
Published online 19 June 2019 Nucleic Acids Research, 2019, Vol. 47, No. 16 e93
doi: 10.1093/nar/gkz535

SMARTer single cell total RNA sequencing
Karen Verboom 1,2,†, Celine Everaert1,2,†, Nathalie Bolduc3, Kenneth J. Livak4,
Nurten Yigit1,2, Dries Rombaut1,2, Jasper Anckaert1,2, Simon Lee3, Morten T. Venø5,
Jørgen Kjems5, Frank Speleman1,2, Pieter Mestdagh1,2 and Jo Vandesompele 1,2,*

1Center for Medical Genetics, Ghent University, Ghent, Belgium, 2Cancer Research Institute Ghent, Ghent, Belgium,
3Takara Bio USA, Mountain View, CA 94043, USA, 4Fluidigm Corporation, South San Francisco, CA 94080, USA and
5Department of Molecular Biology and Genetics and Interdisciplinary Nanoscience Center, Aarhus University, Aarhus
DK-8000, Denmark

Received September 28, 2018; Revised May 05, 2019; Editorial Decision June 01, 2019; Accepted June 04, 2019

ABSTRACT

Single cell RNA sequencing methods have been in-
creasingly used to understand cellular heterogene-
ity. Nevertheless, most of these methods suffer from
one or more limitations, such as focusing only on
polyadenylated RNA, sequencing of only the 3′ end
of the transcript, an exuberant fraction of reads map-
ping to ribosomal RNA, and the unstranded nature
of the sequencing data. Here, we developed a novel
single cell strand-specific total RNA library prepara-
tion method addressing all the aforementioned short-
comings. Our method was validated on a microflu-
idics system using three different cancer cell lines
undergoing a chemical or genetic perturbation and
on two other cancer cell lines sorted in microplates.
We demonstrate that our total RNA-seq method de-
tects an equal or higher number of genes compared
to classic polyA[+] RNA-seq, including novel and
non-polyadenylated genes. The obtained RNA ex-
pression patterns also recapitulate the expected bio-
logical signal. Inherent to total RNA-seq, our method
is also able to detect circular RNAs. Taken together,
SMARTer single cell total RNA sequencing is very
well suited for any single cell sequencing experiment
in which transcript level information is needed be-
yond polyadenylated genes.

INTRODUCTION

To understand the complexity of life, knowledge of cells as
fundamental units is key. Recently, technological advances
have emerged to enable single cell RNA sequencing (RNA-
seq). In 2009, Tang et al. published the first single cell RNA-
seq protocol in which cells were picked manually and tran-
scripts reverse transcribed using a polydT primer (1). As the

throughput was low, new methods using early multiplex-
ing, such as STRT-seq and SCRB-seq, were introduced in
which cells were pooled at an early step in the workflow,
enabling processing of many cells in parallel (2–4). In con-
trast to these methods that have inherent 3′ end or 5′ end
bias, Smart-seq2 generates read coverage across the whole
transcript expanding the spectrum of applications as this
method can be used for fusion detection, single nucleotide
variants (SNV) analysis and splicing, beyond typical gene
expression profiling applications (5,6). To reduce the poly-
merase chain reaction (PCR) bias generated in the afore-
mentioned methods, CEL-seq and MARS-seq were intro-
duced using linear in vitro transcription (IVT) instead of
PCR to obtain enough cDNA for sequencing (7–9). Most
recently, droplet and split-pool ligation based methods cap-
turing thousands of single cells were developed, providing
new insights in cellular heterogeneity and rare cell types
(10–14). The main drawback of these methods is that analy-
ses are typically confined to gene expression of only (3′ ends
of) polyadenylated transcripts (Table 1).

More complex analyses with respect to alternative splic-
ing, allele specific expression, mutation analysis, assembly
of (novel) transcripts, circular RNA (circRNA) quantifica-
tion and post-transcriptional regulation, require full-length
and full-transcriptome methods. Moreover, sequencing a
large number of cells is often compromising sequencing
depth, resulting in low coverage per cell and detection of
only the most abundant transcripts (15). In contrast to these
droplet-based methods, microfluidic chip and flowcytom-
etry based platforms typically capture fewer cells, but are
able to sequence entire transcripts and detect a substantially
higher number of genes per cell, providing a more complete
view of the complexity and richness of single cells’ transcrip-
tomes (6,8). Of note, most single cell RNA-seq studies as-
sess only 3′ end polyadenylated (polyA[+]) transcripts, ig-
noring non-polyadenylated (polyA[–]) transcripts (Table 1)
(6,12,14). Since a substantial part of the human transcrip-
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Table 1. Characteristics of the top ten cited single cell polyA[+] RNA-seq in Web of Science and four available single cell total RNA-seq methods (including
our SMARTer method)

