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ABSTRACT

It is well established that the correct identification of
the messenger RNA targeted by a given microRNA
(miRNA) is a difficult problem, and that available
methods all suffer from low specificity. We hypoth-
esize that the correct identification of the pairing
should take into account the effect of the Argonaute
protein (AGO), an essential catalyst of the recog-
nition process. Therefore, we developed a strat-
egy named MiREN for building and scoring three-
dimensional models of the ternary complex formed
by AGO, a miRNA and 22 nt of a target mRNA that
putatively interacts with it. We show here that MiREN
can be used to assess the likelihood that an RNA
molecule is the target of a given miRNA and that this
approach is more accurate than other existing meth-
ods, usually based on sequence or sequence-related
features. Our results also suggest that AGO plays a
relevant role in the selection of the miRNA targets.
Our method can represent an additional step for re-
fining predictions made by faster but less accurate
classical methods for the identification of miRNA tar-
gets.

INTRODUCTION

MicroRNAs (miRNAs) are endogenous non-coding RNAs
that control gene expression at the post-transcriptional
level. Their mechanism of action involves the binding of
mature miRNAs to the Argonaute (AGO) proteins to re-
cruit other components and form the miRNA-induced si-
lencing complex (miRISC) (1). The miRISC complex rec-
ognizes complementary sequences in the 3′untranslated re-
gions (3UTR) or in coding regions (2) of target mRNAs,
and inhibits protein synthesis, either indirectly, by promot-
ing mRNA decay, or directly by inhibiting the initiation and
elongation steps of translation.

The diffusion of powerful ‘omic’ analytical techniques,
including microarray, HITS-CLIP/PAR-CLIP and MIR-
seq, highlighted the variety of biological processes in which
these small molecules are involved, and provided new in-

sights into the mechanisms through which molecular targets
are recognized by endogenous miRNAs.

The new miRNA targets discovered by ‘omic’ analyses
led to a revision of the rules dictating the mode of recog-
nition of their targets. For example, the requirement, previ-
ously considered essential, that a contiguous ‘seed’ (3) re-
gion should base pair with nucleotides located at the 5′ end
of the miRNA (positions 2–8) has been shown not to be
an indispensable requisite. In fact multiple mismatches (4,5)
or even lack of complementarity to the seed sequence have
been observed in some cases (6). This is true not only for
animal organisms but also in plants where evidence of non-
canonical miRNA binding modes has been reported (7,8).
Similarly, many new experimentally verified miRNA tar-
get sites have been found in non-conserved genomic regions
suggesting that evolutionary conservation of the sites might
be less important than assumed so far (9).

Existing computational methods for the prediction of
miRNA target sites generally base their predictions on the
search for sequences complementary to a given miRNA
and rank the candidate sites according to properties derived
from primary and secondary structures and sometimes on
evolutionary information.

Some methods, such as MIRANDA (10), estimate the
thermodynamic stability of the secondary structure of the
putative miRNA-target pair. Differently, PITA (9) predicts
the local secondary structure of a region of 140 nt surround-
ing the hypothetical target site and estimates the energetic
gain (if any) in opening this region to bind the miRNA.
Other tools, such as TARGETSCAN (11) and PICTAR
(12) filter the putative target sites on the basis of their se-
quence conservation in different organisms.

Regardless of their strategy, a limit of currently available
methods resides in their low specificity (13) resulting from
our still incomplete understanding of the rules governing
target recognition.

Crystallographic studies(14)revealed the nature of the in-
teraction between the AGO protein and a duplex formed
by a miRNA (mimicked by a DNA molecule in the crystal)
and its target, as well as the specific structural requirements
for mRNA cleavage. The AGO protein structure can be di-
vided into two lobes, one containing the PAZ domain and
the other including the middle (MID) domain and the PIWI
domain connected by a linker region. The crystal structure
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of the complex shows that the miRNA nucleotides from 18
to 20 inserted into the PAZ domain of AGO cannot be base-
paired with the mRNA molecule. Moreover the presence of
single nucleotide bulges opposite to positions 4–5 and 5–6
of the miRNA strand 5′-seed segment has minimal effect
on cleavage (15–17), while cleavage is strongly reduced after
insertion of dual bulges at the same positions.

