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ABSTRACT

The quantitative polymerase chain reaction (qPCR)
is widely utilized for gene expression analysis.
However, the lack of robust strategies for cross
laboratory data comparison hinders the ability to
collaborate or perform large multicentre studies
conducted at different sites. In this study we
introduced and validated a workflow that employs
universally applicable, quantifiable external oligo-
nucleotide standards to address this question.
Using the proposed standards and data-analysis
procedure, we obtained a perfect concordance
between expression values from eight different
genes in 366 patient samples measured on three
different qPCR instruments and matching
software, reagents, plates and seals, demonstrating
the power of this strategy to detect and correct
inter-run variation and to enable exchange of data
between different laboratories, even when not using
the same qPCR platform.

INTRODUCTION

Gene expression quantification has an important role in
many fields of biology, amongst others in the field
of clinical diagnostics and fundamental research. From
the various methods available, reverse transcription
quantitative polymerase chain reaction (RT–qPCR) is
the most rapid, sensitive, accurate and precise method
that can be used to quantify the expression levels of
selected genes and its use in the field of clinical diagnostics
is presently growing (1–5). Compared with microarrays,
the amount of required RNA as starting material is much
lower for RT–qPCR and archival material such as

formalin-fixed and paraffin-embedded tissues can be
successfully used as template for RT–qPCR. Moreover,
the arrival of a new generation of ultra high-throughput
microfluidic based RT–qPCR systems opens up the
perspective of measuring thousands of genes in parallel.
Nevertheless, a major drawback of most gene expression
studies is the difficulty or impossibility to compare data
generated in different laboratories. Indeed, the use of
different instruments, software, reagents, plates or seals
can lead to often underestimated run-to-run differences
that need to be compensated in order to make data
comparable. Currently available strategies to standardize
quantitative polymerase chain reaction (qPCR) data, such
as Standardized Reverse Transcriptase PCR (StaRT–
PCR), are based on internal standards (6,7). This
method relies on end-point quantification and is only
commercially available through Gene Express. In this
paper, we evaluate a strategy that employs quantifiable
external oligonucleotide standards to detect and correct
inter-experimental variation. Compared to previously
described methods our strategy is universally applicable
and offers a high level of flexibility. We show that true
multicentre collaborations are possible and that data can
actually be compared in one study.

MATERIALS AND METHODS

Sample preparation

Total RNA extraction from 423 fresh frozen neuroblas-
toma tumour samples was done by silica gel-based
membrane purification (RNeasy Mini kit or
MicroRNeasy kit, Qiagen), or phenol-based (TRIzol
reagent, Invitrogen and Tri Reagent product, Sigma)
or chaotropic solution-based isolation methods
(Perfect Eukaryotic RNA kit, Eppendorf) according to
the manufacturer’s instructions and stored at �80�C.
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All tumour samples were frozen immediately after
removal from the patient and stored at �80�C. A
validated sample pre-amplification method was applied
yielding sufficient cDNA (�6 mg stored at �80�C) to
measure more than 1000 target genes using only 20 ng of
total RNA as starting material (WT-Ovation, NuGEN)
(8,9). DNAse treatment was not performed as DNA is
not co-amplified using the described earlier sample pre-
amplification method (Vermeulen et al., in preparation).
In order to assess the RNA quality of the 423 collected
tumour samples, we used 20 ng of each RNA isolate to
perform a PCR-based SPUD assay for the detection of
enzymatic inhibitors in nucleic acid preparations (10)
and a microfluidic capillary electrophoresis analysis (high
sensitivity chips, Experion, software version 3.0, Bio-Rad)
to establish an RNA quality index (RQI) based on the
ribosomal RNA profile. Based on these tests, we retained
the 366 best quality samples (median RQI: 7.6; 90th
percentile RQI> 6.1, absence of enzymatic inhibitors).

