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ABSTRACT

The ENCODE Project has generated a wealth of
experimental information mapping diverse chroma-
tin properties in several human cell lines. Although
each such data track is independently informative
toward the annotation of regulatory elements, their
interrelations contain much richer information for
the systematic annotation of regulatory elements.
To uncover these interrelations and to generate an
interpretable summary of the massive datasets
of the ENCODE Project, we apply unsupervised
learning methodologies, converting dozens of chro-
matin datasets into discrete annotation maps of
regulatory regions and other chromatin elements
across the human genome. These methods redis-
cover and summarize diverse aspects of chromatin
architecture, elucidate the interplay between chro-
matin activity and RNA transcription, and reveal that
a large proportion of the genome lies in a quiescent
state, even across multiple cell types. The resulting
annotation of non-coding regulatory elements

correlate strongly with mammalian evolutionary
constraint, and provide an unbiased approach
for evaluating metrics of evolutionary constraint in
human. Lastly, we use the regulatory annotations
to revisit previously uncharacterized disease-
associated loci, resulting in focused, testable
hypotheses through the lens of the chromatin
landscape.

INTRODUCTION

The sequencing of the human genome produced the
complete recipe for a human being encoded in digital
form, and much of the past decade of molecular biology
has been devoted to deciphering the meaning of this code.
On this premise, the ENCODE Project Consortium
sought to discover a complete catalog of all functional
elements in the human genome (1), analogous to delinea-
ting sentences and words that comprise the human
genome, and understanding the type of function each
element plays. Such a catalog will undoubtedly never be
complete, given the diversity of cell types where elements
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may activate, the diversity of experimental assays needed
to probe them, and the specific conditions and stimuli
to which they may respond. The scale-up phase of the
ENCODE project, however, has made substantial
advances toward the goal of a comprehensive catalog.
It has carried out a daunting 1640 total experiments in
147 cell types, using multiple distinct biochemical assays,
including ChIP-seq, DNase-seq, FAIRE-seq and RNA-
seq. Interpreting the resulting information is arguably
more complex than interpreting the primary sequence of
the human genome. The four nucleotides of the sequence
have been replaced by a large vector of numerical values,
each representing the result of a different biochemical
assay in a given condition and a given cell type, at each
position of each chromosome. The challenge at hand is
thus to turn these vectors of numerical values into an in-
terpretable annotation, namely, the list of functional
elements that the ENCODE project set out to annotate.
To address this challenge, we and others have developed

a variety of computational techniques that seek to identify
functional elements from high-throughput genomic
datasets. These techniques fall into two groups: supervised
learning methods that attempt to find instances of one or
more pre-determined classes of elements, and unsupervised
learning methods that seek to simultaneously discover
functional classes and annotate their instances de novo.
Supervised learning methods have been widely used for
automatic gene finding methods that can recognize
protein-coding transcripts using sequence features,
cDNA sequence and evolutionary conservation of
known examples (2,3). Supervised models have also been
successfully used to recognize promoters (4), enhancers (5)
and microRNAs (6), based on known examples. As
supervised learning methods require a training set of
known examples, they are incapable of discovering novel
types of functional elements. Unsupervised methods, in
contrast, identify candidate functional elements without
the need for previously defined classes or known
examples, thereby avoiding biases toward well-understood
phenomena. Despite their generality, peak-finding algo-
rithms for ChIP-seq analysis can be seen as supervised
learning methods, seeking to recognize ‘peak-like’
behavior. Moreover, peak-finding methods have difficulty
generalizing to the joint analysis of dozens of tracks of
functional genomics data, where the diversity of possibly
interesting patterns is very high. Such integrative analyses
are central to the mission of ENCODE, which aims not
only to produce such data but also to make sense of the
resulting collection of datasets.
In this work, we apply unsupervised chromatin state

annotation methods that simultaneously discover the lo-
cations of functional elements in the human genome and
assign to each element one of a small number of labels,
which can be interpreted as functional annotations. As
input, our methods receive a collection of functional
genomics datasets and a user-specified parameter for the
number of distinct labels that the method should discover.
The input datasets consist of ChIP-seq assays for multiple
histone modifications, general transcription factors and
chromatin accessibility assays. We restrained ourselves
to chromatin-level information in the initial annotation

stage, and did not use RNA-seq information as an input
to our models, instead reserving it for later validation. Our
computational analysis provides as output an annotation
of the human genome. This annotation consists of a seg-
mentation into non-overlapping segments, and a labeling
of each segment using one of a small set of labels, which
we refer to as chromatin states. The goal of the chromatin
state annotation is to capture the similarities of segments
that show the same patterns across many experiments by
assigning them the same label, thus summarizing a very
large collection of data into a more meaningful form. The
resulting segment labels typically correspond to an intui-
tive, human interpretable biological function, which we
use to summarize them, even though we recognize that
the underlying biology is usually more complex. Other
times, the segment labels may remain uninterpreted until
we learn more about additional functions that may be
distinguishable by their specific combinations of chroma-
tin marks, but whose biological roles may not yet be
understood until additional biological processes become
elucidated, or until additional datasets become available.
The unsupervised nature of these chromatin state annota-
tions may thus identify novel instances of known classes of
functional elements, suggest novel subdivisions of classes
into subclasses, or hypothesize the existence of entirely
new types of functional elements.

During the pilot phase of ENCODE, Thurman et al.
combined a hidden Markov model (HMM) with wavelet
smoothing to produce a two-label segmentation of the
ENCODE pilot regions into ‘active’ and ‘repressed’
regions (7,8). A variety of segmentation models have
been described subsequently, employing HMMs with flat
(9,10) or hierarchical (11) structures, or generalizing the
HMM to a hierarchical change-point model (12).