In contrast to the miRNA strand, the sugar-phosphate
backbone of the target strand complementary to the seed
segment, is able to accommodate single nucleotide and din-
ucleotide bulges, without impairing the target RNA cleav-
age and reinforcing the evidence that helical imperfections
that disrupt pairing interactions in the 3′ region of the
guide strand have a minimal effect on cleavage activity. This
suggests that AGO could exert an effect in the selection
of targets sites that can more easily adopt specific three-
dimensional (3D) conformations compatibles with its bind-
ing site.

Recently, Gan et al. (18) explored the possibility of us-
ing 3D RNA modeling to predict the structure of known
miRNA–target complexes. With their approach, they were
able to predict the conformation of two constructs of
Caenorhabditis elegans let-7 miRNA target duplexes with
an error of 3.8 Angstrom RMSD with respect to the exper-
imental nuclear magnetic resonance structures. These au-
thors also built 3D models of eight miRNA–target pairs
bound to AGO with and without single nucleotides mis-
matches. The comparison of the estimated energies of mod-
els with experimental results from titration calorimetric
measurements (19) highlighted a good agreement between
the computed and measured data.

This notwithstanding, a method that estimates the like-
lihood of a target being recognized by a miRISC complex
taking into account the structural properties of the AGO
binding site still does not exists.

In this work, we assess whether a given miRNA–mRNA
pair is likely to be functional taking advantage of a strategy,
named MiREN, whereby we model the ternary complex of
the AGO, the miRNA and the 22 nt of the putative target
mRNA and use the estimated energy of the interaction as a
scoring function.

The results obtained with our strategy compare favor-
ably with those obtained by the most widely used prediction
methods (20) when applied to a human dataset, constituted
by experimentally validated positive and negative miRNA
and mRNA pairs, and to a rather challenging dataset from
Mus musculus (MM) including data extracted from a HITS-
CLIP experiment on cells overexpressing a single miRNA.

MATERIALS AND METHODS

Datasets

Our method was applied on two independent and non-
overlapping datasets of miRNA–target interactions for
which experimental evidence in Homo sapiens (HS) and
MM exists.

The HS dataset was built starting from experimentally
validated miRNA target pairs annotated in mirtarbase re-
lease 3.5. We initially selected a total of 234 interactions (117
randomly extracted from those annotated as functional and

117 among those annotated as non-functional). Each ex-
ample was further analyzed by reviewing the literature. We
found and discarded 16 cases annotated as non functional
in mirtarbase that were discovered to be functional accord-
ing to the literature. The final dataset consists of 133 func-
tional pairs and 101 non-functional pairs. For each target
gene, we retrieved the mRNA RefSeq sequence with the
longest 3′ UTR and identified all the sites the sequence of
which was complementary to a given miRNA using MI-
RANDA with default parameters. Among the sites pro-
posed by MIRANDA, the one with the maximum number
of paired bases was selected.

The MM dataset was based on data provided in the study
of Loeb et al. (21). We extracted the data from a HITS-
CLIP experiment performed on mouse CD4+ activated T
cells over-expressing mmu-miR-155 with respect to sites de-
tected in T cells from mouse knockout for mmu-miR-155.
In their work the authors provide the complete sequences
of the 3′ UTR transcriptome used to map the HITS CLIP
peaks together with 97 sequences that are differentially ex-
pressed between the two systems and harbor a mmu-miR-
155 canonical seed binding sequence. The 22-nt long regions
complementary to the seed region of miR-155 present in
the transcripts formed our MMPos dataset. The negative
counterpart (MMneg) dataset was built using 97 sequences
(22 nt long) containing the miR-155 seed sequence in the
3′ UTR showing no difference between the wild-type and
knock out mouse samples. A list of all the miRNA–target
pairs included in analyzed datasets is provided in the Sup-
plementary Information.