High-throughput real-time quantitative PCR
based gene expression

A qPCR assay was designed for 8 genes by PrimerDesign
(Southampton, UK). Amplicon length was comprised
between 120 and 150 base pairs. All assays went through
an extensive in silico validation analysis using BLAST and
BiSearch specificity, amplicon secondary structure, SNP
presence and splice variant analysis (11). A standard
dilution series was used to test the PCR efficiency of the
primers and only primers with an efficiency between 90
and 110% were retained (mean efficiency of the 8 assays:
95.4% (range 91.1–99.6%) (Supplementary Table S1).
qPCR was done on all three currently available high-

throughput 384-well plate instruments (LC480 from
Roche (second derivative Cq value determination
method), 7900HT from Applied Biosystems (baseline/
threshold Cq value determination method), and CFX384
from Bio-Rad (derivative Cq value determination
method)) (Supplementary Table S2). PCR plates were
prepared using a 96-well head pipetting robot (Tecan
Freedom Evo 150). qPCR amplifications were performed
in 8 ml containing 4 ml 2� SYBR Green I master mix
(LC480 SYBR Green I master (Roche), custom made
qPCR SYBR green I Mastermix (Eurogentec) or iQ
SYBR Green Supermix (Bio-Rad)), 0.4 ml forward and
reverse primer (5mM each), 0.2ml nuclease-free water
and 3 ml WT-Ovation amplified cDNA (corresponding to
4.5 ng of unamplified cDNA, total RNA equivalents) or
3 ml of standard oligonucleotides (see further). All
reactions were performed in 384-well plates (LightCycler
480 Multiwell Plates 384, white and LightCycler 480
Sealing Foils from Roche on the LC480; MicroAmp
Optical 384-Well Reaction Plates with Barcode and
ABsolute QPCR Seals from Applied Biosystems on the
7900HT; and Hard-Shell 384-well microplates and
Microseal ‘B’ clear adhesive seals from Bio-Rad on the
CFX384). The cycling conditions were comprised of
3min (10min when using Eurogentec mastermix)
polymerase activation at 95�C and 45 cycles of 15 s at

95�C and 30 s at 60�C followed by a dissociation curve
analysis from 60 to 95�C.

For data analysis, the Cq values of the genes were
converted to relative quantities and normalized using the
geometric mean of three reference genes (HPRT1, SDHA
and UBC) (12), followed by inter-run calibration (IRC)
using the standards as inter-run calibrators. Data
handling and calculations (normalization, IRC, rescaling
and error propagation) were performed in qBasePlus
version 1.2 (http://www.qbaseplus.com) (13).

External oligonucleotide standards

A standard was designed for all eight genes. The sequence
of each standard consists of the forward primer sequence
of that particular gene, a stuffer sequence (sequence
consisting of an ACTG repeat) in the middle and the
reverse complement sequence of the reverse primer of
that gene at the end (total length of 55 nucleotides)
(Supplementary Table S1). All standard oligonucleotide
sequences were analysed for secondary structure using
the DINAMelt Server powered by UNAFold (http://
dinamelt.bioinfo.rpi.edu/quikfold.php) and the stuffer
sequence was slightly modified in case of formation of
a secondary structure. The standard oligonucleotides
were PAGE purified and blocked at their 30-end with
a phosphate group to avoid participation in the PCR
amplification process (Biolegio, the Netherlands).
Manufacturer’s supplied concentration of each oligonuc-
leotide was confirmed using the Nanodrop 1000 Spectro-
photometer (Thermo Scientific). All eight standards were
pooled together at equimolar concentrations and a
dilution series consisting of five 10X serial dilution
points, starting from 150 000 molecules down to 15
molecules was created using 10 ng/ml yeast tRNA as
carrier. The standards were run in parallel with the
samples for each gene using the sample maximisation
experiment design (13).

Terminology and data

According to the Minimum Information for Publication
of Quantitative Real-Time PCR Experiments (MIQE) and
Real-time PCR Data Markup Language (RDML)
guidelines (14,15) we used the proposed terms for the
plethora of available descriptions [e.g. quantification
cycle value (Cq) as unit of measurements].

RDML is a structured and universal data standard
for exchanging qPCR data (http://www.rdml.org).
(Supplementary Data, Vermeulen2.rdml).