For the second phase of ENCODE, two research
groups within the consortium independently developed
chromatin state annotation algorithms, ChromHMM
(13,14) and Segway (15). Although the methods were
designed and initially implemented independently of one
another, they share many key features. Most significantly,
the methods employ closely related probabilistic models.
ChromHMM is implemented as an HMM, in which the
‘time’ axis is the chromosomal coordinate and the various
ENCODE datasets are the observed variables. Similarly,
Segway employs a dynamic Bayesian network (DBN)
approach, which is a generalization of the HMM frame-
work. The HMM/DBN approach offers multiple import-
ant advantages, including efficient algorithms for carrying
out inference and a modeling paradigm in which the
model’s internal variables have well-defined semantics.

Key differences between the two chromatin state anno-
tation methods are summarized in Table 1. Broadly
speaking, ChromHMM aims to take more of a birds-eye
view of the data, opting to compress each data track to a
single Boolean value for each 200-bp segment of the
genome. This approach makes ChromHMM computa-
tionally efficient, enabling training on the entire genome,
and reduces the chances that artifacts related to scaling
of the data or local patterns of missing data due to
mapping problems will mislead ChromHMM. The
200-bp resolution also ensures that ChromHMM
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produces reasonably large nucleosome-sized segments
without having to implement complex constraints on
segment length distributions. Segway, in contrast,
operates on the full data matrix at 1-bp resolution.
Segway handles missing data in a principled fashion by
marking each missing data point as a hidden variable and
marginalizing over all possible values. To ensure that
Segway produces segments of a reasonable size, we
employ both hard constraints (for example, enforcing a
minimum length of 100 bp per segment) and soft con-
straints (length priors). For efficiency, we trained the
Segway models described here only on 1% of the human
genome, but training on the entire genome is possible.
Finally, ChromHMM and Segway differ in the choice of
algorithm used to assign the final labeling: ChromHMM
assigns to each segment the label with maximum posterior
probability, whereas Segway selects the series of labels
that jointly achieves the highest probability over the
entire segmentation path.

The work presented here constitutes the first systematic
integration of chromatin elements across the entire
ENCODE project. The two methods used reveal func-
tional chromatin elements at different levels of resolution,
making it possible to study both the transitions between
different types of chromatin states at single-nucleotide
resolution, and to obtain a robust annotation that can
tolerate small variations in large chromatin domains.
These two annotations form the basis of the integrative
analysis for the ENCODE project, and they provide a
systematic view of the chromatin landscape. This
integrated viewpoint will be of great value to epigenomics
research. In addition, this work describes a manually
curated chromatin annotation that synthesizes the two
complementary methodologies.

The resulting annotations capture the remarkable diver-
sity of genomic functions encoded by distinct chromatin
states, are robust across different cell types, and are reli-
ably recovered by the two methods used here. We also
created a combined segmentation that contains features
of both. Our systematic annotation of chromatin
elements has important implications for the study of the
human genome.

. The annotation successfully and automatically
recovers much of what is already known about
genome organization, including transcript-associated
chromatin states and diverse classes of regulatory

elements, based solely on an unsupervised analysis of
chromatin data.

. The annotation reveals the important relationship
between biochemical activity for chromatin functions
and RNA transcription, and shows important differ-
ences between the two.

. The annotation points to the surprising finding that a
large portion of the human genome exists in a quies-
cent state, which holds across multiple cell types.

. The annotation provides an unbiased view of func-
tional non-coding regulatory elements, enabling us to
evaluate different metrics and methods for measuring
human evolutionary constraint. In particular, we
report the first genome-wide experimental demonstra-
tion of the functional relevance of evolution-based
inference of constraint for pairs of nucleotides, rather
than individual nucleotides at each position (16).

. The annotation enables us to revisit disease-associated
regions, identified via genome-wide association studies
(GWAS), that previously lacked any functional anno-
tations, providing focused, testable hypotheses
revealed through the lens of the chromatin landscape.

MATERIALS AND METHODS

Track selection

For the coordinated segmentations, we selected all the
available combined ENCODE histone modification, Pol2
and CTCF ChIP-seq (plus control) and open chromatin
(DNase-seq and FAIRE-seq) tracks that were available in
the January 2011 data freeze for each of the six Tier 1–2
cell types. A full list of tracks used is in Supplementary
Table S1.

Signal track generation

We used a uniform signal-processing pipeline to generate
genome-wide normalized signal coverage tracks for differ-
ent types of ENCODE datasets (Supplementary Figures
S1–S3, Supplementary Table S2). We used different
subsets of these tracks as input to the segmentation algo-
rithms. We combined signal from multiple replicates
of each experiment. In addition, for a select subset of
experiments that had equivalent datasets from multiple
labs, we combined signal across all datasets. We down-
loaded read alignment files from the ENCODE portal

Table 1. Major differences between ChromHMM and Segway as applied to the ENCODE data

ChromHMM Segway

Modeling framework Hidden Markov model Dynamic Bayesian network
Genomic resolution 200 bp 1 bp
Data resolution Boolean Real value
Handling missing data Interpolation Marginalization
Emission modeling Bernoulli distribution Gaussian distribution
Length modeling Geometric distribution Geometric plus hard and soft constraints
Training set Entire genome ENCODE regions (1%)
Decoding algorithm Posterior decoding Viterbi
Learning across six cell types Single model for all cell types One model per cell type

Nucleic Acids Research, 2013, Vol. 41, No. 2 829

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/41/2/827/1071531 by guest on 09 April 2024

http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gks1284/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gks1284/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gks1284/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gks1284/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gks1284/-/DC1


(http://genome.ucsc.edu/ENCODE/downloads.html) and
filtered them to remove multi-mapping reads. For each
of the replicates (datasets) that we combined to produce
a unified signal track, we estimated a characteristic read-
shift parameter from the data and shifted reads by this
estimated value in the 50–30 direction. We computed the
effective fragment coverage for each position in the gen-
ome by first computing the read-count coverage followed
by a smooth aggregation (using kernel smoothing) in a
pre-specified window around each position. We then
normalized the fragment coverage for the total number
of mapped reads over all replicates, effective read-
extension and smoothing lengths, local mappability
around each location and the overall mappable size of
the genome. We expressed the final signal values at each
position in terms of a fold-change over the expected signal
from an equivalent uniform distribution of reads over all
mappable locations in the genome. We explicitly repre-
sented as missing values those signal values at unreliable
locations consisting of genomic positions surrounded
by a large number of unmappable locations and those
in assembly gaps. Supplementary Methods contain a
complete description of this procedure.

