Sequence data handling by computer

R.Staden

MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2OH, UK

Received 10 October 1977

ABSTRACT

The speed of the rew DNA sequencing techniques has created a need for computer programs to handle the data produced. This paper describes simple programs designed specifically for use by people with little or no computer experience. The programs are for use on small computers and provide facilities for storage, editing and analysis of both DNA and amino acid sequences. A magnetic tape containing these programs is avallable on request.

INTRODUCTION

The development of rapid DNA sequencing techniques ${ }^{1,2}$ now enables large amounts of sequence data to be accumulated in a short period of time. The complete sequence of bacteriophage $\emptyset \times 174$ has recently been published ${ }^{3}$ and the sequences of other, similarly sized molecules are near to completion. During the sequencing of $\oint \mathrm{X} 174 \mathrm{DNA}$ it became necessary to develop computer programs to process the large amounts of data produced. Some of the programs are specific to DNA sequences but many are equally applicable to amino acid sequences. These programs are designed for small computers in common use, such as the PDP $11 / 45$, and are simplifled so that they can be used by people with little or no experience of computers. This paper describes some of the programs currently being used in this laboratory. They provide facilities for (1) storage and editing of a sequence, (2) producing copies of the sequence in various forms, e.g. in single or double stranded form, (3) translation into the amino acid sequence coded by the DNA sequence, (4) searching the sequence for any particular shorter sequences, e.g. restriction enzyme sites, (5) analysis of codon usage and base composition, (6) comparison of two sequences for homology, (7) locating regions of sequences which are complementary, and (8) translation of two sequences with the printout showing amino acid similarities. All printouts are as descriptive as possible and, where appropriate, in a form suitable to be reproduced for publication.

The programs are interactive, which means that the operator and computer communicate via the computer keyboard. The operator starts the program running and from then on the program prompts him for all program options and input. Use of the programs has been further simplified by standardising the operator input and checking it for errors. Also, operator input has been keep to a minimum by offering alternative ways of supplying sequence strings to the program. The size of the programs has been kept down so that they can be run on small computers, e.g. the largest program described here (SEQFIT) is less than 14 k words* in size and can compare two sequences of up to 6000 characters each. (One character represents one nucleotide or one amino acid.) Although the programs are currently set up to handle sequences of up to 6000 characters they are easily expandable to cope with sequences of any length, the only limitation in this respect belng the memory size of the computer. We use a PDP $11 / 45$ with 28 k words of memory and using this machine all the programs described here can be applied, with minor modification, to sequences of around 20,000 characters. The programs are quite fast and only take a few seconds to run.

Our current hardware configuration consists of a PDP $11 / 45$, Decwriter 80 character line keyboard, RKO5 exchangeable disk drive and a tape deck, although the latter is generally only used to provide back-up copies of the disk filesta. The programs are all written in PDP FORTRAN using many small subroutines, some of which are common to all programs. This should give ease of modification if it is necessary to make changes to produce compatibility with other machines. A general description of each program together with input and output examples is given below. A magnetic tape containing copies of the programs, along with more detailed descriptions and instructions, is available on request.

In the examples any typing done by the operator is shown underlined and is completed by a 'carriage return' character. All other printing shown is done by the programs. If the operator is offered an option by the program which he does not require, the types carriage return. All sequences (as character strings) entered from the keyboard are terminated by an

[^0]character. The programs all require data from the magnetic disk and so generally start by prompting the operator to supply the name of the file in which the data is kept.

DESCRIPTION OF THE PROGRAMS

1. SEQEDT

A program for the storage and editing of sequence data. This program can either be used to create a new sequence file and store it on a magnetic disk or to edit one that is already present on the disk. A new file is written onto the disk for every run of the program, the old files remaining on the disk to provide a readily accessible back-up record. The edits are supplied from the keyboard and after they have been performed and the flle written to disk the program prints a copy of the new sequence on the keyboard. Positions in the file are defined by character numbers in the input file and the three edit commands (as described in Fig. 1) allow any kind of change to the sequence. Two runs of the program are shown in Fig. 1. The first creates a completely new file called XAMPL. 1 and the second makes some changes to it and adds some more data. The new file is called XAMPL.2. Changes in the data are achieved by a comblnation of insert and delete commands. In Fig. 1 changes are made at positions $46,71,96$ and 157, but the insertion at position 89 is not accompanied by a deletion and so displaces all subsequent data by one position. As is demonstrated in both runs, any positions in the file not filled with sequence characters are automatically filled with dashes. This allows the plactng of data at any position.
2. SEQLST