IRC

IRC can be performed on Cq or normalized relative
quantity (NRQ) level (Supplementary Figure S1—
‘calculation workflow’).

For IRC on the Cq level, we outline the formulas below.
For every replicated PCR reaction r, dilution d, gene
g and platform p, we first calculated the mean replicate
Cq value (formula 1), followed by the difference in mean
Cq between two different platforms j and k (k being a
randomly selected reference platform) for a given
dilution d and gene g (formula 2). The average difference
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in Cq value for all dilution points for a given gene g
measured on two different platforms j and k (formula 3)
is then used as the gene specific Cq IRC factor to obtain
calibrated Cq values (CCq) through calibration of
gene g Cq values coming from platform j using k as
reference platform (formula 4) (Supplementary Table
S3—example).

Cqdgp ¼

Pn
r¼1 Cqrdgp

n
1

k 2 f1, . . . , sg, 8j 2 f1, . . . , sg and j 6¼ k:

�jkCqdg ¼ Cqdgj � Cqdgk
2

�jkCqg ¼

Pm
d¼1 �jkCqdg

m
3

8r 2 f1, . . . , ng, 8d 2 f1, . . . ,mg, 8g 2 f1, . . . , tg:

CCqrdgj ¼ Cqrdgj ��jkCqg
4

where n is the number of PCR replicates (r); m the number
of dilution points (d) used for the serial dilution curve; s
the number of platforms (p); t the number of genes (g).

For IRC on the NRQ level, we used the procedure
outlined in Hellemans et al. (13) and implemented in the
qBasePlus software (http://www.qbaseplus.com). Briefly,
using an equimolar mixture of all eight external standards
as inter-run calibrators, a gene and run specific calibration
factor (CF) was calculated as the geometric mean of the
inter-run calibrator NRQ values measured in each run
for a given gene. The NRQ values of all samples were
subsequently converted to calibrated NRQ (CNRQ)
values by division by the cognate CF.

Gene expression based class prediction

For establishment of a five-gene expression correlation
signature (ARHGEF7, HIVEP2, MRPL3, NRCAM and
TNFRSF25), the samples were divided into a training and
test set. The training set was comprised of 30 randomly
selected samples from two patient subgroups with
maximally divergent clinical courses: 15 low risk survivors
and 15 high risk deceased patients. The expression signa-
ture was built using these 30 training samples by calcula-
ting the difference between the mean log transformed
expression in the low and high risk groups for each of
the five target genes. Subsequently, the resulting classify-
ing vector was tested on the remaining test samples by
determining the Pearson’s correlation coefficient between
the expression signature and the expression profile of a
given test sample. A class label was attributed based on
positive (bad prognosis) or negative correlation (good
prognosis) with the signature (16).

Statistical analysis

Correlation analysis between calibrated normalized
relative gene expression levels was performed using
Spearman’s rank method.

The R language for statistical computing was used to
train and test the correlation signature.

RESULTS

In order to validate the utility of the external oligonucleo-
tide standards, we measured the expression of 8 different
genes (five target and three reference genes) in 366 samples
using three different commercial PCR reagents, plates
and seals and all three 384-well plate real-time PCR
instruments and matching software currently available
on the market (Supplementary Data, Vermeulen2.rdml).
A five-point serial dilution series in triplicate, starting
from 150 000 molecules down to 15 molecules, was run
in parallel with the samples and used for IRC (Supple-
mentary Table S2 and Supplementary Figure S2).