Segmentation input preprocessing

Before applying ChromHMM, we converted the nor-
malized signal tracks into binarized data at a 200-bp reso-
lution. We used the maximum signal for a mark in each
200-bp interval to represent the mark in that interval. The
threshold for each mark was the maximum of 4.0 and the
value corresponding to a Poisson tail distribution prob-
ability of 0.0001. Requiring a fold threshold, in addition
to the tail distribution threshold, enabled more meaningful
binarization of some of the most deeply sequenced data-
sets. We excluded regions that associated with repetitive
elements such as a- and b-satellite repeats, ribosomal
and mitochondrial DNA (http://hgdownload.cse.ucsc.
edu/goldenPath/hg19/encodeDCC/wgEncodeMapability/
wgEncodeDukeMapabilityRegionsExcludable.bed.gz).
For Segway, we excluded the ENCODE Data

Analysis Consortium Blacklisted Regions (http://
hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/
wgEncodeMapability/wgEncodeDacMapabilityConsensus
Excludable.bed.gz), comprising a comprehensive set of
regions in the human genome that exhibit anomalous
or unstructured read-counts in next gen sequencing
experiments, independent of cell line and type of
experiment. To identify these regions, we used 80 open
chromatin tracks (DNase and FAIRE datasets) and 20
ChIP-seq input/control tracks spanning �60 human tissue
types/cell lines in total. The regions tend to have a very high
ratio of multi-mapping to unique mapping reads and high
variance in mappability. Some of these regions overlap
pathological repeat elements such as satellite, centromeric
and telomeric repeats. However, simple filters based on
mappability do not account for most of these regions.

Training

We trained ChromHMM in concatenated mode on the six
cell types using a two-stage nested parameter initialization

approach, considering models of up to 30 states, using
Euclidean distance for the state pruning distance, and
setting the emission and transition smoothing parameters
to 0.01 and 0.5, respectively, for the second stage param-
eter initialization (13,17). For each pass, we completed
200 training iterations. ChromHMM mnemonics and
brief state descriptions are in Supplementary Table S3.

We trained Segway on the 1% of the genome selected as
the ENCODE pilot regions (7). We performed expectation
maximization training until either (i) the log likelihood
of the model minus the log likelihood from the previous
iteration divided by the log likelihood was <10�5, or
(ii) until 100 training iterations. We assigned mnemonic
labels according to Supplementary Table S3.

The ChromHMM and Segway chromatin state annota-
tions can be accessed by loading the ENCODE Analysis
Hub at http://encodeproject.org/cgi-bin/hgHubConnect.

RESULTS

We applied both chromatin state annotation methods to a
set of chromatin signal tracks from the ENCODE Tier 1
(GM12878, H1 hESC, K562) and Tier 2 (HeLa-S3,
HepG2, HUVEC) cell types. For this analysis, we
included data from the kinds of experiments that have
the potential to reveal the most about chromatin state—
the open chromatin assays DNase-seq and FAIRE, and
ChIP-seq on histone modifications, RNA polymerase 2
(Pol2) and CTCF. Generally, we used only the signal
tracks that were available for all six Tier 1–2 cell types,
combining data from multiple laboratories when appro-
priate. Figure 1 displays the full list of signal tracks used,
with data sources in Supplementary Table S1.

We trained Segway on each of the six Tier 1–2 cell types
independently giving a separate Segway model for each
cell type, and ChromHMM jointly using a virtual concat-
enation of the six cell types giving a single ChromHMM
model applicable to all six cell types. We specified that the
methods should find 25 chromatin states. We picked this
number because it is large enough to describe many inter-
esting functional elements while still being small enough
for a biologist to interpret easily, given our previous
experience with Segway (15) and ChromHMM (13,17).

The chromatin state procedure is semi-automated in that
the two algorithms assign to each segment an integer label,
but one must ascertain the functional semantics of these
labels in a post hoc analysis step. Based on a variety of
types of evidence, including investigation of known
genomic loci and examination of the model parameters,
we assigned names such as ‘TSS’ or ‘enhancer’ to each of
the integer labels. These names are summarized in Figure 1,
and the basis for these naming assignments is shown in
Figure 1, Supplementary Figures S4–S7 and described
more fully below. The proportion of the genome covered
by each label is shown in Supplementary Figure S8, and the
distribution of segment lengths is shown in Supplementary
Figure S9. Figure 2 shows a sample locus on chromosome
13 with the two chromatin state annotations displayed
along the top. For ease of visualization, we have colored
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all the chromatin states using a reduced palette of 10 colors
derived from Ernst et al. (2011).