A program to produce printed copies of sequence files. It can be used for both nucleic acid and amino acid sequences although the double stranded option (see below) is only applicable to the former. The program is also able to treat the sequence as a circular molecule even though the data is stored linearly in the computer. Fig. 2 shows alisting, in double stranded form, of a region of $\oint \times 174$ DNA across the end and beginning of the sequence file, i.e. from positions 5200 to 5375 and from positions 1 to 100^{3}. (The $\varnothing \mathrm{X}$ sequence was numbered arbitrarily from the single cleavage site of the restriction enzyme Pst I.)

When running the program the operator supplies the name of the sequence file and defines the region to be ilisted by character number. He is asked to select printing in efther single or double stranded form. If
PROGRAA TO EDIJ SEQUENCE QATA STOPED OH DISK
COMARNDS RRE EATEPED FPOA KEYEOFABD, UPTO 88 PEP LINE
MAXIMUM OF GOBO EDIT STFIMG CHARACTEPS PEP EDIT
COMARHDS ARE I=JMSEPT, FEFIMD, D=DELETE
ALL COMARMDS ARE PPECEDED AND FOLLOHED GY /
EDITS ARE FINISHED BY TYPIMG M/, :
TO EDIT AN OLD FILE TYFE Y
output file
PLEASE TYPE MRAE OF FILE 2
KAMPLE. 1
TYPE EOITS NOH

10	20	30	40	50	68
ARACCCATGT	CBCETTTRCC	TTGCETGTAC	GCECAGGAAA	CACT6--	
70	81	90	180	110	124

RU SEREDI

PROQRAM TO EDIT SEQUEHCE DATA STORED OH OISY
COMAAMDS ARE EMTERED FPOM KEYBOARD, UPTO BO PER LIHE
MAXIMUM OF GOOS EOIT STPING CHAPACTEPS PEP EDIT
COMARMDS ARE I-INSERT, FOFIMD, DODELETE
ALL COMMANDS ARE PRECEDED GMG FOLLOMED BY $/$

\underline{I}
TO EDIT $A M$ OLD FILE TYPE Y

IMPUT FILE

PLEASE TYPE MARE OF FILE 1
KAMPLE_
OUTPUT FILE

PLEASE TYPE MAME OF FILE 2
YAMPLER?
TYPE EDITS NOH

 F/157/IMARCCEABTGAACOA/TP

13	28	10	48	50	60
ARACCCATET	CGCOTTTACC	TTECGTGTAC	GCGCAGEAAR	CACTGACGCT	TACARACETT
7	$8 \cdot$	90	108	118	128
FCCCCCCCCC	tcatgcatca	ARTACGTTAR	CCTGGTATGC	ATGTTTCCCE	AGARAGCRCG
130	140	130	160	178	188
TTGCTTTACE	ARCCCG66TI	TCCCAARGE-	--TAA	CCCEGTGARC	6月-

```
    PLEASE TyPE NAHE OF file 1
```

SEQNCE. G
FIRST SE日 NO =52日B
LRST SEQ HO $=\underline{10 日}$
1 OR 2 STRANDED OUTPUT? TYPE MOH
$\underline{2}$
IF YOU WISH REPLRCE CHRRACTERS BY TYPE Y