Comparison of Cq values before and after IRC

Before IRC, the absolute average difference in Cq value of
the 366 samples measured on two different platforms
(�Cq) was higher than 1 in 75% of the cases and higher
than 2 in 42% of the cases. After Cq level IRC, �Cq was
lower than 0.5 in 75% of the cases and lower than 1 in all
cases [mean reduction of 1.4 Cq values (range 0.52–2.86)]
(Table 1).
Furthermore, Cq level IRC clearly induced a shift of the

correlation plots towards the first bissectrice (45� line
through origin) as shown in Figure 1a and a clear shift
of the cumulative distribution plots to the left (nearly
100% of the samples with �Cq reaching zero) as shown
in Figure 1b for one representative target gene. Similar
figures were obtained for the other investigated genes
(data not shown).
We further investigated the need of using all five

different dilution points by measuring the �Cq using
fewer standard dilution points to correct Cq values (by
stepwise leaving out the lowest dilution point). As
expected, the more dilution points used for Cq level
IRC, the lower the �Cq (Table 2).
In a last step, we compared the technical PCR replicate

variability within a run to the inter-run variation before
and after calibration. Therefore we calculated the
variation in Cq values of the triplicate reactions for each
standard dilution point measured on the three qPCR
platforms for all eight genes as well as the variation in
Cq values for all standards between two platforms
before and after calibration. Figure 2 shows that the
remaining variation after IRC between two different
runs is as small as the PCR replicate variation within
a run.

Correlation between calibrated NRQs

Next, we analysed the correlation between the calibrated
NRQ (CNRQ) values of the 366 samples measured on the
different platforms after NRQ level IRC. The correlation
between the CNRQ values calculated for any combination
of two different platforms was almost perfect (r> 0.9) for
all eight genes as shown in Table 1. Moreover, mean linear
fold change (FC) of all genes upon NRQ level IRC were
close to one (1.37, 1.22 and 1.23) and almost identical as
those upon Cq level IRC on a linear scale (1.35, 1.25 and
1.23, respectively), demonstrating that removal of inter-
run variation can be achieved on both levels. Figure 3
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shows a good correlation between the calibrated
normalized data along the first bissectrice as shown for
one representative target gene. In a supplementary
analysis, we demonstrated that NRQ level IRC is truly
able to detect and correct inter-run variation (Supple-
mentary Figure 3).

Comparison of class prediction

In a third step of the validation procedure of the proposed
strategy, we evaluated the impact of calibration on gene

expression based class prediction. Therefore we built a
gene expression signature (composed of five target genes,
randomly selected from a prognostic multigene expression
signature) (17) using 30 training samples measured on one
of the three different qPCR platforms and tested the
signature on the 336 test samples measured on all three
platforms before and after NRQ level IRC. Subsequently
we evaluated how similar class prediction was on samples
run on two different platforms by calculating the accuracy
as the proportion of true results (both true positives and
true negatives) in the population. Table 3 shows a very
high concordance in class prediction between the different
platforms. This concordance is significantly higher after
than before NRQ level IRC (P=0.003, paired t-test).

DISCUSSION

The quantitative polymerase chain reaction (qPCR) has
become the method of choice for fast and accurate gene
transcript measurements. As gene expression quantifica-
tion is currently performed using different qPCR
instruments, software, reagents, plates and seals, a
robust method is required in order to compare data
generated in different laboratories. In this study we
assess the value of long oligonucleotides as universally
applicable, quantifiable external standards in cross
laboratory data comparison. This study demonstrates
for the first time the power of this strategy to detect and
correct inter-run variation and to enable exchange of data
between different laboratories, even when not using the
same PCR platform.

The basic principle of IRC is based on the use of
identical samples—called inter-run calibrators—in
different runs to correct for often underestimated technical
inter-run variation. The qBase framework and accom-
panying qBasePlus software perfected the IRC procedure
by allowing more than one inter-run calibrator to be used
and by doing the calibration after normalization of the
gene expression levels, resulting in more accurate IRC,
fewer calculations (and hence smaller error bars due to
less error propagation) and higher flexibility (allowing
re-synthesis of cDNA of the same IRC RNA sample)
(13). In this study, we relied on the same mathematical
framework using a five-point serial dilution series of
external standards to correct for experimentally induced
variation, not only from run to run, but also related to the
use of different qPCR instruments, Cq value determina-
tion methods, mastermixes and plastics.