In addition to the separate chromatin state annotation
produced by Segway and ChromHMM, we considered it
desirable to produce a simpler summary-level classifica-
tion to provide more immediate interpretability and data
display for a more general audience. Toward this end,
we identified closely related states both within and
across methods, and then defined a rule-based metric
(Supplementary Methods, Supplementary Results,
Supplementary Tables S4 and S5, Supplementary Figure
S10) to classify them into seven classes, emphasizing bio-
logically meaningful differences: Transcription Start Site
(TSS), Promoter Flanking (PF), Enhancer (E), Weak
Enhancer (WE), CTCF binding (CTCF), Transcribed
Region (T) and Repressed or Inactive Region (R). Based
on these rules, we produced a combined annotation of
each of the Tier 1 and Tier 2 cell lines that achieved

high coverage of the assayable genome (94.4–96.5%, see
Supplementary Table S6 and Supplementary Figures S11
and S12) in each cell type. For the rest of the article we
primarily consider the detailed primary chromatin state
segmentations, both in aggregate and at individual loci
such as ENC1 (Figure 2), NOD2 (Figure 3) and HBB
(Supplementary Results and Supplementary Figure S13).

Chromatin states recover genes and regulatory elements

Genes
Perhaps the best-understood type of functional element in
the human genome is the protein-coding gene. Given that
these genes account for a large proportion of the evolu-
tionary constraint observed in multi-species alignments,
it is reassuring that both ChromHMM and Segway
devote a considerable proportion of their model param-
eters to identifying and characterizing protein-coding
genes. Both types of model contain approximately eight

Figure 1. Enrichment of various segment labels (vertically, labeled by green panels) from (A) Segway and (B) ChromHMM K562 segmentations over
positions on an idealized p300 binding site, gene, CTCF binding site, and LaminB1 binding site. We calculated enrichment as the base-2 logarithm of
the observed frequency of a label at a particular position along an annotation divided by the expected frequency of the label from its prevalence in
the genome overall. Enriched positions are shown in red, and depleted positions are shown in blue. The labels for idealized gene components at the
top include the mean length of that component in parentheses. (C) Heat map of parameters from Segway training for 14 GM12878 signal tracks
against 25 segment labels. Color indicates the mean of a Gaussian according to the color bar on the right. (D) Heat map of parameters from
ChromHMM concatenated training on 84 signal tracks from 6 ENCODE Tier 1–2 cell types. Color indicates the probability of a present mark, as a
percentage, according to the color bar on the right.
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labels that strongly correlate with various genic compo-
nents. Figure 1 illustrates how these gene-related labels
aggregate around protein-coding genes.

Promoters
Segway and ChromHMM both learn labels associated
with promoters generally, and more specifically with
regions of varying proximity to the TSS (Supplementary
Figure S14). Both methods show excellent recall of TSSs,
in a manner dependent on the cell type and data (Table 2).
The high-resolution Segway Tss labels have higher log2
fold enrichment of TSSs (Segway: 7.2–8.0; ChromHMM:
6.9–7.3), and the high-continuity ChromHMM Tss
label has better base-level recall (Segway: 53–91%;
ChromHMM: 79–94%). In particular, Segway has the
ability to find high-resolution patterns at TSSs localized
to the level of stable nucleosome-free promoter regions,
whereas ChromHMM finds larger TSS-associated
segments (Supplementary Figure S15).
Additionally, both methods identify other labels likely

to occur upstream and downstream of the TSS. These
TSS-flanking patterns occur to a certain extent around
other transcriptionally active regions such as enhancers.
Often, the Segway TSS-flanking TssF label can be
tightly associated with well-positioned nucleosomes,
flanking a narrow Tss label of a consistent nucleosome-
free region. The promoter-associated segments can lead to
new discoveries. For example, the ENC1 gene in Figure 2

is annotated with promoter-associated segments not only
at the canonical TSS, but also in intron 2. The
GENCODE group has identified this as the start site for
an internal, non-coding RNA (green gene model).

Some Segway models (H1 hESC and HepG2) and the
ChromHMM model contain a ‘poised promoter’ PromP
label associated with both the activating H3K4me3 and
the repressing H3K27me3 modifications. This matches a

Figure 2. View of the ENC1 locus on the minus strand using the ENCODE GM12878 segmentations. The unusual state pattern in middle of the
gene in all three segmentations reveals a potential intronic regulatory element, which is confirmed by H3K4me1, H3K27ac, DNaseI hypersensitivity
and transcription factor binding, and overlaps a putative GENCODE processed transcript.

Table 2. Cumulative precision (top value in each cell) and recall

(bottom value) for prediction of TSSs with CAGE support in a given

cell type using the TSS-proximal labels of ChromHMM and Segway

Cell type Segway ChromHMM Combined
TSS

Tss +TssF +PromF Tss +TssF +PromF

K562 15.65 6.46 10.9 5.62 4.44 8.37
60.6 65.9 92.6 93.5 93.6 97.0

GM12878 18.0 6.96 3.61 7.73 3.89 2.63 5.62
90.6 93.7 94.9 93.6 93.9 94.2 96.9

H1 hESC 15.27 7.90 2.87 12.84 8.71 5.22 9.08
82.9 94.0 94.2 78.9 79.3 79.4 95.7

HeLa-S3 11.78 5.82 8.63 5.44 3.88 11.06
64.3 68.3 84.6 84.9 85.2 87.8

HepG2 20.30 6.01 8.10 4.23 2.95 9.18
52.7 53.8 81.5 81.8 82.0 88.6

HUVEC 12.72 6.96 11.35 7.29 5.61 11.22
83.4 89.2 91.3 91.9 92.1 94.2
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Figure 3. (A) Enrichment or depletion of GWAS SNPs (and several comparison SNP sets) in function-associated segments. The bars extend to the
level of enrichment or depletion of each SNP set in the 25 segmentation classes from Segway (top) and ChromHMM (bottom) in GM12878. The
results for 1000 random samplings of the SNPs matched to the phenotype-associated SNPs are displayed as a box plot, with the box extending from
the 25th to the 75th percentiles, the whiskers extending to 1.5 times the interquartile range, and any outliers beyond shown as circles. If the
enrichment for the phenotype associated, GWAS lead SNPs exceeded the 95th percentile of the results from the matched SNPs, then the bar is
colored red (orange if otherwise). (B) An example of Crohn’s disease SNPs in non-coding sequences that could serve to regulate expression of NOD2.
The figures show gene models from the GENCODE group (version 12), locations of SNPs associated with Crohn’s disease by GWAS, results of
ChromHMM and Segway segmentations, selected histone modifications measured in GM12878 and HUVEC cells, locations of DNase hypersensitive
sites in several cell types, and sites of occupancy by selected transcription factors. Regions discussed in the text are outlined by blue rectangles.