5289	5219	5229	5259	5249	5259
ctagettacg	ACGCGACBCC	Gttcarccag	ATATTGAAGC	mgracgcrat	afghgagatg
GACCCAATGC	tgcoctacga	CAAGTTGGTC	tatarcticg	tctitgegtt	ttctctctac
5269	5279	5289	5299	5309	5319
AGATTGAGGC	togganatot	tactgiagce	GACGTTTTGG	csacgcarce	tgigacgaca
TCTAACTCCG	ACCCTTTICA	atGacatcig	CIGCAAFACC	gCCGCGTTGG	ACACTGCIGT
5329	5339	5349	5359	5369	4
AATCTGCTCA	RATTTATGCG	CGCTTCGATA	AAAATGATtG	blgtatccam	ccigcagagt
TtAGACGAGT	TtAAATACGC	GCGAGGCTAT	tittactarc	cgCatagott	GGACGTCTCA
14	24	34	44	54	64
tttatcoctt	ccatgacgea	GAA日ttrach	ctitcbeata	Tttcteatga	gitganarat
AAATAGCGAA	GGTACTGCGT	Cttcastigi	GARAGCCLAT	AAAGACTACT	CAGCTITTA
74	84	94	184	114	124
tatcttoata	AFGCAGGART	TACTACTGCT	TGTTA		
RTAGAACTAT	ticbicctia	atgatgacga	bCAGAT		

he selects double stranded printing the program creates the complementary strand of the input sequence．The other option of fered by the program is of having every occurrence of certain sequence characters replaced by the character＊．This is useful for emphasising characters．For example， replacement of all A and G characters in a DNA sequence will show pyrimidine tracts or replacing arginines and lysines in an amino acid sequence will produce a tryptic digestion pattern．If this option is selected the program asks the operator to supply the characters to replace and the output begins． When printing is finished the program requests the operator to define any further regions to list．

3．TRANSQ
A program to translate a DNA sequence into the amino acid sequence．It

```
    PLEASE TYPE MANE OF FILE 1
XAMPLE. 2
```

 PRIMTER STAFT AMD STOP POSITIOMS
 FIRST SEQ MO =1
LAST SEA NO - 172
WEXT GEME
FIRST SEQ MO =1
LAST SEIMO-172
MEXT OEME
FIRST SEQ MO-
LAST SEI WO - 172
MEXT GEME
FIRST SEQ MO = 3
LAST SEI MO -177
mext geme
FIRSTSE日 WO
LAST SEQMO.
${ }^{2}$
LYS PRO MET SER RRG LEU PRO CYS YAL TYR ALA GLM GLU THR LEU THR LEU THR ASM VAL
AAA CCC ATE TCB CBT TTA CCT TGC GTE TAC GCB CAG GAA ACA CTG ACO CTT ACA AAC OTT
ASH PRO CYS ARE VAL TYR LEU ALA CYS THR APG ARG LYS HIS *** ARG LEU GLA THR PHE
AAC CCA TGT CGC ETT TAC CTT GCG TBT ACE CEC AGG ARA CAC TGA CEC TTA CAA ACB ITT

ACC CAT BTC OCO TTT ACC TTG CGT GTA CGC GCA GGA AAC ACT GAC GCT TAC AAA CBT TTC

```
61
SER PRO PRO LEU YAL APG GLM ILE AFG *** PRO GLY MET HIS YAL SER ARG GLU SER THR
TCC CCC CCC CTC GTO CGT CAA ATA CGT IAA CCT GGT ATG CAT GTt TCC CGG GAA AGC ACG
PRO PRO PRO SER CYS YAL LYS TYR YAL ASM LEU YAL CYS MET PHE PRO GLY LYS ALA ARG
CCC CCC CCC TCG TGC GTC AAA TAC GTT AAC CTG GIA TGC AIG TIT CCC GGB AAA GCA CGT
PRO PRO PRO ARG HLA SER ASN THR LEG IHR TPP TYR MLA CYS PHE PRO GLY LYS HIS YAL
CGC CCC CCT COT OCG TCA AAT ACG TIA ACC TGG TAT GCA TGT TTC CCG GGA AAG CAC GTT
```

LEU LEU TYR GLU PRO GLYPHEPROLYS GLY THR RRG ** THR
TTG CTT TAC GAA CCC GOB TTT CCC AAA 6G-........TA ACC CGG TGA ACB A

CYS PHE THR ASH PRO GLY PHE PRO LYS
TGC TTT ACO RAC CCG OGT TTC CCA MRG
ALA LEU ARG THR ARG YAL SER BLM ARG日CT TTA CBR ACC CBG OTT TCC CAA ABG
** PRO GLY BLU APO
TAR CCC OGT GAB CGA
ASM PRO VBL ASM
AAC CCB BTG AAC

