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ABSTRACT

In microRNA (miRNA) target prediction, typically two
levels of information need to be modeled: the num-
ber of potential miRNA binding sites present in a
target mRNA and the genomic context of each in-
dividual site. Single model structures insufficiently
cope with this complex training data structure, con-
sisting of feature vectors of unequal length as a con-
sequence of the varying number of miRNA binding
sites in different mRNAs. To circumvent this prob-
lem, we developed a two-layered, stacked model, in
which the influence of binding site context is sep-
arately modeled. Using logistic regression and ran-
dom forests, we applied the stacked model approach
to a unique data set of 7990 probed miRNA–mRNA
interactions, hereby including the largest number
of miRNAs in model training to date. Compared
to lower-complexity models, a particular stacked
model, named miSTAR (miRNA stacked model target
prediction; www.mi-star.org), displays a higher gen-
eral performance and precision on top scoring pre-
dictions. More importantly, our model outperforms
published and widely used miRNA target predic-
tion algorithms. Finally, we highlight flaws in cross-
validation schemes for evaluation of miRNA target
prediction models and adopt a more fair and strin-
gent approach.

INTRODUCTION

MicroRNAs (miRNAs) are small, non-coding RNA
molecules that regulate the expression of protein-coding
genes at the post-transcriptional level. Since many impor-
tant developmental and physiological processes are strictly
regulated by miRNAs, it is not surprising that deregulation
of miRNA function has been implicated in the pathogenesis
of many human diseases (1). Understanding miRNA func-
tion has therefore been a major focus of biomedical research
in the past decade.

In the canonical pathway, miRNAs guide a protein com-
plex, named miRISC, to binding sites that most often re-
side in the 3′ untranslated region (3′ UTR) of target mRNA
molecules. Subsequently, miRISC initiates inhibition of
translation, deadenylation and decay of the target mRNA
(2). Knowledge of target mRNAs is imperative to under-
stand the role of a particular miRNA in both normal cel-
lular processes and pathogenesis. Similarly, knowing the
full complement of miRNAs regulating a particular mRNA
is essential to comprehend its dynamic regulation that is
tightly linked to its function.

Multiple experimental techniques are available to identify
miRNA–mRNA interactions (3,4), but all of them share
major disadvantages in that they are laborious, costly, tech-
nically challenging and have limited throughput. Therefore,
considerable effort has been put into elucidating miRNA–
mRNA pairing rules and model building for in silico
miRNA target prediction, bypassing or preceding wet-lab
tests (5,6). Predictive models enable researchers to priori-
tize interactions for experimental validation and to generate
large-scale interaction information for biological network
creation. Initially, published algorithms lacked an under-
lying statistical model and their predictions were based on
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scanning for the presence of features known or speculated to
be important for an effective miRNA–mRNA interaction.
More recent models are based on machine learning and do
provide a statistical basis (5,6).

Here, we apply machine learning methods, in particular
logistic regression (LR) (7) and random forests (RF) (8), to
a unique data set of 7990 miRNA–mRNA combinations,
probed for interaction in a high-throughput 3′ UTR re-
porter screen. The data set includes interaction information
for 470 miRNAs, which is the largest number of miRNAs
included in algorithm training to date. We tackle the com-
plex training data structure, inherent to the miRNA target
prediction problem, with a unique stacked model approach
that allows us to model both information on the number
of potential miRNA binding sites, and the genomic con-
text of binding sites. Modeling both levels of information
has proven challenging in a single model structure, and has
therefore been either ignored or poorly addressed in the
past. Attempts to address this include simple summation of
binding site scores (9,10), restricting training instances to
those containing single sites (11) or considering the binding
site as the training instance and adding binding site counts
in the target as a feature (12).

Performances of stacked models are compared with those
of models of lower complexity. The latter only model infor-
mation on binding site counts or attempt to model both site
counts and context in a single, non-stacked model structure.
We highlight flaws in cross-validation schemes for perfor-
mance assessment of miRNA target prediction models and
adopt a more fair and stringent approach. Applying this
approach, a particular stacked model outperforms lower-
complexity models, and displays a higher general perfor-
mance and equal or higher precision of high-scoring pre-
dictions when comparing with four published and widely
used algorithms. Predictions of this model, named miSTAR
(miRNA stacked model target prediction), can be queried
online (www.mi-star.org). Altogether, the presented find-
ings underscore the potential of the newly presented stacked
model structure for improved miRNA target prediction.

