
Published online 22 May 2009 Nucleic Acids Research, 2009, Vol. 37, Web Server issue W305–W311
doi:10.1093/nar/gkp427

ToppGene Suite for gene list enrichment analysis
and candidate gene prioritization
Jing Chen1, Eric E. Bardes2, Bruce J. Aronow2,3 and Anil G. Jegga2,3,*

1Department of Environmental Health, University of Cincinnati, 2Division of Biomedical Informatics, Cincinnati
Children’s Hospital Medical Center and 3Department of Pediatrics, University of Cincinnati College of Medicine,
Cincinnati, OH, USA

Received January 28, 2009; Revised April 24, 2009; Accepted May 11, 2009

ABSTRACT

ToppGene Suite (http://toppgene.cchmc.org; this
web site is free and open to all users and does
not require a login to access) is a one-stop portal
for (i) gene list functional enrichment, (ii) candidate
gene prioritization using either functional annota-
tions or network analysis and (iii) identification and
prioritization of novel disease candidate genes in
the interactome. Functional annotation-based dis-
ease candidate gene prioritization uses a fuzzy-
based similarity measure to compute the similarity
between any two genes based on semantic annota-
tions. The similarity scores from individual features
are combined into an overall score using statistical
meta-analysis. A P-value of each annotation of
a test gene is derived by random sampling of
the whole genome. The protein–protein interaction
network (PPIN)-based disease candidate gene prior-
itization uses social and Web networks analysis
algorithms (extended versions of the PageRank
and HITS algorithms, and the K-Step Markov
method). We demonstrate the utility of ToppGene
Suite using 20 recently reported GWAS-based
gene–disease associations (including novel disease
genes) representing five diseases. ToppGene
ranked 19 of 20 (95%) candidate genes within
the top 20%, while ToppNet ranked 12 of 16 (75%)
candidate genes among the top 20%.

INTRODUCTION

High-throughput genome-wide studies like linkage
analysis and gene expression profiling, although useful
for classification and characterization, do not provide
sufficient information to identify specific disease causal
genes. Both of these approaches typically result in hun-
dreds of potential candidate genes, often failing to help
researchers in reducing the target genes to a manageable

number for further validation. To overcome these limita-
tions, several gene prioritization methods have been devel-
oped (1–10). While all of these tools are based on the
assumption that similar phenotypes are caused by genes
with similar or related functions (2,11–13), they differ
by the strategy they adopt in calculating similarity and
by the data sources they use (14). Except for
ENDEAVOUR (5,14) and ToppGene (10), most of the
existing approaches mainly focus on the combination of
few data sources. Interestingly, none of these approaches
utilize mouse phenotype data explicitly in their prioritiza-
tion approaches even though the mouse is the key model
organism for the analysis of mammalian developmental,
physiological and disease processes (15). Additionally,
previous reports (16,17) have shown that a direct compar-
ison of human and mouse phenotypes allowed rapid rec-
ognition of disease causal genes. In an earlier study (10),
we have demonstrated that employing mouse phenotype
data in fact improves candidate gene prioritization.
Through various examples, we also demonstrated (10)
that ToppGene performs better than SUSPECTS (9),
PROSPECTR (3) and ENDEAVOUR (5), three com-
monly used methods in candidate gene prioritization.
Most of the current computational disease candidate

gene prioritization methods (1–10) rely on functional
annotations, gene-expression data or sequence-based fea-
tures. The coverage of the gene functional annotations,
however, is a limiting factor. Currently, only a fraction
of the genome is annotated with pathways and phenotypes
(10). While two-thirds of all the genes are annotated by at
least one functional annotation, the remaining one-third is
yet to be annotated. Recent biotechnological advances
such as the high-throughput yeast two-hybrid screen
have facilitated building proteome-wide protein–protein
interaction networks (PPINs) or ‘interactome’ maps in
humans (18,19). The shift in focus to systems biology in
the post-genomic era has generated further interest
in PPINs and biological pathways. While protein–protein
interactions (PPI) have been used widely to identify novel
disease candidate genes (20–24), several recent studies
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(22,23,25–27) report also using them for candidate gene
prioritization.
Since biological networks have been found to be com-