Total RNA-seq Full length rRNA < 5% Stranded Reference

Drop-seq − − + − (45)
Tang et al. − + + − (1)
InDrop − − + − (46)
MARS-seq − − + − (9)
Smart-seq2 − + + − (6,40)
CEL-seq − − + + (7)
STRT-seq − − + + (3)
Quartz-seq − + + − (47)
CEL-seq2 − − + + (8)
cytoSeq − − + − (48)
SuPeR-seq + + + − (19)
RamDA-seq + + − − (20)
MATQ-seq + + NA − (21)
SMARTer + + + +

tome is non-polyadenylated, various RNA types, includ-
ing circRNAs, enhancer RNAs, histone RNAs, and a siz-
able fraction of long non-coding RNAs (lncRNAs), are not
quantified using these classic methods (16–18). In order to
study polyA[–] transcripts at the single cell level, total RNA-
seq workflows were developed (19–21). While in principle
both polyA[+] and polyA[–] transcripts are converted into a
sequencing-ready library using random primer mediated re-
verse transcription, these methods suffer from one or more
of the following limitations: the strand-orientation informa-
tion is lost and a high percentage of reads map to ribosomal
RNA (rRNA) (Table 1). Therefore, new methods circum-
venting these limitations are warranted. A rRNA depletion
step is essential as up to 95% of the total RNA content in
a mammalian cell consists of rRNA. Moreover, to discrim-
inate sense and antisense overlapping transcripts, stranded
sequencing is crucial; at least 38% of the annotated tran-
scripts in cancer cells have antisense expression (22). Here,
we developed a novel easy to use and efficient single cell to-
tal RNA-seq workflow based on the SMARTer Stranded
Total RNA-Seq Kit - Pico Input Mammalian combining
for the first time strandeness and effective removal of ribo-
somal cDNA (Table 1). We ported the method to Fluidigm’s
C1 single cell microfluidics instrument, and demonstrated
that the method works equally well on FACS sorted cells
in microplates. In total, 458 cells from five different human
cancer cell lines in four experiments were sequenced with
a total sequencing depth of 1528 million reads. Using our
novel method, we consistently observe <3% of ribosomal
reads and we detect >5360 genes by at least four reads, in-
cluding novel genes, polyA[–] genes and circRNAs.

MATERIALS AND METHODS

Cell lines

The neuroblastoma cell line NGP, used for the C1 ex-
periments, is a kind gift of Prof. R. Versteeg (Amster-
dam, the Netherlands). Cells were maintained in RPMI-
1640 medium (Life Technologies, 52400-025) supplemented
with 10% fetal bovine serum (PAN Biotech, P30-3306),
1% of L-glutamine (Life Technologies, 15140-148) and 1%
penicillin/streptomycin (Life Technologies, 15160-047) (re-
ferred to as complete medium) at 37◦C in a 5% CO2 at-

mosphere. Short tandem repeat genotyping was used to
validate cell line authenticity prior to performing the de-
scribed experiments and mycoplasma testing was done
on a monthly basis. The A375 (ATCC CRL-1619) and
Jurkat (clone E6.-1; ATCC TIB-152) cells, used for the
FACS experiments, were grown in Dulbecco’s modified Ea-
gle’s medium (DMEM; Millipore-Sigma, D5796) supple-
mented with 10% Tet system approved fetal bovine serum
(FBS) (Takara, 631106) and RPMI-1640 medium (RPMI;
Millipore-Sigma, R0883) supplemented with 10% Tet sys-
tem approved FBS, respectively. Cell lines were sub-cultured
every two days or when they reached >80% confluence
(A375) or >1 × 106 cells/ml (Jurkat).

Cell cycle synchronization and nutlin-3 treatment of NGP
cells

NGP cells were synchronized using serum starvation prior
to nutlin-3 treatment. First, cells were seeded at low den-
sity for 48 h in complete medium. Then, cells were re-
freshed with serum-free medium for 24 h. Finally, the cells
were treated with either 8 �M of nutlin-3 (Cayman Chem-
icals, 10004372, dissolved in ethanol) or vehicle. Cells were
trypsinized (Gibco, 25300054) 24 h post treatment and har-
vested for single cell analysis, bulk RNA isolation and cell
cycle analysis.

Cell cycle analysis

Four million cells were washed with PBS (Gibco, 14190094)
and the pellet was resuspended in 300 �l PBS. Next, 700 �l
of 70% ice-cold ethanol was added dropwise while vortex-
ing to fix the cells. Cells were stored at −20◦C for at least 1 h.
After incubation, cells were washed with PBS and the pellet
was resuspended in 1 ml PBS containing RNAse A (Qiagen,
19101) at a final concentration of 0.2 mg/ml. After 1 h incu-
bation at 37◦C, propidium iodide (BD biosciences, 556463)
was added to a final concentration of 40 �g/ml. Samples
were loaded on a S3 cell sorter (Bio-Rad) and analyzed us-
ing the FlowJo v.10 software.

RNA isolation and cDNA synthesis

Total RNA was isolated using the miRNeasy mini kit
(Qiagen, 217084) with DNA digestion on-column accord-
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ing to the manufacturer’s instructions. RNA concentration
was measured using spectrophotometry (Nanodrop 1000,
Thermo Fisher Scientific). cDNA was synthesized using the
iScript Advanced cDNA synthesis kit (Bio-Rad, 1708897)
using 500 ng RNA as input in a 20 �l reaction. cDNA was
diluted to 2.5 ng/�l with nuclease-free water prior to RT-
qPCR measurements.

Reverse transcription quantitative PCR

PCR mixes containing 2.5 �l 2× SsoAdvansed SYBR
qPCR supermix (Bio-Rad, 04887352001), 0.25 �l each for-
ward and reverse primer (5 �M, IDT), and 2 �l diluted
cDNA (5 ng total RNA equivalents) were analyzed on
the LightCycler480 instrument (Roche) using two repli-
cates. Expression levels were normalized using expression
data of four stable reference genes (SDHA, YWHAZ, TBP,
HPRT1). RT-qPCR data was analyzed using the qbase+
software v3.0 (Biogazelle). Primer sequences are available
in Supplementary Table S1.