MATERIALS AND METHODS

Training data set

Training data was obtained from a 3′ UTR reporter miRNA
library screen, in which 7990 potential interactions between
17 human mRNAs and 470 miRNA mimics (miRBase re-
lease 9.2) were probed (Figure 1A; Supplementary Materi-
als and Methods). Interactions are identified with 88% pre-
cision, 99% specificity and 51% sensitivity, apparent from
ROC-curve analysis on a set of positive and negative control
interactions included in the screen (Supplementary Figure
S1). The data set contains 390 positive and 7600 negative
training examples.

Potential canonical miRNA binding sites (13) in all
probed miRNA–mRNA combinations were detected by
alignment of miRNA sequences with 3′ UTR sequences, re-
sulting in five site count features: individual counts for 6mer,
7mer-A1, 7mer-m8 and 8mer sites and the total site count
(Figure 1B and C; Supplementary Figure S2).

The genomic context of each potential binding site
was characterized by calculating 53 features (Figure 1C).

Among others, they involve features describing the evolu-
tionary conservation of the site, the accessibility of the site
and the thermodynamic stability of the miRNA–mRNA
duplex upon binding. A description of all calculated site
context features can be found in Supplementary Table S1.

The training data set is available in Supplementary Table
S2.

Model structure

Since a miRNA can have a variable number of potential
binding sites in a 3′ UTR, the number of descriptive features
calculated for each miRNA–mRNA combination varies
greatly (i.e. it is a multiple of the number of binding sites).
However, traditional machine learning algorithms, such as
logistic regression and random forests, are designed to han-
dle feature vectors of equal length and have difficulties han-
dling complex data structures, such as the one presented.
Therefore, we propose a two-layered, stacked model struc-
ture in which information on binding site context is sepa-
rately modeled. For any miRNA–mRNA combination, the
contribution of each potential binding site to effective inter-
action is predicted by models that only consider context in-
formation. Predictions for all sites present are subsequently
summarized in a fixed number of context features that are
combined with binding site count features to train the final
model. In this way, the problem of feature vectors of un-
equal length is circumvented. We compare the performance
of stacked (S) models with lower-complexity models that
only model information on binding site counts––site count
(SC) models––or that attempt to model both site counts and
context in a single, non-stacked model structure––extended
site count (ESC) models––and with four publicly available
and widely used algorithms.

The SC model is the simplest model built in this work.
The only predictive features taken into account are the
counts of potential binding sites (five features). No addi-
tional information on binding site context is incorporated
in the model (Figure 2).

The ESC model is an extension of the SC model. Next
to information on binding site counts, it incorporates con-
text information for the two most potent canonical binding
site types: 7mer-m8 and 8mer sites (referred to as potent
sites below). The structure of this model is partly based on
that of the MirTarget2 algorithm (11). MirTarget2 handles
the complex data structure, with feature vectors of unequal
length, by restricting training instances to instances with a
single potent site, and thus an equal number of features. An
approach like this, however, ignores a great part of avail-
able training data (91% of instances in our data set). Fur-
thermore, it only models site context, and not the influence
of the presence of multiple binding sites and possible co-
operative interactions between them. Moreover, with 6mer
and 7mer-A1 sites, it ignores other well-established, canon-
ical binding sites. Here, we modified this approach and fo-
cus on single potent site instances to model site context in-
fluence, but contrary to MirTarget2 we do not filter out in-
stances with no or multiple potent sites, as they still hold in-
formation on the importance of canonical site counts. More
specific, in case a single potent site is present (726 of 7990
training instances), the site’s context features are added to
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Figure 1. (A) 3′ UTR reporter screen data set: interaction information on 7990 miRNA–mRNA combinations. The data set contains 390 positive and
7600 negative training examples, identified with 88% precision, 99% specificity and 51% sensitivity. (B) Schematic representation of an example miRNA–
mRNA data instance: three canonical binding sites are present in the 3′ UTR. (C) Two levels of information are modeled: information on site counts and
site specific genomic context information.

the canonical site count features in the feature vector of
this particular miRNA–mRNA combination. If no or mul-
tiple potent sites are present, the site context features are
set to zero. Training instances are thus characterized by fea-
ture vectors of equal length that capture information on the
number of all types of canonical binding sites and the site
context for single potent sites (Figure 2).

