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ABSTRACT

RNA-binding proteins (RBPs) have been estab-
lished as core components of several post-
transcriptional gene regulation mechanisms. Exper-
imental techniques such as cross-linking and co-
immunoprecipitation have enabled the identification
of RBPs, RNA-binding domains (RBDs) and their reg-
ulatory roles in the eukaryotic species such as hu-
man and yeast in large-scale. In contrast, our knowl-
edge of the number and potential diversity of RBPs
in bacteria is poorer due to the technical challenges
associated with the existing global screening ap-
proaches. We introduce APRICOT, a computational
pipeline for the sequence-based identification and
characterization of proteins using RBDs known from
experimental studies. The pipeline identifies func-
tional motifs in protein sequences using position-
specific scoring matrices and Hidden Markov Mod-
els of the functional domains and statistically scores
them based on a series of sequence-based features.
Subsequently, APRICOT identifies putative RBPs and
characterizes them by several biological properties.
Here we demonstrate the application and adaptability
of the pipeline on large-scale protein sets, including
the bacterial proteome of Escherichia coli. APRICOT
showed better performance on various datasets com-
pared to other existing tools for the sequence-based
prediction of RBPs by achieving an average sensitiv-
ity and specificity of 0.90 and 0.91 respectively. The
command-line tool and its documentation are avail-
able at https://pypi.python.org/pypi/bio-apricot.

INTRODUCTION

Ribonucleoproteins and RNA-binding proteins (RBPs) are
important post-transcriptional regulators in several pro-

cesses such as, RNA splicing, transport, localization, trans-
lation and stabilization. Such regulatory mechanisms in-
volve brief interactions or stable bindings of regulatory
RNAs with RBPs, which are structurally and functionally
important for various cellular processes. Due to develop-
ments in high-throughput mass-spectrometry and sequenc-
ing approaches, it is technically possible to perform global
analyzes to comprehensively catalog RBPs in an organism.
Several studies have been conducted to identify and char-
acterize RBPs as post-transcriptional regulators in human,
mouse and yeast (1–6). More than 1000 eukaryotic RBPs
have been described to contain conserved amino-acid mo-
tifs or RNA-binding domains (RBDs), which serve as RNA
binding sites (1,7). A large number of these RBDs are classi-
fied based on their RNA-binding characteristics as classical
RBDs and non-classical RBDs (1,8) based on their identi-
fication in several RBPs or few well-characterized ribonu-
cleoproteins respectively. Additionally, a small number of
RBPs lacking known RNA-binding motifs have been iden-
tified, which in most cases rely on intrinsically disordered
domains for their interaction with RNAs (1). Moreover,
numerous structures of protein–RNA complexes have also
been solved experimentally, providing biophysical informa-
tion on the interaction between nucleic acids and amino
acids.

The developments in RNA and RBP research have pro-
vided reliable resources for the advancements of compu-
tational methods for the identification of similar RBPs
in different genomes. Bioinformatic approaches have been
established to predict and characterize known RBPs us-
ing sequence-based features, such as biochemical proper-
ties, structural properties and their evolutionary relation-
ship (9–11). A few computational tools such as SPOT-Seq
(10), RNApred (12) and catRAPID signature (13) allow
the identification of RBPs directly from the primary se-
quences of proteins. Other computational methods, such
as RNAProB (14), BINDN+ (15) and RNABindRPLUS
(16) have been developed to characterize RBPs by predict-
ing RNA-binding residues derived from the known protein–

*To whom correspondence should be addressed. Tel: +49 931/3184279; Fax: +49 931/3182578; Email: konrad.foerstner@uni-wuerzburg.de
Correspondence may also be addressed to Malvika Sharan. Email: malvika.sharan@uni-wuerzburg.de

C© The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/45/11/e96/3059657 by guest on 09 April 2024

https://pypi.python.org/pypi/bio-apricot


e96 Nucleic Acids Research, 2017, Vol. 45, No. 11 PAGE 2 OF 13

RNA structures. Such tools can also be used to identify
RBPs when RNA-binding residues in the query proteins are
recognized. Since these methods are computationally ex-
pensive and have been trained on specific subsets of RBP
structures, they do not perform equally well on heteroge-
neous datasets (17). For example, RBRIdent (18) is a re-
cent approach that utilizes several biological features for
an improved sequence-based prediction of RNA-binding
residues, which, like many other tools, performs well only
on specific datasets (17).

Since the experimental techniques established for the eu-
karyotic systems cannot be directly applied to bacterial sys-
tems without their intensive optimization, there is a lack
of a system wide study of RBPs in bacteria (19). Current
knowledge of the RBPs in bacterial species is restricted
to only a few proteins such as Hfq and CsrA, which to-
gether with their targets are an integral part of large post-
transcriptional regulons (20–24). In contrast to the lim-
ited number of RBPs in bacteria, several hundreds of non-
coding RNAs have been discovered that are linked to vari-
ous regulatory processes such as expression of specific reg-
ulons and transcription factors via interactions with mR-
NAs and proteins (20). In order to understand the mech-
anisms involved in such RNA-regulated events, it is cru-
cial to quantify and characterize the proteins that interact
with these regulatory RNAs. Based on the experimentally
derived RBPs from all the domains of life, computational
methods can be developed that are capable of screening
large protein sets.