Fig 3 contd.

```
        PRIMTER STRRT AMD STOP PDSITIOMS
FIRST SEO MO - L
LAST SEO MO -17?
    MEXT GEME
FIRST SEO MO=?
LAST SEQ MO=90
    MEXT GEME
FIRST SEQ MO=97
LAST SEO MO =16日
    MEXT GEME
FIRST SEO NO -
LAST SEQ MO=
    1
AAR CCC MET SER ARGLEU PRO CYS YAL TYR RLA GLN GLU THR LEU THR LEU THR ASH YAL
SER PRO PRO LEU YAL ARG GLM ILE ARG #&* MET HIS YAL SER GRB GLU SER THR
SER PRO PRO LEU UAL ARG GLM ILE ARG &&* CCT GGT MET HIS YAL SER ARE GLU SER GTT TEC CGG GAA AGGC ACG
121
LEU LEU TYR 6LU PRO GLY PHE PRO LYS GLY IHR ARR G**
TTG CTT TAC GAA CCC BBG TTT CCC MAA G日- --- --- -TA ACC CEG TBA ACO A
```

will translate any given sections of a file into the three letter amino acid code and display the amino acid sequence above the DNA sequence as shown in Fig. 3. The position in the sequence for the listing to start and the regions to be translated are defined by the operator. Printing starts when the program receives a zero start position for the next gene. If over. lapping genes are defined by the operator they will be printed, one above the other, with their respective codons. Termination codons are shown by *** Fig. 3 shows two translations of the file created in Fig. 1 . The first is a complete three phase translation of the file and the second is of two genes in the same phase but separated by a short intercistronic region. A complete three phase translation is useful for matching known peptide sequences to the DNA sequence. This program is also able to treat the sequence file as a circular sequence and translate across the end and beginning of the sequence file.

SEARCH FOR CATGGE

SIRIM	POSIT10\%		DISTANCE
bangat	2281	tGAtgacticetantanangatteagtetangetiatanc	2444
manhat	2114		33
TTITE	2325		11
TITIO	2646		321
caltes	306*		414
MARABt	4317		1277

total dF maiches :
H

H

IF REQURED．CHAMEE SEARCH MPEA
FIRST SEQ MO－ 1
LAST SEQ MO－2日Be

PLEASE TYPE MAME OF file 2
RE日2YB
TYPE R EHZYME WAMES WOW
RUR1／HIHD11／／E

SERREH FOR RUAI
STRIME POSITIOM DISTAMCE

CTCOAB	162	ACCTATCCTTGCBCAGCTCAAGADGCTCTIACTTTGCEAC	2183

SERPCH FOP HIMDII
STRI禺 POSITION OISTAMCE

GITAAC	28	CTTCCATGACGCAGAAGTTAACACTTTCGGAIATTICTGA	736
OTIEAC	319	TEGTAGABATTCTCTTETTGACATTTTAARAEAGCOTG日A	291
OTCAAC	654	TIATTATGTTCATCECETCAACETTCABACBGCGTETCTC	335
GTEAAC	951	CTTIGGTATGTA日GTGETCAACAATTTTAATTGCA日G日GC	297
QTtanc	1292	CACTCCTCTCCC日ACTETTAACCAAACTACTE日TTATATT	341