parable to communication and social networks (28)
through commonalities such as scale-freeness and small-
world properties, we reasoned that the algorithms used for
social and Web networks should be equally applicable to
biological networks and developed ToppNet (27). One of
the earliest efforts (24) uses a classifier based on several
topological features, including degree (number of links
to the protein), 1N index (proportion of links to disea-
se-related proteins), 2N index (average 1N index in the
neighbors), average distance to disease genes and positive
topology coefficient (average neighborhood overlapping
with disease genes). A more recent application,
Genes2Networks (29), identifies important genes based
on a list of ‘seed’ genes. It generates a Z-score for each
‘intermediate’ gene from a binomial proportions test to
represent its specificity or significance to the ‘seed’ genes.
The former method, independent of known disease-related
genes, is used for disease candidate gene identification,
especially in cases where there is little or no prior knowl-
edge about the disease. The latter application, on the other
hand, uses a ‘seed’ list as training to score the neighboring
genes. It avoids bias toward highly connected ‘hub’ genes,
but the candidate gene is searched in a local network
region unlike ToppNet, and the user has to provide the
size of the neighborhood region in the network.
Here, we describe a unique, one-stop online assembly

of computational software tools (summarized in Table 1
and Figure 1) that enables biomedical researchers to (i)
perform gene list enrichment analysis (ToppFun), (ii) per-
form candidate gene prioritization based on functional
annotations (ToppGene), (iii) perform candidate gene
prioritization based on protein interactions network analy-
sis (ToppNet) and (iv) identify and rank candidate genes in

the interactome based on both functional annotations and
PPIN analysis (ToppGeNet). Instructions and ‘help’ for
each of these modules can be accessed from the homepage.
The database is updated periodically, and the current status
of the data (versions and coverage) can also be accessed
from the homepage (‘Database details’). Additionally,
several examples with stepwise instructions are provided
to demonstrate the utility of these applications (see
‘Supplementary’ section from ToppGene homepage).

TOPPFUN: GENE LIST FUNCTIONAL ENRICHMENT

ToppFun can be used for gene list functional enrichment
analysis. It uses as many as 14 annotation categories
including GO terms, pathways, protein–protein interac-
tions, protein functional domains, transcription factor-
binding sites, microRNAs, gene tissue expressions and lit-
eratures. Flexible options are provided to either download
results as a tab-delimited file or display as a chart.
Hypergeometric distribution with Bonferroni correction
is used as the standard method for determining statistical
significance.

TOPPGENE: FUNCTIONAL ANNOTATIONS-BASED
CANDIDATE GENE PRIORITIZATION

ToppGene works by generating a representative profile
of the training genes using as many as 14 features and
identifies over-representative terms from the training
genes. This forms the first step and is done by using
ToppFun (see previous section). The test set genes are
compared to this representative profile of the training set
or the overrepresented terms from the training genes for
all categorical annotations and the average vector for the
expression values (Figure 1). For a test gene, a similarity
score to the training profile for each of the 14 features

Table 1. Summary of ToppGene suite applications

Application Description Input Output

ToppFun Detects functional enrichment of input gene
list based on Transcriptome (gene expres-
sion), Proteome (protein domains and
interactions), Regulome (TFBS and
miRNA), Ontologies (GO, Pathway),
Phenotype (human disease and mouse
phenotype), Pharmacome (Drug–Gene
associations) and Bibliome (literature co-
citation).

Supported identifiers include NCBI
Entrez gene IDs, approved human
gene symbols, NCBI Reference
Sequence accession numbers; single
gene list.

HTML output; Tab-delimited down-
loadable text file; graphical charts

ToppGene Prioritize or rank candidate genes based on
functional similarity to training gene list.

Same as above but with two gene lists
(training and test)

HTML output

ToppNet Prioritize or rank candidate genes based on
topological features in protein–protein
interaction network.