We report APRICOT, an integrated pipeline for the
sequence-based identification of RBPs in complete pro-
teome sets of both eukaryotic and bacterial species. The
pipeline characterizes a protein as RBP on the basis of
experimentally annotated functional motifs and domain
families such as RBDs. APRICOT measures similarity be-
tween the predicted RNA-binding site in the query proteins
and their corresponding reference domains based on the
sequence-based features and performs statistical analyzes.
This tool is built upon a broad knowledge and sophisticated
computational approaches in the field of functional motif
discovery and our experiences of working with RBPs in bac-
teria. The pipeline has been trained and tested on several
test sets from protein databases and compared with previ-
ously described tools for RBP predictions. By analyzing the
complete proteomes of human and Escherichia coli (strain
K-12) we demonstrate the ability of the pipeline to process
large datasets including bacterial proteomes. Additionally,
by easily adapting the pipeline for the identification of ki-
nases, we demonstrate its application in the characterization
of proteins by other functional classes as well.

MATERIALS AND METHODS

Databases and the tools

APRICOT requires a set of query proteins as input for
which the presence of RBDs should be determined. The ba-
sic information, e.g. amino acid sequences and taxonomy
data are retrieved from UniProt Knowledgebase (25). In
addition, a reference domain set is collected from domain
databases based on functional classes specified by the users.

The domain resources used in this study are Conserved
Domain Database (CDD) (26) and InterPro (27), which
consist of predictive models and signatures representing
protein domains, families and functional sites from multi-
ple publically available databases. CDD includes domain
entries as position-specific score matrices (PSSM) that are
generated from multiple sequence alignment of represen-
tative amino-acid sequences obtained from several domain
databases, namely Pfam (28,29), TIGRFAM (30), SMART
(31), COGs (32), several NCBI-curated domains like PRK
or Protein Clusters (33) and multi-model superfamilies of
proteins (26). For the identification of domains in a given
protein sequence, the PSSM entries in CDD are queried via
reverse position-specific basic local alignment search tool
(RPS-BLAST), a variant of popular position-specific itera-
tive BLAST (PSI-BLAST) (34). CDD (v3.14) contains an-
notations for 50 648 domains where entries from every do-
main resource are assigned an individual PSSM identifier
(id) allowing redundant entries of domains.

InterPro is a similar consortium that consists of do-
main entries as predictive models and signatures obtained
from different databases, namely Pfam (28,29), TIGR-
FAMs (30), SMART (31), PROSITE patterns and profiles
(35), HAMAP (36), PRINTS (37), PIRSF (38), ProDom
(39), PANTHER (40), GENE3D (41) and SUPERFAM-
ILY (42). Most of these databases contain domain en-
tries as Hidden Markov Models (HMM) (43) probabilis-
tic models derived from sequence alignments, which cap-
ture information on both substitution and indel frequen-
cies. These domains can be queried using tools like HM-
MER3 (44). Few member databases contain PSSM domain
models built from the multiple alignments of representative
amino-acid sequences from the UniProt protein database,
which can be queried by BLAST-based methods or single
model search algorithm (45), which have been integrated
into InterProScan 5 (45). As of May 2016, InterPro (v.57)
contained 29 175 domain models of which several are an-
notated with gene ontology (GO) terms (46).

InterPro and CDD consortiums have only three
databases in common (Pfam, TIGRPFAM and SMART)
that account for about 20 000 domains. Technically, the
PSSM based approach by CDD is built upon ungapped
motifs, whereas the HMM probabilistic models of InterPro
can handle motifs with insertions and deletions. By com-
bining the predictive abilities of the CDD and InterPro
consortiums, APRICOT provides a broader scope for
domain characterization.

Workflow

APRICOT involves different modules for the identification
and characterization of RBPs, which can be explained by its
program input, analysis modules and program output (Fig-
ure 1). These modules are assembled into a command-line
tool, for which the individual modules accessible through
subcommands are specified below.

Program input. APRICOT requires two inputs for its ex-
ecution: query proteins and the functional class of interest
(Figure 1). The query proteins can be provided either as a
list of gene ids, protein ids or amino acid sequences. The

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/45/11/e96/3059657 by guest on 09 April 2024



PAGE 3 OF 13 Nucleic Acids Research, 2017, Vol. 45, No. 11 e96

Figure 1. Architecture of APRICOT. (A) A simplified overview of the processes involved in APRICOT analysis. (B) Flow-chart showing different com-
ponents of APRICOT pipeline for the characterization of RNA-binding proteins (RBPs). Modules for the primary analysis involving the processing of
user-provided inputs (orange boxes) and the downstream analysis, which includes modules for the identification of RBPs candidates (gray box) and the
modules for the annotation and feature-based scoring of putative RBPs (purple boxes). APRICOT generates a comprehensive results for each analysis,
which are represented by means of tables and visualization files (green box).

query search can be limited to a specific species by providing
a corresponding taxonomy identifier. Since APRICOT has
been designed to process multiple queries, the motif predic-
tion can be carried out for the functional characterization of
an entire proteome set corresponding to a taxonomy id. As
the second input, users must provide a list of terms or key-
words like names of domain families, Pfam ids or MeSH
terms depending on the functional classes of interest, re-
ferred hereon as domain selection keywords. APRICOT uses
a string-based search to select relevant entries from the do-
main resources, which are further utilized for identifying
proteins that contain these domains. Optionally a set of
terms called result classification keywords can be provided
for the classification of predicted domains into smaller sub-
sets in order to help users in navigating large datasets or
classifying proteins by the functional similarity.

Modules for domain prediction and annotations. The core
functionalities of APRICOT involve a multi-step process
for the selection of proteins by identifying functional sites
or domains of interest in their sequences followed by their
annotations by various biological features. We have used
a multifunctional human protein PTBP1 (47) as an exam-
ple in order to describe the different modules involved in
domain prediction and annotations in Figure 2. PTBP1 is
an mRNA regulator that contains several repeated RBDs,
specifically a highly abundant eukaryotic domain called
RNA Recognition Motifs or RRMs (48).