FACS sorting of A375 and Jurkat cells in microplates

Before sorting, cells were washed twice in 1× PBS buffer
(DPBS without calcium chloride and magnesium chlo-
ride; Sigma Aldrich, D8537) and labelled with 7-AAD (BD
Pharmingen, 51-68981E) for live/dead differentiation and
FITC-conjugated antibody [anti-CD47 (BD Pharmingen,
556045) for A375 and anti-CD81 (BD Pharmingen, 551108)
for Jurkat]. After washing off the unbound antibodies in 1×
PBS, cells were resuspended in BD FACS Pre-Sort Buffer
(BD, 563503). Single cell sorting in 8-tube PCR strips was
done using a BD FACSJazz Cell Sorter. A375 cells were
sorted in 7 �l 1× PBS buffer and Jurkat cells in 8 �l ly-
sis solution [100 �l 10× Lysis buffer (Takara, 635013), 5 �l
RNase Inhibitor (Takara, 635013) and 700 �l water]. Fol-
lowing sorting, tubes were sealed and subjected to a quick
spin and immediately frozen on dry ice and finally stored at
−80◦C until use. All sorting experiments included negative
controls (no cell in a well).

Single cell total RNA library preparation of nutlin-3 treated
NGP cells

Cells were washed with PBS and pellets of vehicle treated
cells were resuspended and incubated in 1 ml pre-warmed
(37◦C) cell tracker (CellTracker Green BODIPY Dye,
Thermo fisher Scientific, C2102) for 20 min at room temper-
ature. After incubation, cells were washed in PBS and resus-
pended in 1 ml wash buffer (Fluidigm, 100-6201). An equal
number of stained (vehicle treated) and non-stained (nutlin-
3 treated) cells were mixed and diluted to 300 000 cells/ml.
Suspension buffer (Fluidigm) was added to the cells in a 3:2
ratio and 6 �l of this mix of was loaded on a primed C1
Single-Cell Open App IFC (Fluidigm, 100-8134) designed
for medium-sized cells (10–17 �m). Cells were captured
using the ‘SMARTer single cell total RNA-seq’ script de-
posited in Script Hub (Fluidigm). Upon capture, cells were
visualized using the Axio Observer Z1 (Zeiss) and a me-
dian multiplet rate of 34.54% was observed over all experi-
ments. These cells were excluded from further analyses. Se-
quencing libraries were generated using the C1 running the

‘SMARTer single cell total RNA-seq’ script deposited on
Script Hub. In short, the SMARTer Stranded Total RNA-
Seq Kit v2 - Pico Input Mammalian (Pico v2, total RNA,
Takara, 634413) was used to synthesize cDNA with follow-
ing modifications. Cells were fragmented and lysed by load-
ing 7 �l of 10× reaction mix [2.3 �l SMART Pico Oligo
Mix v2, 6 �l 5× first-strand buffer, 1 �l 20× C1 loading
reagent (Fluidigm), 3 �l lysis mix (19 �l 10× lysis buffer, 1
�l RNAse inhibitor (40 U/�l)), 1 �l 1/1000 diluted ERCC
spikes (Ambion, 4456740), 6.7 �l water] and incubating the
cells at 85◦C for 6 minutes (to lyse cells and fragment RNA)
followed by 2 min at 10◦C. Next, 8 �l first strand master mix
[1 �l C1 loading reagent, 4 �l 5× first-strand buffer, 0.9 �l
RNAse inhibitor (40 U/�l), 3.5 �l SMARTScribe reverse
transcriptase (100 U/�l), 7.9 �l SMART TSO Mix v2 (from
Takara kit, 634413), 2.7 �l water] was loaded and incubated
at 42◦C for 90 min followed by 70◦C for 10 min. Finally, a
PCR master mix for each well was made [1 �l 20× loading
reagent, 2 �l 2.4 �M forward primer (Takara, 634413), 2
�l 2.4 �M reverse primer, 13.1 �l 1.5× PCR mix (1050 �l
2× SeqAmp CB buffer, 42 �l SeqAmp DNA polymerase,
308 �l water)] and 5 �l of each of these mixes was loaded
in the harvest wells of the IFC. The samples were incubated
for 1 min at 94◦C followed by 11 PCR cycles (30 s at 98◦C,
15 s at 55◦C, 30 s at 68◦C) and 2 min at 68◦C. Following
this initial cDNA amplification, 12 wells were pooled per
tube using 8 �l of cDNA per cell. Next steps of the library
prep were performed according to manufacturer’s instruc-
tions with minor modifications. 13 PCR cycles were used
for PCR2 and a 1:1 ratio was used for beads cleanup after
PCR2. Next, the samples were resuspended in 22 �l 5 mM
tris buffer (from kit) and 20 �l was used to perform a second
beads cleanup using a 0.9:1 ratio. Finally, the samples were
resuspended in 12 �l tris buffer and the quality was deter-
mined on the Fragment Analyzer (Advanced Analytical).
Of note, the protocol can also be executed using the single
cell specific version of the kit, released by Takara (SMART-
Seq Stranded Kit, 634442) after we had completed our C1
experiments.