Same as above HTML output; Cytoscape-compatible
input file; graphical networks

ToppGeNet Identify and prioritize the neighboring genes
of the ‘seeds’ in protein–protein interac-
tion network based on functional similar-
ity to the ‘seed’ list (ToppGene) or
topological features in protein–protein
interaction network (ToppNet).

Single gene list Same as above
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is derived and summarized by the 14 similarity scores.
In the case of a missing value (for instance, lack of one
or more annotations for a test gene), the score is set to �1.
Otherwise, it is a real value in [0, 1]. Different methods are
used for similarity measures of categorical (e.g. GO anno-
tations) and numeric (i.e. gene expression) annotations.
While a fuzzy-based similarity measure is applied for cat-
egorical terms [see Popescu et al. (30) for additional
details], for numeric annotation, i.e. the microarray
expression values, the similarity score is calculated as the
Pearson correlation of the two expression vectors of the
two genes. The 14 similarity scores are combined into an
overall score using statistical meta-analysis. A P-value of
each annotation of a test gene G is derived by random

sampling of the whole genome. The P-value of similarity
score Si is defined as:

pðSiÞ ¼

Count of genes having higher than G in
the random sample

� �

Count of genes in the random sample
containing annotation

� �

Fisher’s inverse chi-square method, which states that
�2

Pn
i¼1 log pi ! �2ð2nÞ (assuming pi values come from

independent tests) is then applied to combine the
P-values from multiple annotations into an overall
P-value. The final similarity score of the test gene is then
obtained by 1 minus the combined P-value. For more
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Figure 1. Schematic representation of workflow and methodology in ToppGene Suite applications. (A) Genes in the training set are selected based on
their attributes or current gene annotations (genes associated with a disease, phenotype, pathway or a GO term). (B) The test gene source can be
candidate genes from linkage analysis studies or genes differentially expressed in a particular disease or phenotype or genes from the interactome. (C)
ToppFunEnriched terms of the gene annotations and sequence features, namely, GO: Molecular Function, GO: Biological Process, Mouse
Phenotype, Pathways, Protein Interactions, Protein Domains, transcription factor-binding sites, miRNA-target genes, disease-gene associations,
drug-gene interactions, and Gene Expression, compiled from various data sources and also used to build the training set gene profile. (C and D)
ToppGene—a similarity score is generated for each annotation of each test gene by comparing to the enriched terms in the training set of genes. The
final prioritized gene list is then computed based on the aggregated values of the 14 similarity scores. (E and F) ToppNet—Training and test set genes
are mapped to a protein–protein interaction network. Scoring and ranking of test set genes are based on the relative location to all of the training set
genes using global network-distance measures in the PPIN.
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details, validation and comparison with other related
applications; the readers are referred to our previous
study (10).

TOPPNET: NETWORK ANALYSIS-BASED
CANDIDATE GENE PRIORITIZATION

ToppNet gene prioritization is based on protein–protein
interaction network (PPIN) analyses. Based on the obser-
vation that biological networks share many properties
with Web and social networks (28), ToppNet uses
extended versions of three algorithms from White and
Smyth (31)—PageRank with Priors, HITS with Priors
and K-step Markov—to prioritize disease candidate
genes by estimating their relative importance in the
PPIN to the disease-related genes. For more details
about the protein interaction datasets used, algorithmic
details and validation, see our recently published
study (27).

TOPPGENET: PRIORITIZATION OF NEIGHBORING
GENES IN PPIN

ToppGeNet differs from ToppGene and ToppNet in that
the test set is derived from the protein interactome.
In other words, for a training set of known disease
genes, the test set is generated by mining the protein inter-
actome and compiling the genes either directly or indir-
ectly interacting (based on user input) with the training
set. After any overlapping or common genes between
test and training sets are removed, interactome-based
test set genes can be prioritized using either a functional
annotation-based method (ToppGene) or PPIN-based
method (ToppNet). The human protein interaction data-
set (file ‘interactions.gz’), a compilation of PPIs from
BIND (32), BioGRID (33) and HPRD (34), is down-
loaded from NCBI Entrez Gene FTP site (ftp://ftp.ncbi.
nih.gov/gene/).