Selection of reference domain set. A string based selection
of domain families and functional motifs are carried out

using the domain selection keywords to create a reference
domain set. For this purpose, APRICOT scans each do-
main entry in the CDD and InterPro consortium and selects
those domains that contain at least one of the user-provided
terms in their annotations, such as description and GOs. If
a term comprises multiple words, only those domains that
have all words co-occurring in the same context are selected.
APRICOT also allows the usage of regular expressions for
the domain selection (see online documentation for details).

In this analysis, we considered the domains obtained
from the human interactome study (1,4) as the comprehen-
sive resources for building a reference RBD set. To report
high confidence RBPs by avoiding the selection of ambigu-
ous and functionally irrelevant domains, we included all the
classical RBDs in domain selection keywords (Figure 2A). In
order to account for ribosomal proteins, 109 terms related
to RNA-binding ribosomal domains (4) were included in
domain selection keywords. An additional term ‘RNA-bind’
was introduced to include any additional RBDs in the ref-
erence set that are well described as RBDs in databases but
are not classified under classical RBDs (Figure 2B). Using
these domain selection keywords, a total of 4797 unique
RBD entries were curated from CDD (1995 entries) and In-
terPro (2802 entries) referred as reference domain set, which
was used for filtering domain predictions in the downstream
analysis (Supplementary Table S6).

Domain prediction. In this step query amino acid se-
quences are characterized with all the possible domains
from the databases without filtering a certain functional
class. The sequences are subjected to domain prediction us-
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Figure 2. Different components of APRICOT for the characterization of RBPs are explained using an example of a human protein, PTBP1. (A) Bar chart
showing the distribution of the known RNA binding domains collected from the Conserved Domain Database (CDD) and the InterPro consortium. Several
of these domains were selected by more than one domain selection term. (B) Additional domains selected by RNA-binding ribosomal domains and the term
‘RNA-bind’. (C) Domain entries from CDD and InterPro database, which were identified by APRICOT in the PTBP1 human protein. (D) A schematic
workflow illustrating different processes involved in feature-based scoring resulted from a comparative analysis of RRM-1 domain (RRM1 PTBP1) and
the corresponding domain identified in PTBP1 human protein. As shown in the schema, the features involved in this analysis have been classified into
four categories, each comprising of specific set of sequence-based features. The features are scored by Bayesian probabilities in a range of 0–1, where 1
signifies a complete match between the reference and the domain identified in the query. (E) The four RRM sites in PTBP1 protein corresponding to
different RRM entries from CDD and InterPro. (F) Visualization of additional annotations of PTBP1 protein by secondary structure and probability of
sub cellular localizations generated by APRICOT.
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ing RPS-BLAST and InterProScan to query their CDD and
InterPro respectively (Figure 2C). By default, APRICOT
uses both CDD and InterPro for the domain predictions,
however users can choose one of the databases to reduce the
run-time. Since the primary requirement of this module is
the amino acid sequences of the query proteins in FASTA-
format, users can analyze novel sequences even when the
gene/protein ids are unknown or lacking.

Selection of proteins by functional domains of interest. This
module allows the selection of relevant proteins from the
query sets based on the predicted domains obtained in the
previous step. The proteins are considered as candidates if
they contain one of the domains of interest. Cut-offs for var-
ious statistical parameters (discussed below) can be defined
for the selection of the predicted domains to identify such
candidates, which are further annotated with additional in-
formation, such as ontology, pathway and cross-references
to different databases.

Feature-based scoring. This module ranks the domain pre-
dictions by their relevance. For this purpose, a compara-
tive analysis is carried out between the protein region that
are predicted in the candidate proteins as domain of in-
terest and the corresponding fragments of their reference
consensus sequence. This comparison is done for a num-
ber of sequence-based features namely chemical properties
(average mass, pKa and pI), alignment scores calculated by
Needleman–Wunsch algorithm (primary sequence and sec-
ondary structure), Euclidean distance of protein composi-
tions (di-peptides, tri-peptides and physico–chemical prop-
erties) and measure of similarity between predicted sites and
reference domains (for details see Supplementary Material
S1A). A relative similarity between the predicted functional
site and the reference domain consensus for these sets of fea-
tures are calculated. We use Bayesian probabilistic score in
a range from 0 to 1 to represent the functional potential of
the predicted motifs, where 1 indicates the highest proba-
bility (Figure 2D). To further estimate the statistical signifi-
cance of a predicted domain, P-values are calculated for the
sequence-based features except for the chemical properties.
These probabilistic scores and P-values allow users to select
proteins with high confidence motif predictions.

Additional annotations of the selected proteins. Upon se-
lection of proteins of functional relevance, users can choose
to further annotate these proteins by information like sub-
cellular localization by PSORTb (49), 8-state secondary
structure by RaptorX (50), additional GO allocation and
tertiary structure homologs (Figure 2E and F; further de-
tail in the Supplementary Material S1B).

Program output. A comprehensive result is returned by
APRICOT at each step of analysis and stored with rele-
vant information that serves as the input for the subsequent
steps. For example, the data for predicted domains can be
repeatedly used for extracting proteins of different func-
tional classes. The selected proteins are provided in a tabular
format with the statistics on domain prediction and corre-
sponding annotations obtained from UniProt and the com-
parative analysis (Supplementary Figure S2). To provide an

easy navigation through the large-scale analysis data, the
results can be classified using result classification keywords,
into smaller subsets of proteins with enzymatic activities or
specific functional aspect of proteins. Additionally, graphs
and charts are provided to aid the visualization of the re-
sulting data.