4．SEARCH
A program to search for all occurrences of operator－supplied character strings in a sequence flle．The operator selects from three ways of supply－ Ing strings to the program and defines the area to be searched by sequence positions．The strings may be of any length，although for our purposes， output is currently restricted to a maximum of sixteen characters．Strings containing unknown characters may be searched for by inserting dashes in place of the unknowns．Either individual strings or sets of strings may be
searched for simultaneously. The latter has the advantage that the relative positions of the matches for the several strings are then shown. The output (see Fig. 4) shows the position of the match in the sequence and a section of the surrounding sequence with the string underlined. The distance from the last match is shown on the right and is calculated assuming a circular sequence. The program has many uses including calculating theoretical digestion patterns for elther DNA or proteins. The example in Fig. 4 shows a situation where the operator has at first selected the strings option and later changed to the names option. The strings option allows the operator to type in strings from the keyboard. Individual strings are contained in / characters and sets of strings are delimited by an extra /. In Fig. 4 the operator has typed in two sets of strings, one containing the single string C-GGT-A, and the other the three strings CATGGG, TTTTTG, AAA-AT. When the output for these two sets is completed the program has prompted the next option selection. Use of the names option requires the existence of another disk file, as shown in Fig. 5.
HAE11/AGCGCT/AGCGCC/GGCGCT/GGCGCC//HAE111/GGCC//HIND11/GTTAAC/
GTCAAC/GTTGAC/GTCGAC//HIND111/AAGCTT//HHA1/GCGC//HINF1/GA-TC//
HPA1/GTTAAC//HPA11/CCGG / /HGA1/GACGC//HPH1/GGTGA/TCACC//ECOR1/
GAATTC / /ECOR11/CCAGG /CCTGG//ALU1/AGCT / AVA1/CTCGAG/CCCGAG /CTCGGG /
CCOGGG / /BAMH1/GGATCC//BAL1/TGGCCA//BGL1 1/AGATCT//MBO1/GATC//MBO11/
GAAGA/TCTTC//PSTI/CTGCAG//

Figure 5

This file contains names of sets of strings and the strings. The one shown in Fig. 5 contains names of restriction enzymes and their respective cleavage sites. This allows the operator to search for all of the cleavage sites of any restriction enzyme by selecting the names option and supplying its name. In Fig. 4 the operator has selected the names option and so the program requests the name of the relevant file. The operator has then requested a search for the cleavage sites of AVAl and HINDIl. If the 'ALL' option is selected the program automatically performs a search, in turn, for all the sets of strings in the names file. Using the names file shown in Fig. 5 would mean a search for the cleavage sites of HAE11, HAE111 and so on up to PSTI.
5. CODTOT and BASTOT

Programs for calculating codon usage and base totals. CODTOT is a program that will supply totals of codon usage for any operator defined region of a linear sequence file in one or all three reading frames or phases. The first sequence number supplied by the operator defines phase 1
and the operator is given the option of the number of phases. As shown in Fig. 6, the output is displayed in the usual form of the genetic code so that, for example, the top left hand box gives the totals for TTT (Phe), TTC (Fhe), TTA (Leu), TTG (Leu). BASTOT calculates the base composition of

PLEASE TYPE HRME OF FILE 1

SEQNCE G

If YOU ONLY HRHT PHASE ONE TYPE Y Y

FIRST SEO HO = 456
LAST SEQ HO = 2GBO

			1
20	4	4	6
12	6	2	1 ?
18	4	1	5
18	2	4	4
18	6	6	11
14	3	0	13
20	4	3	4
26	6	θ	1
12	7	3	5
6	14	11	8
8	4	13	5
21	8	9	5
17	13	5	2
16	9	4	4
8	6	9	5
18	8	6	1