TOPPGENE SUITE IMPLEMENTATION AND ACCESS

The programs of our enrichment and prioritization meth-
ods are implemented in JAVA. An open-source JAVA
package, FtpBean by Calvin Tai (http://www.geocities.
com/SiliconValley/Code/9129), is used to automatically
download data and annotation files from FTP servers.
BioJava packages are used to process UniProt records
and extract related protein domain information. GOLEM
(http://function.princeton.edu/GOLEM/down-

load.html) source code is adapted and modified for deal-
ing with ontology annotations. Colt (http://dsd.lbl.gov/
�hoschek/colt) and Jakarta Commons-Math libraries
(http://jakarta.apache.org/commons/math) are used

for statistical analysis. The fuzzy similarity measure
and related functions are implemented locally. The user
front end of ToppGene Suite is a web application written
in JAVA. The application server is Sun GlassFish
Enterprise Server v2.1 running on OpenSUSE 10.3
Linux. Speed is a key consideration in the design choices
of the ToppGene Suite front end. When the web server

is started, most of the data is loaded from a relational
database and kept in memory.

ToppGene Suite uses two different relational databases
for persistence of data: (i) Oracle Database 10g Enterprise
Edition Release 10.2.0.3.0 – 64 bit; and (ii) Apache Derby
Server - 10.4.2.0. The two databases are used differently.
The ‘production data’ are stored in a Derby database on
the same computer as the web server, which gives Derby
the advantage that it does not have to fetch large data sets
across a network and therefore eliminates network latency
for small queries. The Oracle Database, on the other hand,
is used for data collection and refresh. The data schemas
in Oracle are highly structured according to the generally
accepted database practice of Third Normal Form.

ToppGene Suite uses Hibernate (http://www.hibernate.
org/) for updating and retrieving data to and from the
databases. The back end of ToppGene Suite is a scripted
process that automatically downloads data from publicly
available data sources [see (10,27) for more details].
The process, also written in JAVA, is launched using a
common JAVA utility called Ant (provided by the
Apache Foundation).

The gene information, annotation and the interactions
data is updated automatically except for pathways (see
the ‘Database details’ section from the homepage of
ToppGene Suite for a list of data resources, coverage
and version details and dates of last updates). The
‘Database details’ is a dynamic web page that reads the
in-memory data structures and displays the counts and
statistics of the live data. As the data are refreshed, the
counts and statistics are automatically updated. Users
can enter the training and test sets of genes of interest
as queries from the interface, and the application will
display enriched themes in the training set genes along
with annotated prioritized test genes. Alternately, users
can enter training sets and use the extended gene list
from the PPIN as a test set to rank the genes in the inter-
actome using either functional annotations or network
features.

UTILITY OF THE TOPPGENE SUITE

For a more detailed validation study using ToppGene, the
readers are referred to our previous study (10). In the
present study, to demonstrate the utility of ToppGene
Suite, we focused on recently reported GWAS. The aim
was to test whether ToppGene and ToppNet are capable
of retrieving or prioritizing the GWAS-discovered novel
disease genes in a training-test type of analysis. We used
20 gene–disease associations (including novel disease
genes) representing five diseases (Bipolar Disorder,
Cardiomyopathy, Celiac Disease, Crohns Disease and
Obesity; Table 2). For each of these five disorders, we
built a training set containing all the genes already
known to play a role in that disorder according to the
OMIM and NCBI’s Entrez Gene records (limiting the
search field to ‘Disease/Phenotype’ and organism ‘Homo
sapiens’) (See ‘Supplementary’ section from ToppGene
homepage). The test set consisted of the GWAS-reported
disease gene plus 99 nearest neighboring genes based on
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their location on the same chromosome. ToppGene and
ToppNet prioritization results are presented in Table 2.
ToppGene ranked 19 of 20 (95%) candidate genes
within the top 20%, while ToppNet ranked 12 of 16
(75%) candidate genes among the top 20%. The mean
ranks for ToppGene- and ToppNet-based prioritization
were 6.8 and 11.75, respectively (excluding four disease
genes that lacked interaction data).