Single cell polyA[+] RNA library preparation of nutlin-3
treated NGP cells

Vehicle treated cells were stained with cell tracker as de-
scribed above. An equal number of stained (vehicle treated)
and non-stained (nutlin-3 treated) cells were mixed and di-
luted to 300 000 cells/ml. Suspension buffer was added to
the cells in a 3:2 ratio and 6 �l of this mix of was loaded
on a primed C1 Single-Cell Auto Prep Array for mRNA
Seq (Fluidigm, 100-6041) designed for medium-sized cells
(10–17 �m). Single cell polyA[+] RNA sequencing on the
C1 was performed using the SMART-Seq v4 Ultra Low In-
put RNA Kit for the Fluidigm C1 System (SMART-Seq
v4, polyA[+] RNA, Takara, 635026) according to manu-
facturer’s instructions. One microliter of the ERCC spike-
in mix was diluted in 999 �l loading buffer to get a 1/1000
dilution of the ERCC spikes. One microliter of this dilution
was added to the 20 �l lysis mix. The quality of the cDNA
was checked for 11 random single cells on the Fragment
Analyzer. The concentration of the cells was measured us-
ing the quantifluor dsDNA kit (Promega, E2670) and glo-
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max (Promega) according to manufacturer’s instructions.
The samples were 1/5 diluted in C1 harvest reagent (Flu-
idigm). Next, library prep was performed using the Nextera
XT library prep kit (Illumina, FC-131-1096) according to
manufacturer’s instructions, followed by quality control on
the Fragment Analyzer.

Single cell total RNA library preparation of FACS sorted
A375 and Jurkat cells

Cells were processed using the SMARTer Stranded To-
tal RNA-Seq Kit v2 – Pico Input Mammalian (Takara,
634413) or the SMART-Seq Stranded Kit (Takara, 634444)
reagents according to the manufacturer’s instructions with
some modifications that were also implemented in the C1
protocol. For the SMART-Seq Stranded Kit, the Ultra Low
Input workflow described in the user manual was followed
by pooling of eight samples according to Appendix A of the
user manual. For the SMARTer Stranded Total RNA-Seq
Kit v2 – Pico Input Mammalian, the cells were also pro-
cessed as described for the SMART-Seq Stranded Kit, but
using the reagents specific to the SMARTer Stranded To-
tal RNA-Seq Kit v2 – Pico Input Mammalian, which were
also used for the C1 protocol. For both kits, cells sorted
in a lysis solution instead of 1× PBS were processed with-
out addition of lysis buffer. Identital to the C1 protocol, the
initial RNA shearing step was performed at 85◦C for 6 min
and 10 and 13 PCR cycles were carried out for PCR1 and
PCR2, respectively.

Library sequencing

All libraries were quantified using the KAPA library quan-
tification kit (Roche) and libraries were diluted to 4 nM.
For NGP, the polyA[+] RNA library and total RNA library
were pooled in a 1/4 ratio and 1.5 pM of the pooled library
was single-end sequenced on a NextSeq 500 (Illumina) with
a read length of 75 bp and a total sequencing read depth
of 274 million reads, combining single cell polyA[+] and to-
tal RNA libraries to prevent inter-run bias. A median se-
quencing read depth of 0.81 and 3.67 million reads per cell
was reached for the single cell polyA[+] and total RNA li-
braries, respectively. In addition, 1.3 pM of the total RNA
library was also sequenced in 2 × 75 paired-end sequencing
run mode on the NextSeq 500, yielding 327 million reads
and a median sequencing read depth of and 4.04 million
per cell. The fastq data is deposited in GEO (GSE119984).
A375 and Jurkat total RNA libraries were pooled and 1.2
pM of the pooled library was sequenced in 2 × 75 paired-
end run mode on the NextSeq 500, yielding 41 million reads.
FASTQ data is deposited in GEO (GSE130578).

Sequencing data quality control

While single-end sequencing libraries do not require pre-
trimming, the paired-end libraries were trimmed using cu-
tadapt (v.1.16) (23) to remove three nucleotides of the 5′
end of read 2. To assess the quality of the data, the reads
were mapped using STAR (v.2.5.3) (24) on the hg38 genome
including the full ribosomal DNA (45S, 5.8S and 5S) and
mitochondrial DNA sequences. The parameters of STAR

were set to retain only primary mapping reads, meaning
that for multi-mapping reads only the best scoring loca-
tion is retained. Using SAMtools (v1.6) (25), reads map-
ping to the different nuclear chromosomes, mitochondrial
DNA and rRNA were extracted and annotated as exonic,
intronic or intergenic. In contrast to the unstranded nature
of polyA[+] Smart-seq v4 data, the total RNA SMARTer-
seq data is stranded and processed accordingly (unless ex-
plicitely mentioned). Gene body coverage was calculated us-
ing the full Ensembl (v91) (26) transcriptome. The coverage
per percentile was calculated, followed by a loess regression
fit.