Nucleic Acids Research, 2013, Vol. 41, No. 2 833

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/41/2/827/1071531 by guest on 09 April 2024



previously identified bivalent chromatin structure that
silences genes but keeps them ready for activation (18).

Candidate transcriptional terminators
The chromatin state annotations present a more
sophisticated and nuanced view of the chromatin land-
scape than focusing on observations from a single assay.
For example, the Gen30 label discovered by both
ChromHMM and Segway has a high frequency for
H3K36me3, H4K20me1 and Pol2, with low frequency of
other marks (Figure 1). Consistent with previous findings
(13), we observe that these states show enrichment around
30 ends of protein-coding genes (Supplementary Figure
S16). Interestingly, ChromHMM also discovers a Pol2
label (associated with high frequency of RNA polymerase
II and low frequency of all other signals) that displays a
peak in enrichment 1–2 kbp after the 30 end of the genes.
The accumulation of Pol2 could be explained by transcrip-
tional pausing in this region, part of the mechanism of
transcription termination (19–21).

Enhancers
Both chromatin state annotations contain labels
associated with enhancer type sequences: ChromHMM
states Enh and EnhW, and Segway state Enh. These
have emission parameters associated with chromatin
features particularly suggestive of enhancers (Figure 1).
This includes the presence of DNase hypersensitivity and
a relatively higher H3K4me1 signal compared to
H3K4me3 (7,22). The Enh states show a strong enrich-
ment for transcription factor binding (Supplementary
Table S7), while having minimal enrichment with regions
proximal to annotated starts of genes (Supplementary
Figure S17). The EnhF and EnhWF states also have
histone modifications similar to Enh and EnhW states,
respectively, and frequently transition to them, but had
substantially lower DNase hypersensitivity as well as
lower enrichment for transcription factor binding peaks.
Such an arrangement is consistent with a central region
with no or highly remodeled nucleosomes, flanked by nu-
cleosomes with highly modified histone tails (23,24). The
ChromHMM and Segway Enh states show the strongest
enrichment for the transcriptional coactivator p300, often
found at enhancers (25) (Supplementary Figure S18).

Repressed regions
The histone modification H3K27me3, generated by the
Polycomb repressor complex 2, covers some repressed
genes. Hence, the chromatin states labeled with the
prefix Repr, enriched in H3K27me3 signal (Figure 1),
are strong indicators that the genes within them have
been silenced. ChromHMM state ReprD has a relatively
high frequency of H3K27me3 and DNase sensitivity
(Duke DNase), and Segway state Repr2 (in GM12878)
has some similar features. ChromHMM state Repr as
well as Segway states Repr3 and Repr4 (in GM12878)
have strong Polycomb repression signal but lack the
DNase signal. While ChromHMM state ReprW has low
emission probabilities, it frequently transitions to state
Repr, suggesting that it is part of broader repressed
regions. In contrast, ChromHMM state Low is also

associated with low signal but more frequently transitions
to active elements, therefore representing low activity
domains of the genome near active elements.

Insulators
Insulators are cis-regulatory modules that restrict the effect
of long-range regulatory modules, such as enhancers, so
that they act on the appropriate promoter target (26,27).
One way to do this is via an enhancer-blocking activity,
which requires the protein CTCF (28). Both methods
produce one or two states enriched for CTCF occupancy,
one of which (CtcfO) is also enriched for DNase-sensitive,
open chromatin (Figure 1, Supplementary Figure S19).

Chromatin states are predictive of RNA transcription

The extensive transcriptome mapping, largely by
RNA-seq, from the ENCODE consortium was not used
as input in our chromatin state annotations. Thus, we can
evaluate the transcriptional activity of the DNA segments
in each state, both for interpretation of the chromatin
states and for discovery of novel relationships. As
expected, the chromatin states associated with genes
are highly enriched for transcripts in GM12878 cells
(Figure 4). This is the case for almost all the biotypes,
i.e. RNAs from different categories of genes; the only
exception is for RNA from retrotransposed elements in
the Segway states in GM12878. When protein-coding
genes in each chromatin state are examined, we find that
almost all (80–90%) of the genes overlapping the classes
with labels for promoters and gene bodies are transcribed
(Supplementary Figure S20), and the expression levels
within these genes are high (Figure 4). Also as expected,
the DNA segments in states associated with repression
are depleted for transcripts (Figure 4), only a minority
of the protein-coding genes overlapping these states are
transcribed (Supplementary Figure S20), and the expres-
sion levels (29) for these genes are low (Figure 4).

Notably, the DNA segments in states associated with en-
hancers are also transcribed, indicating that the transcrip-
tion of enhancers (30,31) is widespread. Interestingly,
states with a high frequency of CTCF are also enriched
for transcripts; further work could evaluate how often
CTCF-bound regions of different categories (e.g. insulator
versus non-insulator) are transcribed.

