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ABSTRACT

Recent advances in high-throughput single-cell RNA-
seq have enabled us to measure thousands of gene
expression levels at single-cell resolution. However,
the transcriptomic profiles are high-dimensional and
sparse in nature. To address it, a deep learning frame-
work based on auto-encoder, termed DeepAE, is pro-
posed to elucidate high-dimensional transcriptomic
profiling data in an encode–decode manner. Compar-
ative experiments were conducted on nine transcrip-
tomic profiling datasets to compare DeepAE with
four benchmark methods. The results demonstrate
that the proposed DeepAE outperforms the bench-
mark methods with robust performance on uncover-
ing the key dimensions of single-cell RNA-seq data.
In addition, we also investigate the performance of
DeepAE in other contexts and platforms such as
mass cytometry and metabolic profiling in a com-
prehensive manner. Gene ontology enrichment and
pathology analysis are conducted to reveal the mech-
anisms behind the robust performance of DeepAE by
uncovering its key dimensions.

INTRODUCTION

High-throughput transcriptomic profiling, also known as
gene expression profiling, has been widely adopted as the
tool to characterize gene expression patterns in different cel-
lular states under various disease conditions (1), drug treat-
ments (2,3), and genetic perturbations (4). The genome-
wide single-cell transcriptomic profiling can measure tens
of thousands of genes in a high-throughput cell-by-cell ba-
sis manner (5) and provide rich genetic information for sub-
sequent studies. In pathological diagnosis, Nelson et al. (6)
tested whether the miRNA expression variations detected
in human brain tissue were associated strongly to dementia
with Lewy body pathology through gene expression profil-
ing techniques. Similarly, Olah et al. (7) confirm the exis-
tence of an aging-related microglial phenotype in the aged

human brain and its involvement in the related pathologi-
cal processes based on microglia transcriptomic profiling.
For translational research, Huet et al. (8) harness gene-
expression profiling data to build and validate a predic-
tive model for diagnosing the patients with follicular lym-
phoma. Based on gene expression profiles, Prabhakaran
et al. (9) developed a unique 12-chemokine gene expres-
sion score to stratify breast cancer patients based on in-
tratumoral immune composition. In addition, gene expres-
sion profiles have been widely adopted in drug discovery
and drug-target network construction; for instance, Bagot
et al. (10) analyzed the gene expression data in four inter-
connected limbic brain regions implicated in depression and
its treatment with imipramine or ketamine; Zickenrott et al.
(11) proposed a differential network approach for identify-
ing candidate target genes and chemical compounds for dis-
ease research based on transcriptomics.

Various transcriptomic technologies have been developed
to measure messenger RNA (mRNA) levels based on DNA
microarrays and sequencing technologies. By now, the high-
throughput sequencing platforms have already replaced mi-
croarrays as the tool of choice for high-throughput gene ex-
pression profiling. Specifically, single-cell RNA-seq enables
researchers to identify active genes in each cell (12). Al-
though those breakthroughs in transcriptomics have made
it possible to profile single-cell transcriptomics, the single-
cell RNA-seq data have brought new challenges in data
acquisition, storage, computation, and analysis. A crucial
challenge in gene expression profiling is its high dimension-
ality since there are more than 20 000 genes in each human
genome for high-throughput profiling. In addition, many
emerging applications require massive numbers of profiles
up to hundreds of thousands or more for statistical signifi-
cance. For instance, Ho et al. (13) obtained ∼90 000 reads
from more than 5000 expressed genes in ∼6500 cells using
single-cell RNA-seq to identify the markers of resistance to
targeted BRAF inhibitors in melanoma cell populations; a
gene expression matrix of 13 160 genes across 4233 filtered
zebrafish cells was derived for comprehensive identification
and spatial mapping of habenular neuronal types (14); Her-
ring et al. (15) sequenced 2402 colonic cells with an average
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of 49 680 reads per cell to reveal alternative tuft cell origins
in the gut.