Training sets

For the identification of the most suitable parameters and
their corresponding cut-offs for domain selection, training
sets were collected from the manually curated and reviewed
subset of the UniProt Consortium––SwissProt (51). A posi-
tive set of proteins was selected by using the keyword ‘RNA-
binding’. A second set of proteins was selected by using all
the terms indicating functional association of proteins with
nucleic acid. A third set comprising all the uncharacterized
and hypothetical proteins from the database was selected.
All these sets of proteins were subtracted from the Swis-
sProt data and the remaining data consisting of 271 219
proteins were considered as the resource for negative set.
All the redundant protein sequences from both positive and
negative sets were removed by clustering the sequences us-
ing BLASTclust (52) using 90% of sequence identity. A total
of 4779 non-redundant (nr) proteins were compiled in the
positive set and a set of 5834 proteins were selected for neg-
ative set, referred to henceforth as SwissProt-positive and
SwissProt-negative respectively (Supplementary Table S4).

Test sets

To consistently evaluate the sensitivity (SN), specificity (SP)
and accuracy (ACC) of APRICOT, a pair of positive and
negative set was obtained from NCBI Reference Sequence
(RefSeq), a nr database (53), using the terms ‘RNA-bind’
and ‘periplasmic’ respectively. The former term retrieved
4470 RBPs proteins from various organisms. The term
‘periplasmic’, which retrieved 5836 bacterial periplasmic
proteins, was considered as a resource for non-RBDs based
on the assumption that the majority of periplasmic proteins
lack RBDs. Using BLASTclust from the NCBI–BLAST
package (52) the proteins in each set were clustered by 75%
sequence similarity, which resulted into 687 proteins in pos-
itive set and 1199 proteins in negative set, henceforth re-
ferred as nr-positive and nr-negative respectively. Impor-
tantly, these datasets did not contain proteins that were in-
cluded in the training sets (swissprot-positive and swissprot-
negative).

An additional pair of positive and negative set was ob-
tained from RNApred web server (12), which will be re-
ferred as RNApred-positive (377 proteins) and RNApred-
negative (355 proteins). The SN of the pipeline was tested
on other positive datasets collected from various resources,
which are RBPDB (54), RNAcompete (7), RBRIdent (18),
rbp86 (55), rbp109 (55) and rbp107 (55) consisting of 1,101,
205, 281, 86, 109 and 107 proteins respectively. The datasets
are listed in detail in the Supplementary Table S3.

In order to show practical applications of APRICOT as
a tool for large-scale data analysis like complete proteome
sets, two model organisms were evaluated on the genomic
scale. E. coli K12 genome (taxonomy id: 83333) was used as
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an example for bacterial species and Homo sapiens (taxon-
omy id: 9606) was used as an example for eukaryotic species
consisting of 4479 and 70 076 protein entries in UniProt
database respectively. The positive RBP sets were selected
from both the proteomes to quantify the ACC with which
APRICOT identifies RBPs in these genomes. We consid-
ered 1535 nr human proteins as positive set (Supplemen-
tary Table S6), which were proposed as RBPs in the global
experiment-based studies or were reported by independent
publications (1–4). So far no global study has been reported
for the genome wide identification of RBPs in bacteria. Be-
side ribosomal proteins, only a few proteins such as Hfq
(20), CsrA (22), YhbY (56), SmpB (57), ProQ (58,59), CspA
(60) and CspB (60) have been reported as RBPs in E. coli.
Hence, a larger RBP reference of E. coli K12 was retrieved
from UniProt database using GO term GO: 0003723) for
RNA-Binding that comprised of 160 proteins including the
known RBPs (Supplementary Table S7).

Assessment criteria

The statistical parameters for domain predictions in the
training set and the performance of the tool on the test
sets were evaluated by using standard binary criteria of SN,
SP, ACC, Matthews Correlation Coefficient (MCC) and F-
measure, using the following equations where TP, FN, TN
and FP are true positive, false negative, true negative and
false positive respectively.

SN = TP
TP + FN

SP = TN
TN + FP

ACC = TP + TN
TP + TN + FP + FN

MCC = TP × TN − FN × FP
√

(TP + FN) × (TP + FP) × (TN + FP) × (TN + FN)

Fmeasure = 2 × SN × SP
SN + SP

Receiver operating characteristic (ROC) curve and their
area under the curve (AUC) was used as a criterion for ACC,
which was plotted using false positive rate (FPR or 1-SP)
and true positive rate (TPR or SN).

RESULTS AND DISCUSSION

Parameter optimization for the selection of predicted do-
mains

The training sets, SwissProt-positive (4779 proteins) and
SwissProt-negative (5834 proteins), were analyzed in order
to evaluate the ability of the method to accurately differ-
entiate RBPs from non-RBPs. For this evaluation, we used
statistical parameters of sequence similarity, residue iden-
tity, residue gap and E-value of the domain prediction to
describe the similarity between a query and its correspond-
ing reference. Unlike residue identity, sequence similarity

accounts for the edit operations like positive substitutions,
thereby capturing the secondary structure information at
a better resolution. An E-value for searches of homologs
against a database represents the number of times a given
match in a sequence is obtained purely by chance, meaning
that a low E-value reflects a higher significance of database
match. We describe an additional parameter namely the do-
main coverage, which is the percentage of the length pre-
dicted as domain in the query compared to the original
length of reference domain. Generally, lower domain cover-
age suggests a random similarity of the predicted domain,
whereas higher domain coverage reflects a higher potential
of a domain to be functionally relevant.