The secondary structures of the sites in the positive and
negative datasets were predicted using MIRANDA (10).
The PITA scores were computed by running PITA (11) with
default parameters. The TARGETSCAN scores were re-
trieved from the TARGETSCAN 6.2 database (12). The
score was set to 0 if the modeled site was not detected by
TARGETSCAN in the corresponding RefSeq sequence.

Model building

We used the Thermus thermophilus AGO protein structure
(PDB code: 3F73) that is considered an appropriate model
for the eukaryotic members of the AGO family given its
structural and functional similarities with the latter (22,23).
This structure corresponds to the active form of AGO com-
plexed with a duplex of a guide DNA (meant to mimic the
miRNA) bound to its target. In the crystal, the bases of the
guide DNA can be traced for the 1–10 segment, in which
the 5′-phosphate is inserted into the binding pocket of the
Mid domain of AGO and for the 19–21 segment, in which
nucleotides 20 and 21 at the 3′ end are inserted into the bind-
ing pocket of the AGO PAZ domain (Figure 1).

RNA models were built and analyzed by a two-step pro-
cedure. Both steps are performed in a semi automated way
through Perl scripts.

In the first step, the modeRNA (24) software is used to
model nucleotides 1–9 and 19–21 of the miRNA using as
template the guide DNA crystallized in the 3F73 structure.
The remaining nucleotides are modeled using MC-SYM
(25). This latter tool builds models by assembling RNA di-
and tetra-nucleotides 3D structures (NCMs) specified as in-
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Figure 1. (A) Computational strategy for building the three-dimensional (3D) models of the miRNA–target in complex with the AGO protein. The method
consists of five steps. The initial input is the secondary structure and sequence of a miRNA paired with its putative target site (B). The seed nucleotides
of the miRNA are modeled using as a template the DNA (that mimics the miRNA) bound to its target, present in the crystallographic structure of
Thermusthermophilus AGO. The remaining part of the structure is modeled by 3D RNA fragments assembly. The best model is minimized and its estimated
energy recorded.
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put. We generated an appropriate input using an ad hoc
developed Perl scripts. Multiple canonical Watson–Crick
paired bases were assembled according to their secondary
structure by selecting 2:2 double strand tetra-nucleotide
NCMs; bulges inserted in the RNA duplex were modeled
by assembling double strand NCMs including a bulge; un-
paired or bulged regions longer than three nucleotides were
assembled combining single strand NCMs. All the MC-
SYM parameters were kept to their default values except
for relaxing the penalty for clashes between non bonded
atoms during the progression of fragments assembly to 0.9
(clash threshold parameter), setting the maximum comput-
ing time for building 1000 miRNA–target duplex models to
two hours and for requesting that all the models differ from
each other by an all atom RMSD of at least 1 Angstrom.
The time limit threshold was sufficient to obtain 1000 mod-
els in more than 90% of the cases.

In order to obtain the correct stereochemistry at the
site of junction of consecutive backbone atoms deriving
from different fragments we perform a short minimization
with AMBER 11 (26) (400 steps in vacuo using the AM-
BER force field, the LBFGS algorithm and setting the non-
bonded cut-off to 14 Å). The computed energies of the RNA
duplexes after minimization are one of the components used
for model ranking (see later).

The RNA models are superimposed to the RNA moi-
ety in the AGO binding site and discarded if they inter-
twine with the AGO loops pointing into the binding site.
This automatic check is performed using CHIMERA (27).
We place 126 pseudo atoms inside the loop pointing into
the AGO binding site. If the distance of the phosphorus
atom of any nucleotide is shorter than 2.75 Å from one of
the 128 pseudo atoms, the model is discarded. We also dis-
card models where the 5′ tail of target is displaced from the
cavity located between the PAZ and N-domain, opposite
to the PIWI domain. We create a pseudo atom in the cen-
troid of the aforementioned region and measure its distance
from the last nucleotide of the target and discard models in
which the phosphorous atom of the last target nucleotide is
more than 23 Å away from the pseudo atom and less than
35 Angstrom from the Mg++ cleavage site. These distance
thresholds are selected after inspection of the distances of
the pseudo- and Mg++ atoms from the C alpha of the amino
acids that form the AGO cavity.