TO TYPE IN STRINGS TYPE Y

```
    PLEASE TYPE NARE OF FILE I
SEQHCE.GC
    PLEASE TYPE NHAE OF FILE 2
G45EG 37
    STRIHG
FIRST SEQ HO= ZOI
LAST SEQ NO= 900
    SEQUENCE
FIRST SEQ NO=40日G
LRST SEQ NO SEAE
    PERCENTAGE=30
    TOTAL SCORIHG POSITIONS RGOYE 36 PERCEMT=91
SCORES 162 71 F0 60 67 67 67 67 67 66 66
POSNS 4610 4514 4355 46794034 4202 4565 4622 4052 4235
HOW MANY DO YOU HRNT TO SEE? NUHBEF=Z
```

```
4618
    ATGATAATCC CGATGCTTTG CGTGACTATt tTCGTGATAT TGGICGTATG GTtCTTGCTG
    ********** ******* * ****************** ******************
    RTORTAATCC CAATGCTCTT CGTGACTACT TCCGTGRTAT TGGTCGTATG GTGCTIACTG
    701
4678
    CCGRGGGTCG CAAGGCTAAT GATTGACACG CCGACTGCTA TCAGTATTTT TGTGTOCCTG
    **** ***** * ** ** ** **** ********** ********** **********
    CCGARGGTCG CTCGGTGCAT GACTCATCTT CCGACTGCTA TCAGTATTTT IGGGTGCCAG
        761
4738
    agtatgGtac agCtaftggc cgicttcatt tccatgcggt gcactttatg cggacactte
        *********************** **** **** *** ***************
        AGTATGGTAC ACAGCACGGT CGTCIACATY TCCACGCAGT GCATCTTATG CGCACACTTC
    821
4798
    CTACAGGTAG CGITGRCCCT
    ** *** *******
    CTCTGGGTTC TCTGGACCCT
    881
```

```
        4514
            AGCGTTTGAT GARTGCARTG CGACRGGGTC ATGGTGATGG TTGGTTTATC GTTTTTGACA
            ATGATARTCG CRATGCTCTT CGTGACIACT TCCGTGATAT TGGTCGIATG GTGCTTACTG
        701
        4574
            CTCTCACGTT GGCTGACGAC CGATTAGAGG CGTTTTATGA TAGTCCCAFT GCITTGCGIG
            COGAAGOTCO CTCGOTGGAT GACTCATCTT CGGAGTOCTA TCAOTATTTT TOTGTGCCAG
            CCGARGGTCG CTCGGTGCAT GACTCATCTT CCGACTGCTA TCAGTATTTT TGTGTGCCAG
        761
        4634
            ACTATTTTCG TGRTATTGGT CGTATGGTTG TTGGTGCGGA GGGTCGGAAG GCTAFIGATT
```



```
            AGTATGGTAC ACAGCACGGT CGTCTACRTT TCCACGGAGT GCBTCTTATG CGCACACTTC
        821
        4694
        CACACGCCGA CTGCTATCAG
        *****
        CTCTGGGTTC TCTGGACCCT
    881
TO TRY THE COMPLEMENTARY STRING TYPE Y
```

IF YOU NAHT TO CHANGE THE STEIHG TYPE Y
IF YOU MANT TO CHANGE THE REGIOH TYFE Y
IF YOU HANT TO CHANGE THE PEPCENTAGE TYPE Y
any operator defined region of a linear sequence file. Totals are calculated for each of the three possible reading frames. No example is shown. 6. SEQFIT

A program to look for similarities between sequences. It can compare regions of two different sequences or regions of the same sequence. Strings may either be typed in or defined as regions of a sequence file. In the example in Fig. 7 the operator has chosen to supply strings from a disk file. The operator defines the region he wishes to compare with the string and specifies the minimum degree of similarity required, expressed as a percentage. The program places the string alongside the defined region in every possible position and counts the total number of identical characters in adjacent positions. If this total, or score, expressed as a percentage of the length of the string, is greater than or equal to the percentage required, the progran remembers the position at which it occurred. When the program has completed the comparison for every possible position it

```
    PLEASE TYPE WAME OF FILE 1
```