Initially we investigated the analysis of the training sets
by naı̈ve approach, which involved InterProScan and CDD-
based batch-search methods in their default settings. Anal-
ysis by InterProScan achieved a TPR of 0.77 and CDD
achieved a TPR of 0.79. Several queries in CDD based
method were annotated as RBD containing proteins with
coverage lower than 10% and sequence similarity lower than
5%, which indicated poor conservation of the functional do-
mains. Similarly, InterProScan failed to characterize several
RBPs due to its stringent filtering criteria. Interestingly, sev-
eral RBPs were reported by only one of the methods, hence
when the results from both the analyzes were combined, an
increased TPR of 0.82 was achieved. This clearly showed the
potential to achieve higher SN by the combined approach,
which is implemented in APRICOT. We further analyzed
the training datasets by APRICOT, which predicted thou-
sands of RBD entries in both positive and negative sets that
were evaluated using systematically varying cut-offs of each
parameter to optimize the identification of RBPs. The cor-
responding ROC curves were generated and optimal cut-
off ranges were defined by identifying the values of the pa-
rameters that show a optimal TPR (closer to one) and FPR
(closer to zero) with high ACC (closer to one), resulting into
statistically significant AUC, MCC and F-measure (Figure-
3A and Supplementary Table S4).

For the coverage of the predicted domains, the minimum
cut-off was recorded to be 39% that attained an ACC, TPR,
FPR, MCC value and F-measure of 0.81, 0.87, 0.24, 0.63
and 0.81 respectively. Using a higher cut-off of 60% a lower
TPR 0.81 but a better FPR 0.16 was obtained, which con-
sequently shows better ACC and F-measure. Similarly, the
optimal threshold for the minimum cut-off of sequence sim-
ilarity was recorded to be 24%, which attains ACC, TPR,
FPR, MCC value of and F-measure of 0.81, 0.83, 0.20, 0.63
and 0.81 respectively. Similarly, as shown in the ROC curve,
by using a minimum cut-off of 15% for the residue identity
and at a maximum E-value cut-off of 0.01, high accuracies
of 0.81 and 0.82 were achieved. The decision values of the
parameters were further ranked, individually and in com-
binations, for all the predicted RBD entries in the training
sets, we generated ROC curves and AUCs to identify their
marginal contributions on overall ACC in detecting RBDs
(Supplementary Figure S5).

This evaluation led to the selection of domain coverage
and sequence similarity as the default parameters for the
APRICOT analysis with their minimum cut-offs of 39 and
24% respectively. The analysis by APRICOT using the se-
lected parameters with their defined cut-offs achieves a TPR
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Figure 3. Selection of parameter cut-offs for RBP selection and the performance assessment of APRICOT on different datasets. (A) The ROC curves were
generated for the domain prediction parameters of domain E-value (magenta), coverage (blue), residue gap (yellow), residue identity (green) and similarity
(red). The optimal ranges for the parameters were defined for the selection of predicted domains at a considerably high ACC (>0.8 as indicated by the
dashed lines) on the training sets (SwissProt-positive and SwissProt-negative). The minimum cut-off for most contributing parameters, percentage domain
coverage and percentage similarity were recorded to be 39 and 24% respectively, which together attained an ACC of 0.82. (B) The bar chart illustrates the
performance of APRICOT on different datasets by means of sensitivity (SN) (shown in black) and SP (shown in red). APRICOT was evaluated on eight
positive datasets and two negative datasets, which showed an average SN of 0.90 and an average SP of 0.91.

of 0.85, which is higher than the naı̈ve approach. The MCC
and F-measure achieved for the APRICOT analysis of the
training sets are 0.64 and 0.82 respectively. This successfully
demonstrates the efficiency of the selected parameters and
their cut-offs in identifying RBPs with high ACC of 0.82.

Assessment of the pipeline performance

A variety of positive datasets were analyzed by APRICOT,
on which the pipeline achieved SN in a range of 0.81–1 (Fig-
ure 3B) demonstrating its high efficiency in domain-based
characterization of RBPs. A more detailed evaluation of the
pipeline performance was carried out on the paired dataset
of nr-positive and nr-negative, and RNApred-positive and
RNApred-negative (Table 1).

To demonstrate the efficiency of APRICOT on large-
scale data, the complete proteomes of H. sapiens and E. coli
K-12 were analyzed. The human proteome set containing
70 076 UniProt protein entries was subjected to domain pre-
diction. A known set of 1535 nr RBPs was used as positive
reference set (4) of which 25 RBPs have not been defined
with any RBDs. The reference domain set was considered
for the initial identification of RBPs using pre-defined cut-
offs for the aforementioned default parameters. Upon fil-
tering of proteins by predicted domains, 1091 from the ref-
erence RBP set were reported with at least one RBD from
the reference domain set, showing a SN of 0.71. By includ-
ing the non-classical RBDs in the reference domain set, 68
more proteins could be recognized as RBPs and 201 RBPs
could be recognized additionally by further including do-
mains listed as RBDs unknown (Supplementary Table S6).
The remaining 180 proteins that are not identified as RBPs

by APRICOT do not contain RBDs and are listed as RNA-
related proteins by Gerstberger et al. (4). The data for this
analysis has been provided in the Supplementary Table S6.