Ranking of models

We used CHIMERA to estimate the number of duplex
paired bases and the number of clashes between the RNA
and the protein binding site residues.

To detect models in which a substantial fraction of the
mRNA strand is outside the binding site, we computed a
molecular map corresponding to the volume occupied by
the solvent into the binding site using the 3VV server (28).
Subsequently with CHIMERA we fit the models into the
molecular map to estimate the number of atoms of the
model falling outside the map.

Models are sorted according to the number of duplex
paired bases, number of clashes between the RNA and pro-
tein moieties, number of atoms outside the AGO binding
site and the estimated energy of the RNA duplex.

The best ranking model of the ternary complex is further
minimized keeping the seed nucleotides fixed. This is per-
formed in vacuo for 6000 steps with the AMBER software
utilizing the AMBER force field, LBFGS algorithm and a
non bonded cut-off of 14 Å. The number of steps was se-
lected by analyzing the energy values obtained by running
a long minimization of 20 000 steps on a test dataset of 20
models. In all cases, the energy values did not decrease af-
ter 6000 steps. The final total energy after minimization is
collected and used for subsequent analyses.

RESULTS

Test of the procedure on experimentally validated miRNA
target sites

We estimated the probability of a given pair to be functional
on the human dataset described in ‘Materials and Methods’
section and composed by 133 human experimentally vali-
dated pairs of miRNA and their target sites (HSpos dataset)
and 101 human potential miRNA target pairs showing ex-
act complementarity in the seed region but known not to be
functional (HSneg dataset). Some of the cases (8 in the pos-
itive and 15 in the negative sets, respectively) were discarded
at this stage because none of their models were stereochemi-
cally plausible (either their atoms overlapped with the AGO
backbone or were intertwined with the AGO loops. (See the
‘Model building’ section of ‘Material and Methods’ section
for more details).

The density plot of the number of the pairs in the HSpos
and HSneg datasets as a function of the estimated energy is
shown in Figure 2A. It can be seen that models of HSpos
pairs have significantly lower estimated energy than mod-
els of the HSneg dataset (Wilcoxon test = 3382, P-value =
4.82*10−6).

We also tested our procedure on a second, more chal-
lenging, dataset (MM) consisting of sites extracted from a
HITS-CLIP experiment for mmu-miR-155 as described in
‘Materials and Methods’ section (MMPos) and appropri-
ate controls (MMNeg). It is worth noticing that this latter
dataset represents a more stringent test, since the MMPos
and MMNeg pairs only differ for the nucleotides of the tar-
get downstream the seed region.

In this case, as for the human dataset, we discarded 11
pairs from both the positive and negative set because, none
of their models showed plausible stereochemistry. In sum-
mary, we modeled 86 sites from the MMpos dataset and 86
from the MMneg dataset (Supplementary Table S1).

For the HS dataset, true positives (TPs) are defined as the
miRNA–target pairs for which mirtarbase reports strong
evidence of interaction (luciferase assay, western blot) while
TPs in the MM dataset correspond to targets for which a
HITS-CLIP peak is observed.

The results shown in Figure 2B indicate that, also in this
case, the distribution of the estimated energy of the positive
sites is lower, on average, than that of negative ones. The
difference is statistically significant (Wilcoxon test = 2268,
P-value = 1.2*10−5) although the estimated energy distri-
butions overlap more in this case than in the HS dataset.