While external standards based on serial dilutions of
e.g. plasmids or cDNA are often being used to calculate
PCR efficiency, in this study we used them to ensure repro-
ducibility and validation of the results across laboratories
and experiments. The applied standards consist of
synthetic oligonucleotide controls—one for each gene—
that need to be run in parallel with the samples. The
proposed strategy is universally applicable and offers a
high level of flexibility as everyone can design, order and
use this kind of standards.

As the principle of this strategy is based on the fact that
Cq or NRQ values are corrected with a gene and run

Table 1. Pairwise IRC on Cq or NRQ level using a five-point serial

dilution series of external standards run in parallel with the 366 patient

samples on three different qPCR platforms

Before IRC After IRC

Cqa CCqb CNRQ

�Cqa �Cq b r FC

7900HT versus LC480
ARHGEF7 2.63 (±0.22) 0.25 (±0.16) 0.98 1.53 (±0.40)
HIVEP2 2.78 (±0.49) 0.65 (±0.46) 0.94 1.34 (±0.68)
HPRT1 2.46 (±0.22) 0.13 (±0.18) 0.93 1.29 (±0.34)
MRPL3 3.00 (±0.18) 0.14 (±0.14) 0.95 1.29 (±0.33)
NRCAM 2.42 (±0.18) 0.14 (±0.11) 0.94 1.37 (±0.37)
SDHA 2.63 (±0.67) 0.47 (±0.64) 0.95 1.26 (±0.67)
TNFRSF25 3.22 (±0.49) 0.98 (±0.49) 0.94 1.56 (±0.52)
UBC 2.98 (±1.26) 0.68 (±0.29) 0.95 1.32 (±0.37)

Averagec 2.77 (±0.28) 0.43 (±0.32) 1.37 (±0.11)

7900HT versus CFX384
ARHGEF7 1.75 (±0.19) 0.12 (±0.18) 0.97 1.24 (±0.21)
HIVEP2 1.86 (±0.44) 0.51 (±0.39) 0.91 1.23 (±0.29)
HPRT1 1.54 (±0.19) 0.26 (±0.18) 0.91 1.12 (±0.18)
MRPL3 2.02 (±0.16) 0.12 (±0.11) 0.93 1.32 (±0.26)
NRCAM 1.69 (±0.19) 0.15 (±0.19) 0.94 1.40 (±0.36)
SDHA 1.77 (±0.63) 0.69 (±0.63) 0.95 1.19 (±0.39)
TNFRSF25 2.11 (±0.31) 0.33 (±0.30) 0.95 1.18 (±0.28)
UBC 1.68 (±1.22) 0.40 (±0.20) 0.97 1.14 (±0.21)

Averagec 1.80 (±0.19) 0.32 (±0.20) 1.22 (±0.09)

CFX384 versus LC480
ARHGEF7 0.88 (±0.15) 0.29 (±0.13) 0.97 1.25 (±0.20)
HIVEP2 0.92 (±0.41) 0.27 (±0.37) 0.90 1.28 (±0.71)
HPRT1 0.91 (±0.15) 0.23 (±0.11) 0.93 1.19 (±0.18)
MRPL3 0.98 (±0.14) 0.12 (±0.11) 0.92 1.11 (±0.16)
NRCAM 0.73 (±0.21) 0.12 (±0.18) 0.93 1.11 (±0.20)
SDHA 0.88 (±0.34) 0.36 (±0.32) 0.98 1.14 (±0.33)
TNFRSF25 1.11 (±0.37) 0.67 (±0.35) 0.92 1.58 (±0.42)
UBC 1.30 (±0.25) 0.30 (±0.22) 0.94 1.23 (±0.21)

Averagec 0.96 (±0.17) 0.30 (±0.17) 1.23 (±0.15)