Quantification of Ensembl and LNCipedia genes

Genes were quantified by Kallisto (v.0.43.1) (27) using both
Ensembl (v.91) (26) extended with the ERCC spike se-
quences and LNCipedia (v.5.0) (28). The strandedness of
the total RNA-seq reads was considered by running the –
rf-stranded mode and omitted for unstranded analysis of
the data. Subsampling 1 million reads (polyA[+] RNA li-
braries) or 1, 4 or 8 million reads (total RNA libraries) was
performed by seqTK (v.1.2) followed by Kallisto quantifica-
tion. Further processing was done with R (v.3.5.1) making
use of tidyverse (v.1.2.1). To measure the biological signal
we first performed differential expression analysis between
the treatment groups using DESeq2 (v.1.20.0) (29) in combi-
nation with Zinger (v.0.1.0) (30). To identify enriched gene
sets a fsgea (v.1.6.0) analysis was performed, calculating en-
richment for the hallmark gene sets retrieved from MSigDB
(v.6.2).

Circular RNA detection

CircRNAs were detected using the deeper sequenced
paired-end sequencing data. Trim galore (v.0.4.1) was used
to trim adaptor sequences, perform quality filtering and
remove three nucleotides from the 5′ end of read 2. Sub-
sequently, reads from all samples were combined, adding
originating sample names to read names for later split-
ting of data. The combined data was used for circRNA
detection using find circ (v.1) (31) using the reads2sample
(find circ.py -r) option to allow circRNA detection on the
combined dataset while dividing out the contribution from
each sample in the output. Only circRNAs with unique
mapping on both anchors were accepted. Human genome
hg19 was used for circRNA analysis. CircRNAs were an-
notated with host gene names from RefSeq (release 75)
and circBase IDs from circbase.org. The Database for An-
notation, Visualisation and Integrated Discovery (DAVID,
v.6.8) (32,33) was used for Gene Ontology (GO) analysis
for the circRNA host genes using biological processes (BP)
and molecular function (MF). P-value <0.05 was used for
statistical significance.

Single cell transcriptome assembly

A transcriptome per cell was created by combining STAR
(v.2.5.3) and Stringtie (v.1.3.0) (34), using the deeper se-
quenced paired-end sequencing data. The parameters of
Stringtie were set to require a coverage of 1. These single cell
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Figure 1. Overview of experimental set-up. Single cell total RNA libraries of the FACS sorted cells were generated using two different reagent kits (#634413,
denoted with * and #634444, denoted with ◦).

transcriptomes were merged with the Ensembl (v.91) tran-
scriptome as a reference. From the merged multi-cell tran-
scriptome, only multi-exonic genes with a minimum length
of 200 nt were retained. To define the set of novel genes,
genes annotated in Ensembl (26) or LNCipedia (v.5.0) (28)
were filtered out. All genes in this novel multi-cell transcrip-
tome were quantified using Kallisto on single-end subsam-
pled data (1, 4 or 8 million reads per cell). Genes with an
estimated count higher than 1 were retained.

RESULTS

Principle of SMARTer single cell total RNA sequencing

We developed a single cell total RNA-seq protocol for
unbiased, full transcript and strand-specific analysis of
both polyadenylated and non-polyadenylated transcripts
from mammalian cells. The method uses reagents from the
SMARTer Stranded Total RNA-Seq Kit v2 – Pico Input
Mammalian (Pico v2, total RNA), a kit that is meant for
low input bulk total RNA-seq, whereby we optimized re-
action volumes, number of PCR cycles, and duration and
temperature of the RNA fragmentation. The library prepa-
ration method employs random primers and a template
switching mechanism to capture full transcript fragments
of both polyadenylated (polyA[+]) and non-polyadenylated
(polyA[–]) transcripts. Unwanted ribosomal cDNA is re-
moved using probes, complementary to mammalian rRNA.
After successfully porting the bulk library prep protocol to
Fluidigm’s C1 single cell instrument, we assessed the per-
formance of the single cell total RNA-seq protocol through
three distinct experiments in which nutlin-3, JQ1 or doxy-

cycline was used to treat NGP, SK-N-BE-2C and SHSY5Y-
MYCN-TR neuroblastoma cell lines, respectively (with ve-
hicle treated cells as control) (Figure 1). In addition, we per-
formed matched single cell polyA[+] RNA-seq as a refer-
ence using cells from the same pool. While all experiments
were successful, we focus our analyses and performance as-
sessment on the NGP data. In this experiment, the treated
and control cells were processed in the same microfluidic
chip (preventing possible chip bias), the highest number of
cells were captured, and the highest sequencing depth was
reached.

SMARTer single cell total RNA sequencing yields high-
quality data

In single cell sequencing experiments, it is important
to prevent or limit potential biases that mask true bio-
logical differences. In particular, the cell cycle state is a
known confounder (35). Therefore, we synchronized the
cells through serum starvation for 24 hours. Upon synchro-
nization, 80.3% of the NGP cells showed an arrest at the
G0/G1 stage compared to only 53.3% for non-synchronized
NGP cells (Supplementary Figure S1A and B). Subse-
quently, the synchronized NGP cells were treated for 24 h
with vehicle or nutlin-3, the latter known to release TP53
from its negative regulator MDM2. As expected, nutlin-3
treatment resulted in cell cycle arrest (Supplementary Fig-
ure S1C and D). To prevent possible C1 batch effects (36),
vehicle treated NGP cells were stained and loaded together
with the non-stained nutlin-3 treated cells on the same C1
chip. Based on the fluorescent label and the transparency of
the C1 system, vehicle and nutlin-3 treated cells were dis-
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Figure 2. Read distribution differs between polyA[+] and total RNA libraries. (A) Percentage of reads derived from nuclear RNA, mitochondrial RNA
and ribosomal RNA per cell quantified with STAR. (B) Percentage of the reads originating from nuclear chromosomes derived from exonic, intronic and
intergenic regions per cell quantified with STAR. (C) Percentage of exonic reads attributed to the different biotypes per cell quantified with Kallisto.