The cumulative distribution of the sensitivity as function
of the computed energy in the tested datasets shows that
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Figure 2. Histogram of the estimated complex energy for positive and negative cases in the analyzed datasets. The plot shows a histogram of the number
of cases as a function of their estimated energy after 6000 steps of minimization. Positive and negative cases are shown in green and gray, respectively. HS
dataset (A) and MM dataset (B). The difference between the negative and positive distributions is statistically significant (Wilcoxon P-value: HS dataset
= 4.82*10−6; MM dataset = 1. 2*10−5).
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Figure 3. Distribution of the true positive (TP) rate in function of the esti-
mated energy. The plot shows the distribution of the sensitivity defined as
the number of TP cases divided by the total number of positive predicted
cases (TPR) as a function of the estimated energy of models.

models of miRNA/target duplexes bound into AGO bind-
ing site with an estimated complex energy below −25 000
kcal/mol have a 75% probability of being true miRNA tar-
gets (Figure 3).

Comparison with other predictors

We compared the accuracy of our strategy for discriminat-
ing positive from negative target sites with that of three
widely used methods, namely PITA (11), MIRANDA (10)
and TARGETSCAN (12).

PITA computes the difference between the free energy
gained from the formation of the miRNA–target duplex
and the energetic cost of unpairing a region of 70 nt up-
stream and downstream the target to make it accessible to
the miRNA. MIRANDA first scans candidate UTRs for a

miRNA to find target sites by base complementarity and
next estimates the free energy of optimal strand–strand in-
teraction between the miRNA and the target site. TAR-
GETSCAN predicts the biological targets of miRNAs by
searching for the presence of conserved 8mer and 7mer sites
that match the seed region of each miRNA.

All these methods provide a score, which in our case is the
estimated energy of the complex, rather than a binary pre-
diction. In order to be able to compare them, we ordered
the predictions by the corresponding scores and considered
the following partitions: the Top10, Top20 and Top30 lists
include predictions with scores in the top 10, 20 and 30%
of the ranked list, the Bottom10, Bottom20 and Bottom30
partitions contain the 10, 20 and 30% predictions with the
lowest scores. Clearly, one expects most of the positives
(negatives) to be found among the highest (lowest) scoring
pairs.

For each of the partitions, we consider TP the positive
sites in the Top partitions, false positives (FP) the nega-
tive sites incorrectly positioned in the Top partitions. True
negatives (TN) are negative sites correctly ranked with the
lowest scores (i.e. in the Bottom partitions) and false nega-
tives (FN) the positive sites incorrectly located in the Bot-
tom partitions.

For the HS dataset, MiREN has a better precision than
all other methods regardless of the partition considered (Ta-
ble 1A) and is more accurate in all cases.

For the MM dataset, MiREN is more accurate in all the
partitions excepted for the top 10% and lower 10% of scor-
ing sites for which PITA performs better (Table 1B).

Interestingly, our method correctly predicts a substantial
number of TPs that are not predicted by the other meth-
ods (Figure 4). For the 30% partition, our method cor-
rectly predicts 43 and 26% of the TPs in the HS and MM
datasets, respectively. The corresponding figures for PITA,
MIRANDA and TARGETSCAN are 19, 12 and 20% for
the HS dataset and 14, 15 and 21% for the MM dataset.
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Table 1. Comparison of the performance of MiREN with that of widely used methods

Partitions TP TN FP FN Accuracy Precision AUC

A HS dataset
Top10 and Bottom10 PITA 14 14 7 7 0.67 0.67 0.72

MIRANDA 10 13 11 8 0.55 0.48 0.54
TARGETSCAN 15 14 6 7 0.69 0.71 0.71
MiREN 20 15 1 6 0.83 0.95 0.84
MiREN ∩ PITA - 2 - - - -

Top20 and Bottom20 PITA 29 25 13 17 0.64 0.69 0.67
MIRANDA 25 20 17 22 0.54 0.60 0.54
TARGETSCAN 26 21 16 21 0.56 0.62 0.62
MiREN 34 25 8 17 0.70 0.81 0.78
MiREN ∩ PITA 8 9 3 2 0.77 0.73