Finally, the S model uses all information avail-
able. Since the data obviously has two levels of
information––information on the number of binding
sites and on binding site context––the idea of using a single
prediction model is abandoned. Instead, a two-layered,
stacked model structure is applied. The S model consists
of a layer of context models, that take into account the
genomic context of sites, and a second layer with an inte-
gration model, that combines information received from
context models with site count information (Figure 2). For
each type of binding site, the influence of binding site con-
text on effective interaction is modeled separately, resulting
in 4 context models. Training instances for these context
models are no longer miRNA–mRNA combinations, but
individual binding sites. The feature vectors of these train-
ing instances only contain site context information and are
all equal in length. In case a miRNA–mRNA combination
has multiple binding sites (818 of 7990 instances), these
represent multiple training instances in the context models
and we attribute the label of the interaction to each of
its sites. For any miRNA–mRNA combination, context
model prediction scores for the binding sites present are
added as additional features to feature vectors of the
integration model that already contain site count features.

However, to account for the fact that miRNA–mRNA
combinations display varying numbers of binding sites
(31% of the probed combinations have potential binding
sites, of which 33% have more than one), predictions from
each context model are summarized in a fixed number of
context features: the minimum, median and maximum
score. In this way, feature vectors of the integration model
are of equal length, regardless of the number of binding
sites present. The integration model has five features on the
number of binding sites, and 12 features (3 features from
each of the 4 context models) on site context.

Machine learning techniques

All models are built in the R statistical programming en-
vironment (version 3.0.2). LR with lasso regularization
(glmnet package version 1.9-5 (14); � with minimal cross-
validated mean squared error) and RF (randomForest pack-
age version 4.6-7 (15); number of trees = 500; number of
variables sampled per split = square root of the total num-
ber of variables) are alternately used to construct SC, ESC
and both the integration and context models of the S model.

Performance estimation

The performance of models based on a learning process
is typically estimated using cross-validation, in which the
data set is split up in a training data set for model build-
ing and a test set for performance estimation. In case a pre-
dictive model tries to model the interaction between two
molecules, as with miRNA target prediction, a training in-
stance consists of two objects, here a miRNA and a mRNA.
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Figure 2. Overview of model structures and machine learning methods applied for the site count (SC), extended site count (ESC) and stacked (S) model.
Data usage and information flow for model training and testing are indicated with black and green lines, respectively.

The model may have learned from either both objects, only
one object or none of the objects of the test instance during
training, depending on how training and test instances were
selected. Subdivision of data in a training and test data set
can be either random or systematic, with selective inclusion
of instances involving particular miRNA and/or mRNA
specimens in the latter case. Four different cross-validation
schemes are possible (Figure 3).

In random cross-validation, randomly selected miRNA–
mRNA instances are omitted for model training and in-
cluded in the test set for performance estimation. When pre-
dicting a test instance, the exact miRNA–mRNA combi-
nation is new to the model, but information on how both
molecules interact with other mRNAs and miRNAs respec-
tively, was most likely included in model training. Perfor-
mance estimated with this cross-validation setting is there-
fore the most optimistic. In every fold of the k-fold cross-
validation (k = 10) a random selection of 799 mRNA–
miRNA instances is omitted from training data (Figure
3A).

In miRNA cross-validation, instances involving particu-
lar miRNAs are omitted for model training and included

in the test set for performance estimation. In every fold of
the k-fold cross-validation (k = 10), a model is trained on
the data of all but 47 miRNAs (7191 instances) and perfor-
mance is estimated on predictions for the instances involv-
ing these unseen miRNAs (799 instances) (Figure 3B).

In mRNA cross-validation, instances involving one par-
ticular mRNA are omitted for model training and included
in the test set for performance estimation. Since there are
only 17 mRNAs present in our data set, we apply a leave-
one-out cross-validation. In every fold of the k-fold cross-
validation (k = 17), a model is trained on the data of all
but one mRNAs (7520 instances) and performance is esti-
mated on predictions for the instances involving this unseen
mRNA (470 instances) (Figure 3C).

In miRNA and mRNA cross-validation, instances in-
volving either one particular miRNA or one particular
mRNA are omitted for model training, and the single
combination of this miRNA and mRNA is used for per-
formance estimation. When predicting the single test in-
stance, both the miRNA and the mRNA are unseen by
the model, making performance estimation in this cross-
validation scheme the most stringent. Note that perfor-
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Figure 3. Overview of (systematic) sampling of training and test instances in different cross-validation schemes. (A) Random cross-validation scheme. (B)
miRNA cross-validation scheme. (C) mRNA cross-validation scheme. (D) miRNA and mRNA cross-validation scheme.

mance estimation in this leave-one-out cross-validation is
very computationally intensive, since the number of folds
equals the total number of miRNA–mRNA combinations
in the data set (k = 7990) and a new model has to be trained
for every instance (Figure 3D).