An unexpected result is that many of the chromatin
states with low frequency of most of the epigenetic
marks (Low classes) are also enriched for transcripts.
Most (75–80%) of the protein-coding genes within the
ChromHMM Low class are transcribed, i.e., captured by
RNA-seq contigs (Supplementary Figure S20), but they
tend to be transcribed at a lower level than the protein-
coding genes overlapping the promoter and gene
body-associated classes (Figure 4). Thus, the chromatin-
based annotations reveal a subset of a genome with a low
frequency of histone modifications, but that nonetheless
supports transcription. This observation contrasts starkly
with the quiescent states described in the next section.
Future work should examine the classes of genes and
other elements in these regions with transcriptional
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Figure 4. Distribution of various classes of transcripts in the segmentations. Enrichment (red) or depletion (blue) of RNA-seq transcript categories
(‘biotypes’) in each state for two 25-state segmentations: (A) Segway GM12878 and (B) ChromHMM GM12878. White cells indicate an absence
of an RNA biotype in the corresponding state. Distribution of expression levels in segmentation states. The level of expression of each
protein-coding RNA-seq contig intersecting a protein-coding gene in each state for (C) Segway GM12878 and (D) ChromHMM GM12878 was
extracted from the data in Djebali et al. (29). The distribution of those values for all RNA contigs in the DNA segments for each state is shown as a
box plot.
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activity but infrequent appearance of the histone modifi-
cations and chromatin features examined here.

A large proportion of the genome resides in a quiescent
state consistently across cell types

Both ChromHMM and Segway collect a large portion of
the genome into states with very little signal for any of the
features used as inputs, which we term quiescent. We label
the quiescent states as Quies in both ChromHMM and
Segway. Furthermore, the Low states have emission par-
ameters that are nearly as low as the quiescent states,
which have near-zero emission parameters for most
signals (Figure 1). Together, the Quies and Low states
comprise a majority of the genome for most cell types in
both annotations (Supplementary Figure S8). The Quies
states showed a consistent enrichment for the nuclear
lamina domains mapped previously in human lung fibro-
blasts (32) (Supplementary Figure S21).
The low signal for epigenetic marks in these quiescent

regions is not a result of a failure to map sequencing reads
to them. The mappability and repeat content of the qui-
escent states is not dramatically different from that in
other states (Supplementary Figure S22). In addition, we
find that the nucleosome content is not significantly lower
from that of other segmentation classes. Thus, we inter-
pret these quiescent segments as being in a chromatin
structure that is largely devoid of the histone modifica-
tions included in the segmentation. The quiescent
regions are also strikingly depleted for all annotated tran-
script categories examined here, including coding and
non-coding transcripts (Figure 4). Restricting the
analysis to protein-coding genes, we find that slightly
more than half of these genes in the Quies states overlap
with RNA-seq contigs, much fewer than for genes
overlapping promoter and gene body-associated labels
(Supplementary Figure S20). Moreover, transcription
factors bind much less frequently in the quiescent states
than in more active states, showing a level of depletion of
TF occupancy comparable to or more depleted than that
seen in most of the states associated with repression
(Supplementary Table S7). These results indicate that
the quiescent segments are inactive for dynamic histone
modifications and are transcribed infrequently. Thus, the
DNA in these regions is largely inactive.
The apparent reduced functionality of these regions, as

indicated by the limited transcriptional activity and
absence of histone modifications, suggests that most of
these sequences are evolving like neutral DNA, and
indeed, we find that the DNA in quiescent states is
depleted of constrained sequences (Figure 5). It is likely
that the DNA in this low activity, quiescent state is similar
to the ‘black’ state previously described in Drosophila
melanogaster (9).
One would expect that some DNA regions are quiescent

only in specific cell types or conditions, being activated in
other cell types in response to appropriate signals. Other
regions could become dormant and not used again, such
as for terminally differentiated cells. Still other DNA
could be quiescent in all cell types. Indeed, we find that
635 Mbp of genomic DNA (21% of the genome) is in the

ChromHMM quiescent state in all 6 cell types examined,
including the embryonic stem cell line H1, which may be
expected to have a large fraction of its genome active.
Of course, some of this DNA may be activated in the
many cell types that have not yet been interrogated. It
will be informative to observe how small a fraction of
genomic DNA remains classified in an apparently consti-
tutively inactive state as the histone modification and tran-
scription profiles are thoroughly examined in a broad set
of cell types.

Chromatin state annotations provide support for larger
fraction of genome under constraint

The annotations provide an unbiased view of candidate
functional non-coding regulatory elements, enabling us
to evaluate different methods for measuring human evo-
lutionary constraint. Accordingly, we overlapped the
25-state ChromHMM annotation defined across 6 cell
types with 4 different conserved element sets: PhastCons
based on 46 mammals (16,33), GERP based on
33 mammals (16,34), SiPhy-o and SiPhy-p elements
defined based on 29 mammals (16,35). GERP identifies
conserved elements by identifying locations of highly
rejected substitutions. PhastCons and SiPhy-o detect
elements based on the overall substitution rate. SiPhy-p
uses a novel strategy to detect conserved elements based
on substitution patterns that deviate from the neutral
pattern found in bases evolving without selective
pressure. SiPhy-p enables detection of constraint for
pairs of nucleotides, rather than individual nucleotides
at each position. The PhastCons and SiPhy-o sets are
the smallest of the four, covering 3.8% and 4.2% of the
bases considered in the ChromHMM annotation, whereas
SiPhy-p and GERP are larger, covering 5.8% and 6.4%,
respectively.

It was previously noted that many additional bases
detected by SiPhy-p were found in non-coding regions
(16) without additional supporting evidence for the biolo-
gical function of these bases. We observe here that
PhastCons, SiPhy-o and SiPhy-p enrich in most of the
ChromHMM states that are suggestive of function with
no appreciable decline of enrichments in the larger
SiPhy-p set (Figure 5, Supplementary Figure S23). This
observation demonstrates at a genome-wide scale the
functional relevance of the additional constrained
elements detected by SiPhy-p (16). In contrast, for the
larger GERP element set, we see substantially lower en-
richment in most states on average across cell types, sug-
gesting the additional bases in this set may be less
functionally relevant (Figure 5). These phenomena were
also observed based on a similar analysis using Segway
(Figure 5, Supplementary Figure S23).