LIMITATIONS

ToppGene or any functional annotation-based prioritiza-
tion method has some limitations. First, when using a
training set of genes, the assumption is that the disease
genes we have yet to discover will be consistent with
what is already known about a disease and/or its genetic
basis, which may not always be the case. Second, the
annotations and analyses, as well as the prioritization,
can only be as accurate as the underlying online sources
from which the annotations are retrieved. Similar to func-
tional annotation-based methods, the performance of net-
work-based prioritization methods (ToppNet) is
also dependent on the quality of interaction data, which
currently suffers from incompleteness and unreliability
with missing interactions and false positives.

CONCLUSIONS

Existing disease candidate gene prioritization methodolo-
gies mine biological and functional information about
candidate genes, and we believe that our ToppGene
Suite can complement these existing approaches by apply-
ing novel methods that mine mouse phenotype data

and PPIN. Through various examples, we demonstrate
that ToppGene Suite is capable of identifying true can-
didate genes. However, it needs to be emphasized that
our aim is not to prove that ToppGene Suite-prioritized
genes are true disease genes but rather to aid in selec-
tion of a subset of most likely disease gene candidates
from larger sets of disease-implicated genes identified
by high-throughput genome-wide techniques like linkage
analysis and microarray analysis. As the functional
annotations of human and mouse genes and the quality
of PPIN improves, we envisage a proportional increase
in the performance of ToppGene Suite and strongly
believe that it will be a valuable adjunct to wet lab
experiments in human genetics and disease research.
We further hypothesize that integrating the rankings
obtained using functional annotations and PPIN-based
approaches may improve the prioritization of disease
genes.
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Table 2. Results of the 20 genetic disease prioritizations using ToppGene and ToppNet

Disease Reference Gene ToppGene rank ToppNet rank

Bipolar disorder Le-Niculescu et al. (35) KLF12 2 15
Bipolar disorder Le-Niculescu et al. (35) RORB 4 18
Bipolar disorder Le-Niculescu et al. (35) RORA 7 13
Bipolar disorder Le-Niculescu et al. (35) ALDH1A1 10 No interaction data
Bipolar disorder Le-Niculescu et al. (35) AK3L1 11 No interaction data
Cardiomyopathy Dhandapany et al. (36) MYBPC3 1 2
Celiac disease Hunt et al. (37) SH2B3 1 8
Celiac disease Hunt et al. (37) CCR3 2 3
Celiac disease Hunt et al. (37) IL18R1 3 29
Celiac disease Hunt et al. (37) RGS1 9 26
Celiac disease Hunt et al. (37) TAGAP 14 No interaction data
Celiac disease Hunt et al. (37) IL12A 14 10
Crohns disease Fisher et al. (38) MST1 1 27
Crohns disease Fisher et al. (38) NKX2-3 1 27
Crohns disease Fisher et al. (38) IRGM 2 No interaction data
Crohns disease Villani et al. (39) NLRP3 5 1
Crohns disease Fisher et al. (38) IL12B 7 1
Crohns disease Barrett et al. (40) Franke et al. (41) STAT3 11 1
Crohns disease Franke et al. (41) PTPN2 30 6
Obesity Renstrom et al. (42) MC4R 1 1

Mean 6.8 11.75

The gene-disease associations were from recently reported GWAS and include novel disease gene associations. The training sets were compiled
using ‘phenotype/disease’ annotations in NCBI’s Entrez Gene records and OMIM. To build the test set genes, we defined the artificial linkage
interval to be the set of genes containing the 99 nearest neighboring genes to the novel disease gene based on their genomic distance on the same
chromosome.
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