A similar analysis of the complete proteome of E. coli
K-12 was carried out by APRICOT using the default pa-
rameters with the reference domain set (Figure 2A and B).
In the initial characterization of RBPs, 673 sequences were
selected as RBP candidates by RPS-BLAST and 502 se-
quences by InterProScan analysis. These proteins account
for 806 RBP candidates, of which 369 proteins were iden-
tified as putative RBPs by both the methods. From the full
proteome set, APRICOT could successfully identify all the
known E. coli RBPs. Specifically, Hfq, CsrA, YhbY, SmpB,
ProQ, CspA and CspB were identified due to highly con-
served RBDs in their sequences, which have been previously
reported and characterized for their regulatory roles (Ta-
ble 2). Furthermore, from the GO term derived 160 RBPs
from E. coli K-12, 129 were identified correctly by APRI-
COT that demonstrated an SN of 0.80. APRICOT failed
to identify the remaining 24 proteins as RBPs because ei-
ther the predicted RBDs could not pass the parameter fil-
ters or the reference domain set lack specific domains as-
sociated with these proteins. These unidentified RBPs in-
cluded Clustered Regularly Interspaced Short Palindromic
Repeats (CRISPR) system Cascade subunits, toxic proteins
and several enzymatic proteins like ribonucleases, tRNA-
dihydrouridylases and mRNA interferases.

The feature-based scores were calculated for each do-
main selected from the predicted data, which facilitate in
differentiating highly reliable RBD predictions from the low
confidence RBD predictions. Query proteins that consist
of high confidence RBDs were further annotated with ad-
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Table 1. Performance of APRICOT on positive and negative pair of datasets obtained from NCBI database and RNApred method

Datasets RNApred NCBI (nr)

Dataset types
Positive set 376 proteins 687 proteins
Negative set 355 proteins 1199 proteins

Measures of performance assessment
TP proteins 344 proteins 657 proteins
FP proteins 47 proteins 119 proteins
TPR (SN) 0.96 0.97
FPR (1-SP) 0.10 0.13
Accuracy 0.93 0.92
MCC 0.86 0.85
F measure 0.93 0.92

Table 2. List of known RBPs in E. coli

Protein name Reference Domains Domain coverage (%) Residue similarity (%) Residue identity (%)

Hfq Chao et al. (21) RRM RBM7 41.33 25.33 17.33
CsrA Romeo et al. (22) CsrA 84.06 72.46 49.28
ProQ Chaulk et al. (58),

Smirnov el al. (59)
ProQ/FINO family 100.00 66.67 55.26

YhbY Ostheimer et al. (56) RNA bind YhbY 97.89 89.47 80.00
SmpB Wower et al. (57) SsrA-binding domain 99.31 67.36 46.53
CspA Phadtare et al. (60) Cold shock domain 98.51 77.61 67.16
CspB Phadtare et al. (60) Cold shock domain 97.01 73.13 67.16

These RBPs consist of well-defined RBDs. Hence, as shown in the table they were predicted to have higher coverage and similarity when compared with
their reference domains.

ditional information, namely subcellular localization, sec-
ondary structures, GO terms and tertiary structures (Sup-
plementary Table S7).

These proteome-wide analyzes clearly demonstrate a
high SN of the pipeline in identifying RBPs based on func-
tional domains. However, it also shows a limitation re-
lated to the dependence of query characterization on the
functional domains and motifs selected from the databases
based on the user-provided terms.

Identification of other functional classes by APRICOT

Importantly, in addition to the application for the func-
tional identification of RBPs, APRICOT modules can be
easily adapted for one or multiple other functional classes.
As a part of the critical assessment of function annotation,
a project to assess the methods for computational annota-
tion of protein functions (61), APRICOT was successfully
used to annotate bacterial datasets comprising of more than
1 million proteins by a wide number of biological functions
(arXiv: 1601.00891 [q-bio.QM]). In order to emphasize the
aspect of APRICOT as a tool for the characterization of
other functional classes of proteins, we chose kinase pro-
teins from E. coli (strain K-12) as the reference set. Kinases
are known to catalyze the transfer of phosphate groups to a
substrate molecule using adenosine triphosphate as a phos-
phate donor. In UniProt database, 110 proteins from E. coli
(strain K-12) are annotated with various kinase activities
(for e.g. Serine/threonine-protein kinase, Signal histidine
kinase and Shikimate kinase) and are tagged by the GO
term (GO: 0016301) for kinase activity.

The APRICOT pipeline was supplied with the term ‘ki-
nase’, for the selection of reference domain set and the
pipeline was applied to the kinase proteins (Supplementary

Table S8). Out of 110, 106 kinase proteins were identified
correctly by APRICOT, achieving an SN of 0.96. The set
of proteins that was not selected by APRICOT, contain
kinase-associated domains that were not present in the ref-
erence domain set due to the pipeline domain selection con-
straints. This analysis suggests that APRICOT is efficient in
the characterization of proteins based on pre-defined set of
domains associated with functional classes other than RBPs
as well. However, it should be noted that the ACC of the
results depends on the choice of terms for the domain selec-
tion.

Comparative assessment of APRICOT with other RBP pre-
diction tools

Although there are several approaches developed for the
prediction of nucleic acid binding sites, we could compile
only four tools described for their original aim to pre-
dict RBPs, namely SVMprot (62), RNApred (12), SPOT-
Seq-RNA (63,64) and catRAPID signature (13). SVM-
prot was designed to predict RBPs by Support Vector Ma-
chine (SVM)-based classification of proteins primary se-
quences into functional families (54 Pfam families) and it
was made available as a web server. Since the tool is no
longer available, we could not include it in our compara-
tive analysis. RNApred uses SVM models that are devel-
oped with amino-acid compositions and PSSMs. SPOT-
Seq-RNA, uses structure homology based predictions of
the RBPs and also allows the identification of the binding
residues and binding affinities using SPARKS X (65) and
DRNA tools (64) respectively. The fourth tool, catRAPID
signature, is a SVM based method to identify RBPs and
their binding regions based on physico–chemical properties.
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Table 3. Comparative evaluation of APRICOT with other RBP prediction tools: catRAPID signature, SPOT-Seq-RNA and RNApred