Top30 and Bottom30 PITA 42 40 21 24 0.65 0.67 0.66
MIRANDA 41 30 22 33 0.56 0.65 0.54
TARGETSCAN 40 28 23 35 0.54 0.63 0.57
MiREN 51 34 12 29 0.67 0.81 0.73
MiREN ∩ PITA 13 17 7 6 0.70 0.65

B MM dataset
Top10 and Bottom10 PITA 13 15 4 2 0.82 0.76 0.81

MIRANDA 12 12 5 5 0.71 0.71 0.69
TARGETSCAN 12 12 5 5 0.71 0.71 0.69
MiREN 11 15 6 2 0.76 0.65 0.80
MiREN ∩ PITA 1 3 - - -

Top20 and Bottom20 PITA 23 26 11 8 0.72 0.68 0.77
MIRANDA 24 21 10 13 0.66 0.71 0.69
TARGETSCAN 22 25 12 9 0.69 0.65 0.70
MiREN 23 28 11 6 0.75 0.68 0.77
MiREN ∩ PITA 11 8 1 1 0.90 0.91

Top30 and Bottom30 PITA 35 35 17 17 0.67 0.67 0.74
MIRANDA 34 30 18 22 0.62 0.65 0.65
TARGETSCAN 33 36 19 16 0.66 0.63 0.69
MiREN 34 38 18 14 0.69 0.65 0.74
MiREN ∩ PITA 16 14 3 2 0.86 0.84

Accuracy is defined as (TP + TN)/(TP + FP + FN + TN) and Precision as TP/(TP + FP). (A) Results on the HS dataset. (B) Results on the MM dataset.
The MiREN ∩ PITA rows report targets predicted by both MiREN and PITA in the corresponding partitions. Best performances for each partition are
highlighted in bold.
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Figure 4. Venn diagram showing the number of true target sites correctly predicted in the Top30 and Bottom30 partitions by the different methods. The
plot shows the number of true target sites correctly predicted by the different methods in the HS (A) and MM (B) datasets. MiREN predicts 39 and 26%
of the TPs in the HS and MM datasets. The corresponding figures for PITA, MIRANDA and TARGETSCAN are 19, 12 and 20% for the HS dataset and
14, 15 and 21% for the MM dataset.
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In Table 1 we also show the quality of the predictions
resulting from the intersection of the PITA and miREN
method (i.e. for the cases where the two strategies agree).
In this case we obtain rather high accuracy and precision,
obviously at the expense of a substantial loss in coverage.
This suggests that miREN can be used to filter the predic-
tions obtained by PITA.

DISCUSSION

Widely used methods for miRNA targets prediction take
advantage of the sequence properties to identify potential
miRNA target sites. Here we described a different approach
that can complement the existing ones, especially since it is
able to identify a larger fraction of TPs.

The overall procedure is rather computationally expen-
sive. We performed a benchmark test by modeling 40 mirna-
target pairs randomly selected from our datasets. The total
computation time for the benchmark test was 46 h on a ma-
chine with eight threads and 16GB of RAM, the time re-
quired for individually predicting the best structure in each
case is shown in Supplementary Figure S1.

The above implies that MiREN is not suitable for
transcriptome-wide screenings, but, in our opinion, can
be effectively used as a filter to assess the reliability of a
sequence-based prediction of a miRNA site prior to per-
form time consuming and expensive experiments. Indeed,
as mentioned before, the method can reach very respectable
accuracy and precision when used on the subset of sites pre-
dicted by PITA and therefore be instrumental in prioritizing
experiments.

Last but no least, our work highlights that the AGO pro-
tein plays a relevant role in the selection of the correct target
site of a miRNA.

The method is available and can be downloaded together
with the complete runs of some examples of the mod-
eled target sites at the URL: http://circe.med.uniroma1.it/
MiREN.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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