IRC: inter-run calibration using a five-point serial dilution series
of external standards; CCq: calibrated quantification cycle value;
CNRQ: calibrated NRQ value; �Cq: absolute average difference in
quantification cycle value of 366 samples between both platforms
±SD; r: Spearman’s rank correlation with P-value < 0.0001; FC:
mean linear fold change of the CNRQ values of 366 samples between
both platforms.
a�Cq denotes intrinsic and variable inter-run difference which should
be removed by a process called IRC.
b�Cq after IRC should be as close to zero as possible, demonstrating
removal of inter-run variation using the external standards.
cAverage FC of all genes upon NRQ level IRC are close to one (1.37,
1.22 and 1.23) and almost identical as those upon Cq level IRC on a
linear scale (20.43=1.35, 20.32=1.25 and 20.30=1.23, respectively),
demonstrating that removal of inter-run variation can be achieved on
both levels.
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specific IRC factor reflecting the mean Cq or NRQ value
obtained from IRC samples (here, a series of standards)
with known copy number run in parallel with the samples,
it is crucial to ensure that the IRC samples input is exactly
the same for both runs. This can be achieved by actually
using the same synthesized lot of external standard as
usually more than 1014 molecules are supplied, providing
enough material to create standards for multiple
thousands of IRC experiments. However, if standards
from different synthesis rounds or suppliers are used, an
accurate copy number measurement of the yield is needed.
Indeed, standards synthesized by different companies or in
successive rounds might lead to differences in supplied
concentration compromising the results if used for IRC.
To overcome this problem, a digital PCR pilot experiment
could be performed to quantify the number of molecules
in the supplied standards before using them in actual

experiments (18,19). Alternatively, manufacturers could
provide kits for a particular assay with inclusion of a
standardized standard. Of note, when using the preferred
way of IRC (i.e. on NRQ values instead of Cq values)
which is ideally suited for gene expression studies, it is
sufficient to have the same target ratios (instead of
actual identical copy numbers) for the matching IRC
sample pair measured on both runs; a simple concen-
tration measurement of the standardized external
oligonucleotides would be adequate in this case.

In order to avoid an additional potential source of
inter-run variation, ideally all RNA samples should be
extracted using the same method and standard operating
procedures. This was not the case in this study, where
RNA samples were coming from different international
laboratories. However, this type of variation is possibly
effectively removed by the normalization step as recently
demonstrated in a large gene expression study on the same
series of neuroblastoma samples in which a prognostic
multigene expression signature was successfully tested
on a large cohort of samples irrespective of possible
confounding factors related to different RNA extraction
procedures (17).

As shown previously, the more inter-run calibrators
used, the more accurate and precise the results are (13).
In this study we used a five-point serial dilution series of
external standards. While we could confirm that more
dilution points used for IRC result in better calibration,
the difference is marginal here, presumably because
carefully diluted synthetic oligonucleotides were used
within the limits of accurate quantification. The use of
complex cDNA samples (with variable and potentially
unknown variation in gene expression levels) as inter-run
calibrators [as done in Hellemans et al. (13)] will most
likely contribute to higher inter-run variation, necessi-
tating more than one IRC sample. In general, the use of
more than one IRC sample enables quality control by
inspecting results when calibrating with one or the other.
Furthermore, using five IRC points like in this study also
enables accurate and precise estimation of the PCR
efficiency in each run.

Concordance in class prediction between the different
platforms after calibration was nearly perfect and
significantly higher after than before NRQ level IRC.
While the results without IRC at first sight might seem
satisfactory, it is important to consider the following. In
this study, we observed similar shifts in Cq value between
different genes when comparing two platforms. As this
difference is depending on various parameters and in
principle unpredictable, this information cannot be used
a priori without proper control, this is the use of an IRC
sample to measure and correct for the run-to-run
differences. A simple change in e.g. baseline/threshold
settings for Cq value determination or the use of a new
primer pair or PCR reagent batch could completely
abrogate the observed so-called systematic difference in
Cq value. Another explanation for the unexpected
relatively good correlation in class prediction without
IRC is the use of the same patient cohort on all platforms.
On the one hand, this was required to demonstrate
occurrence of inter-run variation and effective removal.