Chromatin state annotations help interpret disease
association signals from GWAS

The majority of genetic variants associated with pheno-
types by GWASs are not in protein-coding regions (36).
The large-scale annotation of the human genome,
including the non-coding portion, by the ENCODE
project showed promise as a guide to interpretation of
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phenotype-associated SNPs (1), and indeed the regions of
the genome associated with function by ENCODE data
are enriched in phenotype-associated SNPs (17,37,38).
Here, we show that the 25-state annotations from both
ChromHMM and Segway provide a higher resolution
view of the types of function-associated regions that are
enriched for genetic variants with potential phenotypic
consequences.

The SNPs on a genotyping array that exhibit the most
significant associations with a phenotype of interest are

called the lead SNPs in a GWAS. These lead SNPs are
not expected necessarily to be the functional SNPs, but
they should be in linkage disequilibrium with the func-
tional SNP (39). However, the SNPs on the genotyping
arrays are enriched for function-associated regions, and
many examples are being found of lead SNPs either
being a functional SNP or at least very close to it. For
example, the ENCODE Project found such an example in
the 8q24 locus (1). We have therefore examined the
enrichment of the GWAS lead SNPs in the various
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Figure 5. (A) Average log2 enrichment or depletion of four different conserved element sets—PhastCons (33), SiPhy-o, SiPhy-p (16,35), and GERP
(34)—for the 25 ChromHMM states averaged across all 6 cell types. (B) The same comparison for Segway states, but restricted to the K562
segmentation.
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chromatin states and compared them to a range of null
models, i.e., other SNP sets either not expected to be in
functional regions or not currently implicated in function.
We use the chromatin state annotations based on epigen-
etic features in six Tier 1–2 human cell types, regardless of
the cell types most likely to be involved in disease suscep-
tibility. While it is preferable to use epigenetic data in
cell types of close physiological relevance when available,
the studies described here and elsewhere (17,37,38)
show that phenotype-associated SNPs are enriched in
DNA segments associated with function in the Tier 1–2
cell types, perhaps reflecting regions functional in multiple
cell types (39). It is possible that an even stronger enrich-
ment would be found in more relevant cell types, and the
analysis presented here may reflect a lower bound
estimate.
The phenotype-associated lead SNPs were compiled

from the GWAS Catalog in the summer of 2011 (36).
This collection was filtered to produce a non-redundant
set of 4492 SNPs associated with 362 phenotypes (4860
SNP-phenotype associations, some SNPs are associated
with more than one phenotype). The distribution of
these SNPs in different chromatin states was compared
to the distribution of SNPs not expected to be functional,
i.e., two largely unbiased genome-wide collections of SNPs
generated by whole-genome sequencing of multiple
humans (40) and a compilation of SNPs in 24 published
individual human genomes (41). The distribution of SNPs
on the 1M Illumina genotyping array was also analysed,
along with SNPs from the genotyping array matched to
the GWAS SNPs for allele frequency in CEU, distance
from a transcription start site and location with respect
to gene structure (components such as intronic, exonic and
intergenic) (37). This latter set of GWAS-matched SNPs is
a particularly rigorous comparison, and we determined
the enrichment statistics for 1000 random samplings
from the GWAS-matched SNP set. These SNPs are not
currently associated with phenotype by GWAS, but they
could be in or close to functional regions, e.g., those close
to transcription start sites.
In an analysis carried out in the GM12878 cell line, we

find that the SNPs in the GWAS Catalog are depleted
in the quiescent segments compared to the population
and individual SNPs (1000 Genomes and 24 personal
genomes) (Figure 3). In contrast, the phenotype-
associated SNPs are enriched in many function-associated
chromatin states compared to the population and individ-
ual SNPs. The genotyping SNPs show a similar pattern to
that of the GWAS SNPs, likely reflecting a bias in the
latter set for functional regions. We therefore focused on
comparing the GWAS-matched SNPs to the GWAS SNPs
as a stringent test for significance of the enrichment or
depletion. We sampled these matched SNPs from genic
regions and the matched SNPs show an even greater en-
richment in function-associated chromatin states than do
the SNPs on the genotyping arrays (Figure 3). Because
1000 random samplings of the GWAS-matched SNPs
were evaluated, we determined whether the observed en-
richment for the GWAS SNPs exceeded that found for the
lower 950 samplings of the matched SNPs (or conversely,
was less than that found for the upper 950 samplings in

the case of depletion), establishing an empirical P-value
threshold of 0.05. The Segway chromatin states passing
this threshold (denoted by red bars in the figure) for sig-
nificant enrichment for GWAS SNPs are Enh, EnhF,
EnhWf, Repr2 and Repr3. The categories showing signifi-
cant depletion are Quies, ElonW, Low1 and Low6. For
ChromHMM, states Enh, EnhF, EnhW, EnhWF, TssF
and ReprW showed significant enrichment while states
Quies and ElonW showed significant depletion.