For the SC and ESC models, data usage and informa-
tion flow during cross-validation are straightforward: the
model is trained on training instances, after which test in-
stances are predicted and performance measures are calcu-
lated (Figure 2). For the S model data usage is more com-
plicated. Site context features from training instances are
used to train context models. Site count features of train-
ing instances are subsequently used to train the integration
model, together with summarized site context features, re-
ceived from trained context models. However, to provide
these summarized context features for a given data instance,
we exceptionally rely on prediction scores of context mod-
els that were trained on the same training instances (Figure
2).

General performance of a model is typically assessed us-
ing receiver operating characteristic (ROC) curves (16). A
ROC curve plots the true positive rate as a function of
the false positive rate for every possible prediction score
threshold. The area under the ROC curve (AUC ROC) is
a measure for the ability of the model to rank true inter-
actions higher than non-interactions independent of pre-
diction score threshold. Alternatively, the area under the
precision-recall curve can be evaluated. A PR curve plots
the proportion of predicted positives that are actual posi-
tives as a function of the true positive rate for every possi-
ble prediction score threshold. In unbalanced data sets with
relatively few positive instances, PR curves have the advan-
tage over ROC curves that they better capture the effect of
increases in false positive classifications on model perfor-
mance (17).

Performance of top scoring predictions is assessed using
precision. Precision represents the fraction of positive pre-
dictions that are true interactions when applying a predic-
tion score threshold for binary classification. Tailored to the
application of miRNA target prediction algorithms as pri-
oritization tools of interactions for wet-lab validation, we

here consider the precision of the top 10 scoring predictions,
a realistic number to pursue. In addition, we evaluate the
mean precision of top 10 scoring predictions evaluated per
mRNA, only considering mRNAs with at least 10 true in-
teractions (15 out of 17 mRNAs).

Publicly available models

Performance of our models is compared to that of four
models described in literature: miRanda (version August
2010) (18), TargetScan (version 6.2) (13,19), PITA (20) and
MirTarget2 (11). These are three models without and one
model with a machine learning basis, respectively. The se-
lection of these algorithms is based on frequency of use in
the research community and ability to perform custom pre-
dictions for our data set.

Statistics

All statistical analyses are performed using the R statisti-
cal programming environment (version 3.0.2). AUC ROC
and area under the precision-recall curve values are calcu-
lated using the packages ROCR (version 1.0-5) (21) and
pracma (version 1.7.0; http://cran.r-project.org/package=
pracma), respectively. Comparison of AUC ROC values is
performed with the pROC package (version 1.7.3) (22) ac-
cording to Delong’s method for the analysis of correlated
ROC curves (23). Assessment of the influence of cross-
validation schemes on the estimated performances is done
by comparing AUC ROC or precision values, grouped ac-
cording to the cross-validation scheme applied, using the
Friedman test (24). Post-hoc analysis is performed with the
Wilcoxon–Nemenyi–McDonald–Thompson test (24), us-
ing the coin (version 1.0-23) (25) and multcomp (version 1.3-
4; http://cran.r-project.org/package=multcomp) packages.

RESULTS

Depending on the research question, the use of a predictive
model that either displays a good overall performance or a
high precision of top scoring predictions is desirable. High
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overall performance is desirable in case a ranked list of to-
tal predictions is used––for instance for enrichment analyses
and in silico network building––and the ranking through-
out the entire list should be as accurate as possible. High
precision of top scoring predictions, on the other hand, is
preferred in situations where the goal is to identify a limited
number of interactions with high confidence, for instance
when using target prediction for prioritization of interac-
tions for wet-lab validation, where one is often limited in
throughput and can only focus on the most likely candi-
dates. Here, we assess different measures of model perfor-
mance for stacked (S) and lower-complexity (SC and ESC)
models, and compare them with non-cross-validated perfor-
mances of four published models.

Pair-input cross-validation schemes influence performance
estimation

Performances of models based on a learning process are
typically estimated using cross-validation. An important,
often overlooked aspect of cross-validation when predicting
the interaction between two objects is the impact of train-
ing and test instance selection. Information on both objects
of the test instance has to be systematically omitted from
training data in order for the instance to be completely un-
seen by the model during model testing. If this requirement
is not met, performances are systematically overestimated.
However, just as for single-input modeling problems, for
this kind of pair-input modeling, training instances are of-
ten randomly selected (26).