criminated by fluorescence microscopy. By loading two C1
chips, one for polyA[+] RNA and one for total RNA li-
brary preparation, we captured 31 and 27 nutlin-3 treated
versus 52 and 37 vehicle treated single cells, respectively.
High-quality cDNA libraries of polyA[+] and total RNA
were generated using the SMART-Seq v4 Ultra Low In-
put RNA Kit for the Fluidigm C1 System (SMART-Seq v4,
polyA[+]) and our novel SMARTer single cell total RNA-
seq protocol, respectively (Supplementary Figure S1E and
F). ERCC spike-in molecules were added for external qual-
ity control in the lysis mix (Supplementary Figure S2). For
the recovered spikes (with a concentration in the original
mix of at least 10 amol/�l), linear models were calculated
(Supplementary Figure S3), retrieving similar R2 values for
the polyA[+] RNA and total RNA library preparation pro-
tocol (Supplementary Figure S4). The transcripts detected
in the polyA[+] libraries were somewhat shorter compared
to the total RNA libraries (Supplementary Figure S5). In
addition, the total RNA-seq libraries show a more uniform
transcript coverage (Supplementary Figure S6).

As expected, a higher fraction of reads mapped to nu-
clear rRNA in the total RNA-seq libraries compared to the
polyA[+] RNA libraries (average of 2.739% [2.488, 2.990;
95% confidence interval (CI)] versus 0.031% [0.026, 0.035;
95% CI], respectively). Nevertheless, the fraction of nuclear
rRNA is very low in the total RNA libraries considering
the use of random priming data (Figure 2A), and substan-
tially lower compared to the RAMDA-seq method (9.667%
rRNA [9.615, 9.719; 95% CI], Supplementary Figure S7).
Furthermore, the single cell total RNA libraries contain
more intronic (27.99% [25.06, 30.91; 95% CI] versus 11.87%
[10.14, 13.60; 95% CI]) and intergenic (5.38% [5.00, 5.76;
95% CI] versus 2.90% [2.54, 3.26; 95% CI]) reads originat-
ing from nuclear chromosomes compared to polyA[+] RNA
libraries (Figure 2B). Non-polyadenylated histone genes are
highly abundant in the total RNA libraries, while low or ab-
sent in the polyA[+] libraries, confirming the validity of our
single cell total RNA-seq workflow (Supplementary Figure
S8). Equal results were obtained for the SK-N-BE-2C, and
SHSY5Y-MYCN-TR cell lines (Supplementary Figure S9).

SMARTer single cell total RNA sequencing reveals a unique
set of genes

More reads map to long intergenic RNAs (lincRNAs) us-
ing the single cell total RNA-seq protocol (2.64% [2.523,
2.756; 95% CI]) compared to polyA[+] RNA sequencing
(1.67% [1.489, 1.849; 95% CI]). In addition, the single cell
total RNA-seq protocol detects an equal or higher number
of genes (subsampled to 1 million reads/cell and detected by
>10 reads) covering the different biotypes, including lincR-
NAs (144 [139, 148; 95% CI]), protein coding (5124 [4874,
5372; 95% CI]) genes, and pseudogenes (132 [127, 137; 95%
CI]) (Figures 2C and 3). Of note, antisense genes are the
only biotype for which the total RNA protocol detects fewer
genes (62 [59–64; 95% CI]), likely because of the unstranded
nature of the polyA[+] RNA libraries, which results in erro-
neous quantification of sense/antisense overlapping genes
(Supplementary Figure S10). Considering both polyA[+]
RNA-seq and total RNA-seq data, 3978 different antisense-
sense relationships with an overlap of >200 nucleotides
were detected with expression of the sense or antisense gene
in at least one cell. These loci are prone to erroneous quan-
tification. Quantification of the stranded SMARTer data
in an unstranded way shows that 42.1% (median of 180
of the 428 detected antisense genes per cell) of the de-
tected antisense genes (in six random cells) are receiving
counts, while they have zero counts when properly treated
as stranded data; further, 10.1% of the antisense genes de-
tected in both analyses display fold change differences larger
than 2 (Supplementry Figure S11). Most of these genes with
fold change differences (87.0%) are more abundant in the
unstranded analysis compared to the stranded analysis, ex-
plained by the fact that these antisense genes are consuming
counts from the sense gene.

