbook of Statistical Genetics. Wiley,
Chichester, pp. 255–281.

19. Lafay,B., Atherton,J.C. and Sharp,P.M. (2000) Absence of
translationally selected synonymous codon usage bias in Helicobacter
pylori. Microbiology, 146, 851–860.

20. Urrutia,A.O. and Hurst,L.D. (2001) Codon usage bias covaries with
expression breadth and the rate of synonymous evolution in humans, but
this is not evidence for selection. Genetics, 159, 1191–1199.

21. Stenico,M., Lloyd,A.T. and Sharp,P.M. (1994) Codon usage in
Caenorhabditis elegans: delineation of translational selection and
mutational biases. Nucleic Acids Res., 22, 2437–2446.

22. dos Reis,M., Wernisch,L. and Savva,R. (2003) Unexpected
correlations between gene expression and codon usage bias from
microarray data for the whole Escherichia coli K-12 genome.
Nucleic Acids Res., 31, 6976–6985.

23. Sharp,P.M. and Li,W.-H. (1986) The codon adaptation index: a
measure of directional synonymous codon usage, and its potential
applications. Nucleic Acids Res., 15, 1281–1295.

24. Percudani,R., Pavesi,A. and Ottonello,S. (1997) Transfer RNA gene
redundancy and translational selection in Saccharomyces cerevisiae.
J. Mol. Biol., 268, 322–330.

25. Duret,L. (2000) tRNA gene number and codon usage in the
C.elegans genome are co-adapted for optimal translation of highly
expressed genes. Trends in Genetics, 16, 287–289.

26. Crick,F.H. (1966) Codon–anticodon pairing: the wobble hypothesis.
J. Mol. Biol., 19, 548–555.

27. Wright,F. (1990) The ‘effective number of codons’ used in a gene.
Gene, 87, 23–29.

28. Neal,R.M. (1998) Regression and classification using Gaussian
process priors. In Bernardo,J.M. et al. (eds), Bayesian Statistics 6.
Oxford University Press, Oxford, pp. 475–501.

29. Hastie,T.J. and Tibshirani,R.J. (1990) Generalized Additive Models.
Chapman and Hall, London.

30. Lowe,T.M. and Eddy,S.R. (1997) tRNAscan-SE: a program for
improved detection of transfer RNA genes in genomic sequence.
Nucleic Acids Res., 25, 955–964.

31. Holstage,F.C.P., Jennings,E.G., Wyrick,J.J., Lee,T.I., Hengartner,C.J.,
Green,M.R., Golub,T.R., Lander,E.S. and Young,R.A. (1999)
Dissecting the regulatory circuitry of a eukaryotic genome. Cell,
95, 717–728.

32. Coghlan,A. and Wolfe,K.H. (2000) Relationship of codon bias to
mRNA concentration and protein length in Saccharomyces cerevisiae.
Yeast, 16, 1131–1145.

33. Bernstain,J.A., Khodursky,A.B., Lin,P.-H., Lin-Chao,S. and Cohen,S.N.
(2002) Global analysis of mRNA decay and abundance in Escherichia
coli at single-gene resolution using two-color fluorescent DNA
microarrays. Proc. Natl Acad. Sci. USA, 99, 9697–9702.

34. Bulmer,M. (1987) Coevolution of codon usage and transfer RNA
abundance. Nature, 325, 728–730.

35. Petrov,D.A. (2001) Evolution of genome size: new approaches
to a new problem. Trends Genet., 17, 23–28.

36. Lawrence,C.B., MacDonnel,D.P. and Ramsey,W.J. (1985) Analysis of
repetitive sequence elements containing tRNA-like sequences.
Nucleic Acids Res., 13, 4239–4252.

37. MGSC (2002) Initial sequencing and comparative analysis of the mouse
genome. Nature, 420, 520–562.

38. Jukes,T.H. and Holmquist,R. (1972) Evolution of transfer RNA
molecules as a repetitive process. Biochem. Biophys. Res. Commun.,
49, 212–126.

39. Cavalier-Smith,T. (1985) Introduction: the evolutionary significance
of genome size. In Cavalier-Smith,T. (ed.), The Evolution of Genome
Size. Wiley, NY, pp. 1–36.

40. McInerney,J.O. (1998) Replication and transcriptional selection on
codon usage in Borrelia burgdorferi. Proc. Natl Acad. Sci. USA, 95,
10698–10703.

41. Perri�eere,G. and Thioulouse,J. (2002) Use and misuse of correspondence
analysis in codon usage studies. Nucleic Acids Res., 30, 4548–4555.

42. Kurland,C.G. (1993) Major codon preferences: theme and variations.
Biochem. Soc. Trans., 21, 841–846.

43. Lynn,D.J., Singer,G.A.C. and Hickey,D.A. (2002) Synonymous
codon usage is subject to selection in thermophilic bacteria. Nucleic
Acids Res., 30, 4272–4277.

44. Moszer,I., Rocha,E.P.C. and Danchin,A. (1999) Codon usage and lateral
gene transfer in Bacillus subtilis. Curr. Opin. Microbiol., 2, 524–528.

45. Kunst,F., Ogasawara,N., Moszer,I., Albertini,A.M., Alloni,G.,
Azevedo,V., Bertero,M.G., Bessi�eeres,P., Bolotin,A. and Borchert,S.
(1997) The complete genome sequence of the gram-positive
bacterium Bacillus subtilis. Nature, 390, 249–256.

46. Watanabe,K. and Osawa,S. (1995) tRNA sequences and variation in the
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