Hence, for a miRNA target prediction model, informa-
tion on both the miRNA and the mRNA constituting a
test instance has to be systematically omitted from train-
ing data. Alternatively, systematically omitting informa-
tion on either the miRNA or the mRNA during training
can assess the model’s ability to generalize miRNA- and
mRNA-related aspects of interaction, respectively. Mod-
els here were trained on data containing interaction infor-
mation on a relatively high number of miRNAs, but on
only few mRNAs. Since a model can learn more if more
examples are presented to it, models trained on this data
set are therefore expected to perform well at generalizing
results when predicting instances involving unseen miR-
NAs, while it should have more difficulties handling unseen
mRNA specimens. Including the often and erroneously ap-
plied non-systematic, random sampling of test instances,
four possible cross-validation schemes can thus be applied
in miRNA target prediction (Figure 3) (26).

As expected, the estimated general performance of our
models, calculated as the area under the ROC curve, is
on average highest when we do not systematically omit in-
stances involving particular miRNAs and/or mRNAs from
training data, but randomly select miRNA–mRNA combi-
nations as test instances (random cross-validation scheme)
(Figure 4B). Selectively omitting instances involving partic-
ular miRNAs (miRNA cross-validation scheme) does not
significantly lower the estimated performances (Figure 4B).
Although the trained models have not seen the exact miR-
NAs presented in performance estimation, they received
information on a high number of miRNAs during train-
ing and are good at generalizing miRNA-related aspects of

constituting an effective interaction. In contrast, selectively
omitting instances involving a particular mRNA during
training, and subsequently predicting interactions involving
this mRNA (mRNA cross-validation scheme) proves to be
more difficult and results in lower estimated general perfor-
mances (Figure 4B). Since the models only received infor-
mation on a relatively limited number of mRNAs during
training, the possibility of overfitting on specific traits of a
mRNA is high, and generalization is hampered. Applica-
tion of the most stringent cross-validation scheme (miRNA
and mRNA cross-validation scheme) (Figure 4B), hardly
has any influence on estimated performances compared to
the mRNA cross-validation scheme, again showing that our
models cope very well with unseen miRNAs. When esti-
mating the model performances using the different cross-
validation schemes, but considering the precision of top 10
scoring predictions instead of general performance, similar
trends can be appreciated (Figure 5B and D).

Highest general performance for a stacked model

Applying any of the cross-validation schemes, including the
most stringent one, a stacked model that applies logistic re-
gression in the integration model and random forests in the
context models (S-LR+RF) systematically displays a higher
general performance than lower-complexity SC and ESC
models (Figure 4A; P-values �AUC ROC < 0.05). In addi-
tion, it significantly outperforms non-cross-validated pub-
lished models (Figure 4C; P-values �AUC ROC < 0.05).
Similar conclusions can be drawn when assessing the area
under the precision-recall curves (Figure 4D and E).

Highest precision of top scoring predictions for a stacked
model

A lower complexity model, applying random forests to site
count information (SC-RF), displays the highest precision
of top 10 scoring predictions, independent of the cross-
validation scheme (Figure 5A). Maximum precisions are
reached, just as for the published MirTarget2 algorithm.
However, estimated precisions are strongly dependent on
the range in which high precision is demanded. While be-
ing very precise in a narrow (and in practice often consid-
ered) range of 10 top scoring predictions, precisions rapidly
decrease for the SC-RF model when further expanding the
range (Figure 5E). Although scoring lower on the very nar-
row top of 10 predictions, the stacked S-LR+RF model
obtains higher and more stable precisions when expand-
ing the desired range (Figure 5F), producing similar preci-
sions as MirTarget2 and TargetScan. This partly reflects the
high general performance, independent of prediction score
threshold, of the S-LR+RF model.