LincRNAs, antisense genes and pseudogenes are clearly
expressed in fewer cells compared to protein coding genes.
We hypothesize that low abundant genes might be missed
because of sampling bias during the sequencing workflow
or that lincRNAs, often low abundant in nature, are ex-
pressed under specific conditions or stimuli (Figure 4) (37).
As expected, increasing the number of reads (up to 4 or 8
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Figure 3. Total RNA libraries comprise more genes per RNA biotype. All
genes in Ensembl v.91 were quantified on subsampled data (1, 4 or 8 million
reads per cell). Only genes with at least 10 reads were included.

million) in the total RNA library protocol results in the de-
tection of a higher number of genes. We observed no sat-
uration when generating 8 million reads per cell, suggest-
ing that deeper sequencing could yield even more detected
genes (Figure 3). The overlap between protein coding genes
detected in the polyA[+] and total RNA libraries (subsam-
pled for 1 million reads/cell and mean expression of at least
1 read over all cells) (Figure 5A) is high. Genes detected in
only one of the library types are generally lower abundant
compared to genes detected with both methods (Figure 5B).
In contrast to protein coding genes, the overlap for lincR-
NAs between the methods is much smaller (Figure 5C). Im-
portantly, a significant fraction of the total RNA-seq spe-
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Figure 4. Gene biotype and abundance are correlated to fraction of ex-
pressed cells. In general, the fraction of cells in which a gene is expressed is
related to the mean expression level of that gene; exceptionally, some low
abundant genes are present in a large fraction of cells. RNA biotypes that
are known to be more cell-type specifically expressed, such as lincRNAs,
are expressed in fewer cells.

cific lncRNAs display a high expression, thus possibly rep-
resenting functionally important RNAs (Figure 5D). Lin-
cRNA RMRP is one of the most abundant lincRNAs that
is solely detected by our novel single cell total RNA-seq
workflow. This gene is known to be 3′ non-adenylated and
is the first known RNA encoded by a single-copy nuclear
gene imported into mitochondria (38,39). As only a subset
of the lincRNAs and antisense genes are currently anno-
tated in Ensembl, we also quantified our libraries with the
LNCipedia transcriptome (the most comprehensive human
resource of both antisense and lincRNA genes, further re-
ferred to as lncRNAs). While the number of detected lncR-
NAs is slightly lower in the total RNA-seq libraries if an
equal number of reads (1 million) is used, each library type
contains a certain proportion of unique lncRNAs (Supple-
mentary Figure S12). LNCipedia is likely biased towards
medium-to-high abundant polyadenylated lncRNAs.

SMARTer single cell total RNA sequencing detects circular
RNAs and novel genes

In addition to linear RNA biotypes, we tested whether the
single cell total RNA-seq protocol is able to quantify cir-
cRNAs as this class of non-coding RNAs lacks a polyA-
tail and in principle can only be detected using unbiased
total RNA-seq. With a requirement of at least two unique
back-spliced junction reads, 537 circRNAs were identified
derived from 460 host genes (Supplementary Table S2). The
majority of the circRNAs were found in fewer than 3 out
of 64 cells, with only 14 circRNAs detected in at least four
cells. Gene Ontology analysis for molecular functions and
biological processes was performed on the circRNA host
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genes from both treated and untreated cells. A significant
enrichment of TP53 binding, TP53 pathway, cell cycle, and
chromosome organization suggests that the identified cir-
cRNAs may play a role in these biological functions.

In the single cell total RNA libraries, the fraction of inter-
genic reads (relative to existing Ensembl and LNCipedia an-
notation) is high, suggesting that these reads originate from
novel unannotated transcripts. To validate this hypothesis,
we generated genome and transcriptome guided transcrip-
tome assembly of the paired-end single cell total RNA-seq
data resulting in 5360 novel, multi-exonic genes. The novel
transcripts have a median length of 317 nucleotides (Fig-
ure 6A) and consist on average of more than three exons
(Figure 6B). Quantification of this novel transcriptome us-
ing the single-end data subsampled at 1 million reads per
cell resulted in a median number of 59 novel genes per cell
[55–63; 95% CI] (Figure 6C). Of note, most novel genes are
expressed in only one cell (Figure 6D).

SMARTer single cell total RNA profiles reflect the biological
signal

To assess whether the single cell total RNA-seq protocol is
also able to reveal known biological signal, we performed

differential expression analysis using DESeq2 combined
with the Zinger method coping with zero inflated data.
Based on the ranking obtained by the DESeq2 test statis-
tic, gene set enrichment analysis using the hallmark gene
sets was performed. Firstly, the same gene sets are signifi-
cantly enriched in both library preparation protocols (Fig-
ure 7A); secondly, TP53 target genes are––as expected––the
most significantly enriched gene set (Figure 7B), confirming
that the biological signal is recapitulated through single cell
total RNA-seq analyses.

SMARTer single cell total RNA sequencing of FACS sorted
cells in microplates

To demonstrate that our novel single cell total RNA seq
method also efficiently works on FACS sorted cells in mi-
croplates, we processed A375 and Jurkat sorted cells. In par-
allel, Takara’s single cell purposed SMART-Seq Stranded
Kit was also tested on these cells (Figure 1). Equally low
amounts of ribosomal cDNA were sequenced using both
reagent kits, i.e. 1.46% [0.77, 2,15; 95% CI] and 0.66% [0.48,
0.85; 95% CI] for the A375 cells and 1.17% [1.05, 1.29; 95%
CI] and 0.94% [0.80, 1.09; 95% CI] for the Jurkat cells (Fig-
ure 8, Supplementary Figure S13). Similar to the total RNA
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Figure 6. Total RNA libraries enable assembly of single cell transcriptomes. (A) Transcripts were filtered at a length of 200 nt. The remaining transcripts
have a mean length of 537 nt. (B) Transcripts were required to have at least two exons. The remaining transcripts are on average 3.4 exons long. (C) All
novel genes were quantified on subsampled data (1, 4 or 8 million single-end reads per cell). Genes with at least one count were retained. (D) While some
novel genes are expressed in all cells, most novel genes are detected in only one cell.

seq libraries generated on the C1 system, we analysed the
number of reads assigned to intron, exon and intergenic re-
gions and the read fraction for all RNA biotypes. The mi-
croplate sorted single cell data was very comparable to the
C1 data (Figure 8, Supplementary Figure S13).