SEQNCE.GC
PLEASE TYPE WAME OF FILE 2
045 E0 37
FIRST SEG NO =4618
LRST SEQ NO =4846
FIRST 5EO MO =781
LAST SEO MO =93?

```
4610
    HET ILE ILE PRO MET LEU CYS VAL THR ILE PHE YAL ILE LEU YAL YAL TRP PHE LEU LEU
    ATG ATA ATC CCR ATG CTT TGC GTG ACT ATT TTC GTG RTA TTG GTC GTA TGG TTC TIG CTB
    ATO ATA ATC CCA ATG CTC TTC GTG ACT ACT TCC GTG ATA TTG OTC GTA TOG TGC TTA CTG
    MET ILE ILE PRO MET LEU PHE UAL THR THR SER YAL ILE LEU YAL YAL TRP CYS LEU LEU
    781
4670
    PRO ARG YAL ALA ARG LEU MET ILE HIS THP PPO THR ALA ILE SER ILE PHE YAL CYS LEU
    CCG AGO GTC OCA AGG CTA ATG ATT CAC ACG CCG ACT GCT ATC AGT ATT ITT GTB IGC CTG
    CCG ARG GTC GCT CGO TGC ATG ACT CAT CTT CCG ACT GCT RTC AGT ATT TTT GTG TGCC CAG
    PRO LYS YAL ALA ARG CYS MET THR HIS LEU PRO THR ALA ILE SER ILE PHE VAL CYS GLM
    761
4730
    SER MET UAL OLE LEU MET ALA YAL PHE ILE SER HET RRG CYS THR LEU CYS GLY HIS PHE
    AOT ATG GTA CAG CTA ATG GCC GTC TTC ATJ TCC RTG CGG TGC ACT TTA TGG GGA CAC TTC
    AGT ATE GTA CAC AGC ACG GTC GIC TAC ATT TCC ACG CAG IGC ATC ITA TOC OCA CAC TTC
    SER MET UAL HIS SER THR YAL YAL TYP ILE SEP THR GLM CYS ILE LEV CYS ALA HIS PHE
    821
4798
    LEU GLN YAL ALA LEU THR LEU ILE LEU VAL YAL GLY TYR ALA ILE GLA RLA SER ***
    CTA CAG OTA QCG TTG ACC CTA ATT TTG GTC GTC BGG TAC GCR ATC GCC GCC AGT TAA
    CTC TOO GTT CTC TGG ACC CTA ACT TCG GTA AGC TGG TAC GCA TCA ATC GGC RAA TAR
    LEU TRF UAL LEU TRP THR LEU THR SER VAL SER TRP TYR GLA SER ILE GLY LYS ***
    8B1
```

prints out the total number of sufficiently high scores and sorts them into descending order. The top ten scores are printed out with their respective positions and the operator asked how many he wishes to see. In Fig. 7 the operator chooses to see two, so the program prints out the top two scores in the manner shown with * characters indicating identity. When printing has finlshed the program prompts the operator to select from any of the options shown in Fig. 7. If one selects the first option the program automatically performs a comparison with the complement of the string. This is
useful when it is not known which DNA strand is to be compared. Any or all of the options may be selected excepting that options one and two are mutually exclusive. The maximum string length allowed is 200 characters. The time taken for the comparison is a function of the lengths of the string and the region but as an example a string of 50 characters and region of 1000 takes about ten seconds. The program will keep cyciling round through this sequence of events until no option is selected. In Fig. 7 the operator has not selected any of the options and so the program stops. 7. BPFIT

A program to look for regions of sequence that could base-pair. The program searches for possible Watson/Crick base pairing between regions of one sequence or between two different sequences.

It is identical to SEQFIT except that fitting is done on the basis of complementary nucleotide characters. Complementary characters are marked with stars in the output.
8. TRAN 2

A program to translate regions of two different DNA sequences into amino acid sequences and to print them out marking identical amino acids with star characters. Fig. 8 shows a typical run which is over the same two sequences used for the SEQFIT example in F1g. 7. The operator defines the regions to be printed by sequence character numbers.

REFERENCES

1. Sanger, F. and Coulson, A.R. (1975) J, Mol. Biol. 94, 441.
2. Maxam, A.M. and Gilbert, W. (1977) Proc. Nat, Acad. Sci. USA 74, 560.
3. Sanger, F., Air, G.M. Barrell, B.G., Brown, N.L., Coulson, A.R., Fiddes, J.C., Hutchison, C.A. III, Slocombe, P.M. and Smith, M. (1977) Nature 265, 687.

ACXNOWLEDGEMENTS

I would like to thank B.G. Barrell for help and encouragement.

[^0]: * word - a basic unit of data in a computer memory. The PDP 11 has a 16 bit word (two 8 blt bytes) and the programs store one sequence character per byte to save memory space. A bit is the unit of storage capacity and each bit can take one of two values, 0 or 1 (on or off).
 * fille - an organised collection of data. Our files containing sequence data are stored on wagnetic disk.