The NOD2 locus provides an illustrative example of the
use of chromatin states for interpretation of phenotype-
associated SNPs. This gene has been associated with
Crohn’s disease (42,43), but several of the SNPs map
into non-coding regions (Figure 3). Three of these SNPs
fall into chromatin states associated with enhancers in
GM12878 (leftmost), enhancers in HUVEC (middle) and
a transcribed region in GM12878 (rightmost outlined in
blue). The three highlighted GWAS SNP clusters are close
to DNase hypersensitive sites in a lymphoblastoid cell line
(GM12878), T-cells (Th2 and Treg cells) and HUVECs,
among others. Specific transcription factors binding to
these sites are NF-YA, NF-YB, PU.1, SRF, GATA2
and c-Fos, with distinct factors binding to different sites
in specific cell lines. All of these observations can be used
to formulate testable hypotheses about the genetic
variants associated with Crohn’s disease. For example, a
SNP can affect the affinity for one of these transcription
factors in an allele-specific manner, leading to alterations
in the level of expression of NOD2 and affecting the
inflammatory response associated with Crohn’s disease.
We note that the DNase sensitivity data include T-cells,
which could be implicated in an autoimmune disease such
as Crohn’s disease. The GATA2 binding data from
HUVEC could be pointing to potential sites of occupancy
by GATA3, which regulates expression of many genes in
T-cells. This is an example of a hypothesis derived from
data from the currently studied ENCODE lines that can
be readily tested by direct experiments in cell types more
relevant to the phenotype.

DISCUSSION

The chromatin state annotations provided here provide a
foundation for interpreting the non-coding portion of the
human genome that has so far been difficult to compre-
hend. For example, while promoter and enhancer regula-
tory elements contain within them regulatory sequence
motifs, their purely sequence-driven identification has
remained an unsolved challenge in genomics, while our
segmentations provide their systematic annotation inde-
pendent of the motifs they contain. Similarly, while
genomic regions showing extreme sequence conservation
across related species frequently show enhancer activity,
such extreme conservation is not a general property of
enhancer regions, while our systematic annotation
contains both conserved and non-conserved elements.
Chromatin signatures provide a general approach for dis-
covering active regulatory elements based on their bio-
chemical properties, and beyond regulatory elements, an
unbiased genome-wide view of the likely functional roles
of every region of the genome. By capturing both
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high-continuity segments and high-resolution transitions
between them, we provide a summary of dozens of
genome-wide datasets into a directly interpretable and
information-rich resource.

A reader might wonder which chromatin state annota-
tion to use. One significant difference, evident in
Supplementary Figure S9, is the relative sizes of the
segments, with Segway producing smaller segments on
average compared to ChromHMM. Beyond this distinc-
tion—high resolution for Segway and high continuity for
ChromHMM—the chromatin state annotations exhibit
many subtle differences, and each has distinct advantages
in different applications. We therefore recommend that
the user examine both annotations in regions of interest,
because each might capture a different aspect of the
underlying biology. As for the joint segmentation, it is
not meant to replace the two primary annotations,
because their differences can be important and should
not be overlooked. Instead, the joint segmentation is
meant to help introduce a new user to our chromatin
states in a simple and approachable way. Once the user
is familiar with our annotations, however, we recommend
browsing the joint segmentation in parallel with the two
primary chromatin state annotations, to exploit the full
richness of the chromatin landscape.

It is important to note that the number of chromatin
states presented here was chosen as a compromise
between capturing all of the potential complexity of chro-
matin mark combinations (which requires very large
numbers of states) and generating models that are easily
interpretable and maximally useful for interpreting
genomic features (which requires maintaining a small
number of states). In our experience, model selection
methods such as the use of the Bayesian information cri-
terion or Akaike information criterion invariably suggest
models with higher number of states beyond the point of
feasibility for human interpretation. The penalties imposed
by these criteria prove insufficient to overcome the increase
in likelihood due to increased numbers of states and the
consequent increased numbers of parameters. As such,
we focused on a relatively small number of 25 states,
that is well suited to the number of chromatin marks and
other input data tracks that were available, and that allows
us to annotate the likely functional roles of each chromatin
state. However, as the number of chromatin properties that
can be elucidated on a genome-wide scale increases, we
expect that additional chromatin states will be discovered.
These states will likely provide further functional subdiv-
isions of the states presented here or reveal new types of
chromatin elements that we may not even suspect yet.

In addition to the combinations of chromatin marks
summarized in our models’ emission parameters, the
topology of the graph representing allowed transitions
between labels contains important information about
their genomic relationships. The transition probability
matrices (Supplementary Figure S7) capture the structure
of these connections. For example, transitions between
Tss and TssF or Prom labels occur more frequently, re-
vealing their genomic proximity. In ChromHMM, Low
and Quies states both have similar emission profiles with
low probabilities of histone modifications, but show

distinct transition probabilities and also distinct biological
enrichments. In contrast, the transition probabilities have
a relatively small impact on the final segmentation for
Segway, relative to the emission distributions. This is pri-
marily because the minimum segment length is 100 bp, and
thus the Segway Viterbi path probability includes >100
emission probabilities for every transition probability.
Indeed, we have observed that various manipulations of
a model’s transition probability distribution have rela-
tively small impact on the resulting segmentation (data
not shown).
Continued methodological improvements will likely be

needed to capture additional types of chromatin informa-
tion, such as three-dimensional interactions between distal
regions, looping of chromatin domains or larger-scale
region behavior. Thus, the chromatin states presented
here may constitute the words of much more complex
chromatin sentences whose grammar remains to be
elucidated, as new technologies enable deeper and more
complex epigenomic maps.
We have tried to illustrate in this article, and in related

companion papers, the many applications of the chroma-
tin state annotations, ranging from revealing new genes
and functional elements, to interpreting disease datasets,
to measuring allele-specific activity or human selection. As
genome data have become personalized, we expect that the
epigenomes of the future will be genotype and individual
specific, and not just cell-type specific. These types of data
can have profound implications for understanding the
epigenomic consequences of disease, not just its genomic
predisposition, and chromatin states will form a necessary
component of personal epigenomes. Beyond the applica-
tions that we have explicitly listed, however, there are
many others that we have not even begun to explore,
and we expect these applications to be as rich and
diverse as the countless uses of an encyclopedia of
genomic knowledge, or a map for navigating our genome.
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