RBP prediction tools APRICOT catRAPID signature SPOT-Seq-RNA RNApred

Main features of the tools
Main criteria for RBP
characterization

RNA-binding motifs and
domain families

Physico–chemical
properties

RBP structure homologs SVM classification by
composition features of
proteins

Additional analysis Sequence-based scoring of
domain (includes
physico–chemical
properties)

Prediction of
RNA-binding regions

RNA-binding residue
prediction and binding
affinity

PSSM based evolutionary
information

Availability Command-line and
Docker image

Web server Web server and
command-line

Web server

Query types Amino-acid
sequences/gene
names/UniProt
protein/taxonomy ids

Amino-acid sequences Amino-acid sequence Amino-acid sequences

Allowed number of query
proteins

Unlimited 100 proteins or total
number of submitted
characters = 100 000

One query at a time Unlimited for composition or
one query at a time for the
PSSM based analysis

Probability scores for
RBPs

Bayesian score (0-1), 1 =
best score

SVM score (Threshold
−0.2)

Z-score SVM score (Threshold −0.2)

Main criteria for RBP
characterization

RNA-binding motifs and
domain families

Physico–chemical
properties

RBP structure homologs SVM classification by
composition features of
proteins

Performance assessment
TP (proteins) 193 125 166 180
FP (proteins) 44 150 6 102
TPR (SN) 0.79 0.51 0.67 0.73
FPR (1-SP) 0.12 0.42 0.02 0.29
ACC 0.83 0.54 0.83 0.72
MCC 0.66 0.1 0.69 0.44
F-measure 0.83 0.54 0.8 0.72

Different features of the tools are listed in the upper part of the table to highlight the main differences and advantages over other tools. The comparative
performance of the tools, shown in the lower part of the table, was assessed using the positive set of RBscore R246 containing 246 proteins (total proteins
from RBscore R130 and RBscore R116) and the negative set of RNApred-negative containing 355 proteins. APRICOT achieved higher overall SN of 0.79
compared to the other tools.

We conducted comparative assessment of APRICOT’s ca-
pabilities with these tools (Table 3).

Unlike other tools, which have been trained or con-
structed on a certain set of reference set, APRICOT is es-
tablished independent of any fixed set of reference because it
selects reference domains for each analysis based on the user
provided keywords. Therefore, it is capable of using any new
RBDs that might be added in the integrated domain sources
in future. APRICOT takes proteins that are predicted with
statistically significant RBDs and scores them in compar-
ison with their reference consensus sequence for various
features using Needleman–Wunsch alignment scores, Eu-
clidean distance and similarity-based scores. At the end, the
scores for each property are combined to obtain a Bayesian
probabilistic score in a range of 0–1, where 1 indicates the
best hits. The results from all the intermediate steps are pro-
vided to allow users to evaluate different statistical aspects
of their study.

For an unbiased evaluation of the relative perfor-
mances of APRICOT with RNApred, SPOT-Seq-RNA and
catRAPID signature, we used two datasets RBscore R130
(130 RBPs) and RBscore R116 (116 RBPs), which are the
training and test sets created for the RBscore SVM ap-
proach in NBench (17). On RBscore R130, APRICOT
achieved a TPR of 0.88 whereas RNApred, SPOT-Seq-
RNA and catRAPID signature attained much lower TPRs
of 0.79, 0.82 and 0.55 respectively. On the RBscore R116,

which is indicated as a challenging set in NBench, APRI-
COT achieved a comparatively low TPR of 0.67, however,
this was still higher than the TPRs achieved by RNApred
(0.66), SPOT-Seq-RNA (0.51) and catRAPID signature
(0.47). We also checked the performances of naı̈ve RPS-
BLAST, which is used for the batch-search of domain in
CDD and InterProScan, which is used for motif predic-
tion in InterPro consortium. On both the datasets the naı̈ve
approaches for domain identification showed lower perfor-
mances compared to their combined performance. Both
the methods in their default setting achieved a TPR of
0.82 on the RBscore R130 by identifying 107 RBPs. On
the RBscore R116, RPS-BLAST and InterProScan showed
performances higher than SPOT-Seq-RNA but lower than
APRICOT and RNApred by achieving TPR of 0.55 and
0.57 respectively.

APRICOT performed better than the other tested tools
in all the assessment metrics used for the evaluation of RB-
score R246 (RBPs from both the datasets) as positive set
and RNApred-negative (355 proteins) by achieving highest
ACC, MCC and F-measure of 0.88, 0.75 and 0.86 respec-
tively (Table 3).

APRICOT versus tools for the prediction of RNA-binding
residues

A comparative assessment of the programs developed for
the prediction of nucleic acid binding sites was carried out in
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Figure 4. APRICOT based analysis of 24 datasets compiled from PDB in the NBench study for the evaluation of the tools for RNA-binding residue
prediction (A) The bar chart showing the SPs achieved by APRICOT on different datasets, including the entire set of 3657 RBPs (NBench 3657 shown in
green). (B) Distribution of RBPs based on the percentage of overlapping RNA-binding residues defined in NBench with the RNA-binding sites identified
by APRICOT. The RNA-binding sites were identified in 3445 of NBench 3657, of which 3304 proteins have more than 70% of their RNA-binding residues
overlapping with the RNA-binding sites. (C) Boxplots showing the SNs achieved by APRICOT in identifying RNA-binding sites (in red) and other RNA-
binding residue prediction tools in identifying RNA-binding residues (in black) on NBench datasets. On all the datasets, APRICOT achieved SNs higher
than or as good as high performing tools.