Table 2. IRC on Cq level using a five-point serial dilution series of

external standards run in parallel with the 366 patient samples on three

different qPCR platforms (�Cq n: n highest dilution points used)

Before IRC After IRC

�Cqa �Cq 5 b �Cq 4 b �Cq 3 b �Cq 2 b �Cq 1 b

7900HT versus LC480
ARHGEF7 2.63 0.25 0.19 0.14 0.14 0.16
HIVEP2 2.78 0.65 0.59 0.65 0.67 0.71
HPRT1 2.46 0.13 0.17 0.24 0.27 0.30
MRPL3 3.00 0.14 0.24 0.37 0.41 0.51
NRCAM 2.42 0.14 0.15 0.21 0.26 0.31
SDHA 2.63 0.47 0.53 0.58 0.59 0.59
TNFRSF25 3.22 0.98 0.97 1.12 1.17 1.30
UBC 2.98 0.68 0.73 0.77 0.85 0.93

Averagec 2.77 0.43 0.45 0.51 0.55 0.60

7900HT versus CFX384
ARHGEF7 1.75 0.12 0.12 0.89 0.82 0.77
HIVEP2 1.86 0.51 0.51 0.42 0.41 0.39
HPRT1 1.54 0.26 0.26 0.69 0.66 0.63
MRPL3 2.02 0.12 0.12 0.62 0.58 0.48
NRCAM 1.69 0.15 0.15 0.53 0.47 0.42
SDHA 1.77 0.69 0.69 0.54 0.53 0.53
TNFRSF25 2.11 0.33 0.33 0.20 0.20 0.23
UBC 1.68 0.40 0.40 0.54 0.47 0.39

Averagec 1.80 0.32 0.32 0.55 0.52 0.48

CFX384 versus LC480
ARHGEF7 0.88 0.29 0.20 0.14 0.13 0.10
HIVEP2 0.92 0.27 0.28 0.30 0.31 0.36
HPRT1 0.91 0.23 0.16 0.11 0.11 0.11
MRPL3 0.98 0.12 0.18 0.28 0.27 0.35
NRCAM 0.73 0.12 0.12 0.12 0.12 0.18
SDHA 0.88 0.36 0.52 0.24 0.24 0.25
TNFRSF25 1.11 0.67 0.63 0.65 0.64 0.65
UBC 1.30 0.30 0.39 0.42 0.51 0.61

Averagec 0.96 0.30 0.31 0.28 0.29 0.33

IRC: inter-run calibration using a five-point serial dilution series of
external standards; �Cq: absolute average difference in quantification
cycle value of 366 samples between both platforms.
a�Cq denotes intrinsic and variable inter-run difference which should
be removed by a process called IRC.
b�Cq after IRC should be as close to zero as possible, demonstrating
removal of inter-run variation using the external standards.
cThe more dilution points used for IRC, the lower the �Cq.
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On the other hand, this caused each platform to be
calibrated to some extent by itself. For classification
purposes whereby multiple genes are incorporated in a
score or classifier, this appears to work to some extent;
for accurate and precise analysis of the expression levels of
a single gene, clearly a universal and robust IRC
procedure is needed, as outlined in this article.

The proposed strategy employs external standards and
qPCR, both of which have been extensively evaluated
and are widely used. Other strategies to standardize
qPCR data, such as StaRT–PCR, are based on internal
standards (6,7). Based on competitive PCR, StaRT–PCR
is a patented technique for measuring multigene expres-
sion in samples and relies on end-point quantification.
The advantage of the method is the incorporation
of competitive templates into standardized mixtures of
internal standards (SMIS) which allows comparison of
generated data since the values are determined relative
to the same standardized mixtures. Compared to our
strategy, StaRT–PCR, is characterized by a more limited
dynamic range of linear quantification, is more labour
intensive, and is only commercially available through
Gene Express. Our strategy is directly accessible to
anyone by the simple ordering of the oligonucleotide
sequence of interest and thus offers a high flexibility.

In conclusion, our study clearly demonstrates that the
use of external oligonucleotide standards is a powerful
method for accurate cross laboratory data comparison.
Amongst others, it enables to test a gene signature on a
single patient sample in any lab in the world and compare
the results with a reference set established in another lab.
The proposed strategy truly enables multicentre studies
conducted at different sites, greatly advancing this field
of application.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Table 3. Impact of IRC on class prediction
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