DISCUSSION

In this study, we developed a single cell total RNA-seq
method to sequence full transcripts from single cells in an
essentially unbiased manner. To demonstrate the perfor-

mance of the method, we applied single cell total RNA-
seq in four experiments on five different cancer cell lines, of
which three undergoing a specific perturbation. In parallel,
we also performed single cell polyA[+] RNA-seq on three
cell lines using the well-established Smart-seq v4 method
(6,40). As in any genomics study, the experimental set-up
may suffer from confounding factors, such as variations in
cell cycle states of the cells and batch effects of single cell
capture and sequencing, masking real biological differences.
In two of the four experiments, we carefully controlled all
these experimental biases. The cell cycle bias was minimized
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Figure 7. Pathway analysis for polyA[+] RNA and total RNA libraries is similar. (A) Gene set enrichment analysis for all hallmark pathways resulted in
the same significant (Padj < 0.05) pathway predictions. (B) The TP53 pathway is, as expected, enriched in both library prep methods.

by cell cycle synchronization using serum starvation. We
also avoided potential cell selection bias by capturing differ-
entially labeled treated and untreated cells on the same chip
(35,36). Finally, sequencing bias was minimized by sequenc-
ing both polyA[+] and total RNA libraries on the same Il-
lumina flow cells.

The single cell total RNA-seq method has some distinc-
tive advantages compared to other methods. First, in any
total RNA-seq library, depletion of rRNA is essential as
this makes up the bulk of the total RNA mass. Depletion
of rRNA from single cells prior to cDNA synthesis is tech-
nically very difficult. Here, we used ribosomal cDNA spe-
cific removal probes, resulting in <3% of ribosomal reads
per single cell library. This highly efficient rRNA depletion
step is a major improvement compared to RAMDA-seq,
where 10–35% of the reads map to rRNA (20). Second,
given the stranded nature of the single cell total RNA se-
quencing data, quantification of antisense genes is accurate,
which is not possible when using unstranded data. In con-
trast to the three existing single cell total RNA-seq methods,
our method uniquely combines these two features that are
highly desirable for total RNA-sequencing (19–21). Third,
as expected, our single cell total RNA libraries contain sub-
stantially more intronic reads compared to polyA[+] RNA
libraries (41,42). Such intronic reads can be used to de-
tect changes in nascent transcription, whereby the differ-
ence in exonic and intronic reads provides insights in post-
transcriptional regulation (43). As such, we believe that our
method may be particularly well suited for ‘RNA veloc-
ity analysis’ of single cells (44). Fourth, the single cell to-
tal RNA-seq workflow presented in this paper detects rela-
tively more protein coding genes, pseudogenes, lincRNAs
and miscellaneous RNA (miscRNA) compared to single
cell polyA[+] RNA libraries, when corrected for equal se-
quencing depth. While the number of detected genes in-
creases with sequencing depth, there seems to be no plateau
yet at 8 million reads, suggesting that further increasing
the sequencing depth, could enable low abundant gene de-
tection. Fifth, our method also detects non-polyadenylated

RNA molecules, such as histone genes, lncRNAs and cir-
cRNAs. In the NGP dataset, 537 circRNAs were detected
using reads with evidence for back splicing. In order to de-
tect more circRNAs in an individual cell, a higher sequenc-
ing depth is required or libraries should be enriched for cir-
cRNAs by selectively removing linear RNA by exonuclease
treatment prior to library prep and sequencing (18). Sixth,
the data enables reference guided transcriptome assembly,
resulting in the detection of 5360 novel genes. Finally, dif-
ferential gene expression analysis and gene set enrichment
of NGP cells treated with nutlin-3 confirmed activation of
the TP53 pathway at the transcriptional level.

One limitation of the implementation of the single cell
total RNA library preparation method on the C1 instru-
ment is the relatively low throughput, as maximally 96 cells
are simultaneously captured. In contrast, current droplet-
based single cell methods capture thousands of individ-
ual cells, but these systems are limited to 3′ end sequenc-
ing of polyadenylated RNA, preventing quantification of
splice variants and non-polyadenylated transcripts. To en-
able the analysis of higher cell numbers, we demonstrated
that the method works equally well on FACS sorted cells
in microplates. By using FACS sorted cells the throughput
can be increased and no specialized devices, such as the
C1, are required. Finally, an advantage of our total RNA-
seq protocol on both C1 and in microplates is that single-
end sequencing is sufficient while more expensive paired-
end sequencing is required for most droplet-based meth-
ods. We advice to use the single cell total RNA-seq method
rather than polyA[+] methods if it is desired to study non-
polyadenylated RNA molecules such as lncRNAs or circR-
NAs, if strand-specific data is a must and if full transcript
sequencing is priority (e.g. analysis of alternative splicing,
RNA editing or somatic mutations).

DATA AVAILABILITY

The SMARTer single cell total RNA sequencing script is
deposited in Script Hub (Fluidigm). The fastq files and
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processed data is available through GEO (GSE119984 and
GSE130578).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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