Nucleic Acid Binding prediction Benchmark (17). Total 16
tools for the prediction of RNA-binding residues, five tools
for the prediction of DNA-binding residues along with sev-
eral datasets obtained from the structures of protein-nucleic
acid complexes were included in this study (available at http:
//ahsoka.u-strasbg.fr/nbench/index.html). The motivation
behind developing APRICOT is noticeably different from
the tools involved in NBench. APRICOT identifies RBPs

among large-scale query sets and further characterizes them
by biological functions, whereas the 16 tools in NBench pre-
dict RNA-binding residues in the pre-defined RBPs. Prac-
tically, APRICOT and these tools can complement each
other by first using APRICOT to identify RBPs and their
corresponding RBDs and then applying the best perform-
ing NBench tools to obtain a high-resolution annotation by
identifying RNA-binding residues. To evaluate the poten-
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tial of this idea, we acquired 3657 PDB entries, consisting
of 24 different RNA related datasets in NBench selected at
a resolution cut-off of 3.5 Å. This dataset was subjected to
analysis by APRICOT and a comparative assessment was
carried out between the identified RBD sites and the nu-
cleic acid binding residues at the distance cut-off of 3.5 Å in
each PDB entry (Supplementary Table S9).

We observed that the RNA-binding residues of 3340
(91%) PDB entries overlap with the APRICOT predicted
RBD sites showing an overall SN of 0.91 (Figure 4A and
B). The NBench tools were ranked by their SNs to iden-
tify RNA-binding residues together with APRICOT for
its ability to identify RNA-binding sites on 24 datasets.
As shown in Figure 4C, APRICOT was among the best
performing tools compared to the other tools in NBench
across the 21 diverse datasets. In agreement with the obser-
vations made for the tools, APRICOT showed a lower SN
on the New R15 set (15 new structures) and RBscore R116
(116 proteins, mentioned as difficult set). Furthermore, un-
like most of the tools that do not show discriminative po-
tential for RNA and DNA binding residues, APRICOT
showed a high SP (0.70) when 1374 DNA binding pro-
teins were included in the analysis. This evaluation demon-
strates that APRICOT’s domain prediction based analy-
sis is an extremely efficient approach to identify RBPs and
their corresponding potential RNA-binding region in the
query sequences. Furthermore, it also implies that the res-
olution of the RBP studies could be enhanced significantly
by first identifying the RBPs using APRICOT, followed by
the analysis with the tools for the identification of RNA-
binding residues in the predicted RBD sites.

CONCLUSIONS

APRICOT is an integrated pipeline for the sequence-based
identification and annotation of the query proteins based on
the functional motifs and domains of interest known from
the experimental data. Notably, here we report APRICOT
primarily as a tool for the sequence-based identification of
RBPs, which uses a consistent set of reference RBDs derived
from large-scale experimental studies. Using several domain
data-resources and associated tools, the domains are pre-
dicted in the queries and only those proteins that contain
domains of interest are further characterized. By involving a
wide range of biological features for the characterization of
functional motifs, the pipeline carries out an intensive com-
parative analysis between the predicted domains and their
respective reference consensus. This comparison is trans-
lated into statistical scores that enable users to differenti-
ate proteins that are predicted to harbor domains of high
similarity with their reference sequences from proteins that
have poorly conserved domains. The proteins are subjected
to annotation by additional biological properties, such as
subcellular localization and secondary structure to get fur-
ther insight into their functional relevance.

The pipeline has been extensively tested on several RBPs
and is optimized for the identification of RBPs in large
datasets, such as complete proteomes of human and E. coli.
For instance, APRICOT could successfully identify the re-
spective motifs of CsrA, ProQ, YhbY and SmpB in E.coli
with domain coverage higher than 80% and residue simi-

larity closer to 70%. In addition to these previously char-
acterized RBPs, APRICOT predicted a number E.coli pro-
teins that can potentially interact with RNAs via RBDs and
hence, could be further validated by experimental studies.

A thorough comparison between APRICOT and the
other RBP prediction tools successfully demonstrated its
superior performance and efficiency in a wide range of
datasets for the identification of RBPs. Furthermore, we
showed that the RBD sites obtained from APRICOT analy-
sis have high overlap with the known RNA-binding residue
sites in RBPs. Hence, we suggest that analysis of APRICOT
can be complemented with the RNA-binding residue pre-
diction tools to achieve a high-resolution binding informa-
tion of RBPs. Due to the automated framework and acces-
sibility of different modules of the pipeline, APRICOT can
be conveniently adapted for the characterization of other
functional classes. In agreement, by applying the pipeline
for the identification of kinase proteins in E. coli, we demon-
strate that the tool is not built on a fixed set of domain infor-
mation, but instead it allows users to characterize proteins
based on the functional classes of their interest.

AVAILABILITY

APRICOT is implemented in Python as a standalone
command-line program, which can be executed on Unix
systems. The tool has been extensively refined based on
the requirements and suggestions by experimental re-
searchers. The source-code for the command-line tool is
available under the ISC license at https://pypi.python.org/
pypi/bio-apricot and the releases are automatically sub-
mitted to zenodo (DOI: https://doi.org/10.5281/zenodo.
322677 for the current version 1.2.7). A Docker image
of the software is available at https://hub.docker.com/r/
malvikasharan/apricot/. Instructions for the usage of this
pipeline are provided in its comprehensive documentation
including test cases and online video tutorials.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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