Furthermore, in realistic situations where high precision
of top scoring predictions is desired, e.g. when prioritiz-
ing interactions for wet-lab validation, predictions are of-
ten obtained on a per mRNA or per miRNA of interest
basis. Therefore, assessing the average precision of a model
per mRNA or per miRNA is often more relevant, com-
pared to assessing the precision of predictions for all possi-
ble miRNA–mRNA combinations. Considering the mean
of precisions of top 10 scoring predictions estimated per
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Figure 4. (A) Area under the ROC curve (AUC ROC) for SC, ESC and S models, applying different cross-validation schemes. (B) Influence of cross-
validation scheme on AUC ROC values (Friedman test with post-hoc analysis; ** significant difference: P < 0.05; * borderline significant difference: P
< 0.055). AUC ROC values of models with the same structure and machine learning techniques applied are interconnected. (C) ROC curves for the S-
LR+RF model applying different cross-validation schemes and for non-cross-validated published models. (D) Precision recall curves for the S-LR+RF
model applying different cross-validation schemes. (E) Precision recall curves for non-cross-validated published models.

mRNA entity, the S-LR+RF model again stands out com-
pared to SC and ESC models (Figure 5C). Furthermore,
even when stringently cross-validated, it reaches similar
to better mean precisions when comparing with published
models (Figure 5C and G).

DISCUSSION

In this work, we tackle the complex training data structure
inherent to the miRNA target prediction problem. Using
a two-layered, stacked model approach, we circumvent the
problem of feature vectors of unequal length, as a conse-
quence of the two levels of information that need to be mod-
eled: the number of potential miRNA binding sites present
in a target mRNA and the genomic context of each in-
dividual site. We apply the stacked model approach to a
unique data set of 7990 probed miRNA–mRNA interac-
tions, hereby including the largest number of miRNAs in
model training to date.

Compared to lower-complexity models, a stacked model
that uses random forests to model the contribution of indi-
vidual sites and their genomic context, and logistic regres-
sion to combine individual contributions with site count
information (S-LR+RF), displays a higher general perfor-
mance and mean precision on top scoring predictions. More
importantly, it outperforms currently available algorithms
in general performance and reaches equal or better pre-
cisions. Transcriptome-wide, human target predictions of
this new model, named miSTAR, can be queried online
(www.mi-star.org).

In performance estimation, we apply more fair and strin-
gent cross-validation schemes than typically done, acknowl-
edging the fact that in pair-input prediction problems, in-
formation on both objects constituting the test instance has
to be systematically omitted during model training in or-
der for the instance to be completely unseen by the model.
Hence, we avoid systematic overestimation of model per-
formance. Furthermore, cross-validation schemes applied
here uncover both the strength and weakness of our mod-
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Figure 5. (A) Precision of top 10 scoring predictions for SC, ESC and S models, applying different cross-validation schemes. (B) Influence of cross-validation
scheme on precision of top 10 scoring predictions (Friedman test with post-hoc analysis; ** significant difference: P < 0.05). Precision values of models
with the same structure and machine learning techniques applied are interconnected. (C) Mean precision (per mRNA) of top 10 scoring predictions for
SC, ESC and S models, applying different cross-validation schemes. (D) Influence of cross-validation scheme on mean precision (per mRNA) of top 10
scoring predictions (Friedman test with post-hoc analysis; no significant differences). (E) Precision as a function of the range (N) of top scoring predictions
considered for the SC-RF model applying different cross-validation schemes, and for non-cross-validated published models. (F) Precision as a function
of the range (N) of top scoring predictions considered for the S-LR+RF model applying different cross-validation schemes, and for non-cross-validated
published models. (G) Mean precision (per mRNA) as a function of the range (N) of top scoring predictions considered for the S-LR+RF model applying
different cross-validation schemes, and for non-cross-validated published models.
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els, which are tightly linked to the training data set. Mod-
els trained on our data set obviously perform well predict-
ing instances involving new miRNAs, while performance
is lower when predicting new mRNAs. This is in contrast
with most current machine learning-based algorithms that
are expected to be particularly weak at handling unseen
miRNA specimens, since they are typically trained on data
sets containing interaction information on a large num-
ber of mRNAs and only one or few miRNAs (microar-
rays, mass-spectrometry and AGO CLIP-seq after exoge-
nous miRNA modulation). Prediction databases, however,
often offer target predictions for the full complement of
miRNAs and mRNAs annotated in genomic databases, and
ignore this limitation in generalization of the algorithms ap-
plied. Since models built here have opposite strengths and
weaknesses to current machine learning-based algorithms
with respect to generalization, they provide complementary
information. However, the most performant model trained
here still outperforms a machine learning-based algorithm
trained on a high number of mRNAs (MirTarget2), when
cross-validated probing its potential to generalize mRNA-
related aspects of the miRNA–mRNA interaction.

In conclusion, we show that applying a stacked model ap-
proach can improve miRNA target prediction and recom-
mend best practices in cross-validation for the performance
assessment of miRNA target prediction models. The pre-
dictions of the best performing stacked model, named miS-
TAR, are available online (www.mi-star.org).
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