To address the above issues, dimensionality reduction
techniques have been leveraged during the gene expression
data collection, interpretation, and analysis for two-fold ob-
jectives: computational and statistical tractability can be en-
sured and noises can be reduced while preserving the intrin-
sically low-dimensional signals of interest (16,17). In some
cases, principal component analysis (PCA) is often used to
project gene expression data by a linear combination of the
original gene expression values with the largest variances.
However, PCA has a shortcoming that, for real datasets,
the first and second principal components tend to depend
on the proportion of genes detected per cell (16,18). More-
over, the single-cell RNA-seq data have noises caused by
the transcriptional burst effects or low amounts (i.e. the
dropout events) of RNA transcripts. Hence, those spar-
sity and nonlinearity make the PCA inefficient for single-
cell RNA-seq data. In addition to PCA, independent com-
ponents analysis (19), Laplacian eigenmaps (20), and t-
distributed stochastic neighbor embedding (t-SNE) (21–23)
are also popular dimensionality reduction technicques in
high-dimensional gene expression data. Uniform manifold
approximation and projection (UMAP) is a new algorithm
recently published by McInnes et al. (24). It has been ex-
perimentally verified that UMAP shows equally meaning-
ful representations compared with t-SNE. After that, Becht
et al. have raised an issue on incremental data learning
to an existing embedding (25). Recently, Scvis was pro-
posed as a robust latent variable model in a probabilisti-
cally generative manner (26). In addition, several studies
have been proposed to impute the expression levels of un-
measured (unobserved) genes from a small number of land-
mark genes (∼1000) by leveraging computational methods
(27–29). Those methods assume that, within a large number
of genes (∼22 000) across the whole human genome, most
profiles share similar expression patterns (17).

Therefore, Cleary et al. (17) proposed a computational
method (published on Cell) based on compressed sensing
(30,31), in which the expression data can be collected in
a compressed format. It is composed of two phases: com-
pression and decompression. In compression, it projects
the high-dimensional expression data into low-dimensional
space as a composite measurement of linear combinations
of genes. The gene expression data can be collected in a com-
pressed format. In decompression, the high-dimensional ex-
pression profiles (∼20 000) can be recovered from a few
(up to 100-fold fewer than the number of genes or reads)
composite measurements by leveraging two properties: (i)
gene set modularity; (ii) gene expression sparsity (17).
The recovered expression profiles produced by CS-SMAF
(Compressed Sensing-Sparse Module Activity Factoriza-
tion) were demonstrated consistent with the wet-lab profiles.
The CS-SMAF not only provides efficient storage (compos-
ite measurements) for the collected high-dimensional data
but also can be leveraged to recover gene expression pro-
files. The CS-SMAF involves an iterative process of LASSO
(32) and orthogonal matching pursuit (OMP) (33) to iden-
tify the sparse module dictionary and active module activ-
ity. Obviously, the iterative LASSO and OMP cannot op-
timize such a non-convex problem that limits the recovery

accuracy. Hence, we seek to develop a computational ap-
proach with accurate and robust performance.

Recently, deep learning has been successfully imple-
mented in various machine learning tasks and has been
demonstrated for its capability in learning hierarchical and
nonlinear patterns (34). In addition, deep learning models
(i.e. deep neural networks, convolutional neural networks,
recurrent neural networks, and auto-encoder) are scalable
and highly flexible to large-scale data problems. With those
advances, it has achieved ground-breaking performance in
various well-studied topics, such as natural language pro-
cessing, computer vision (35), board game programs (Al-
phaGo) (36) , and machine translation. Moreover, deep
learning has been an exciting and promising method in
molecular genetics (37), such as promoter and enhancer
recognition (38), RNA splicing prediction (39) , and tran-
scription factors binding sites prediction (40). Eraslan et al.
(41) proposed a deep count autoencoder network to de-
noise single cell RNA-seq datasets with an advantage of
data imputation in quality and speed. AutoImpute (42) ap-
plied autoencoder to impute the sparse gene expression ma-
trix caused by dropout events. VASC (43) based on au-
toencoder provides dimension reduction and visualization
on single cell RNA-seq data with superior performance.
Those deep learning models show remarkable performance
and scalable flexibility as a powerful alternative for encod-
ing high-dimensional gene expression profiles. Although the
autoencoder performs well in data compression (dimension
reduction) and reconstruction, its model interpretability is
a major weakness since the autoencoder itself is known as
a black-box method.

In this study, we propose a deep neural network frame-
work, termed DeepAE, to identify the key dimensions
of high-dimensional gene expression profiles. DeepAE is
composed of encoder and decoder phases for compression
and decompression respectively. The encoder phase aims at
compressing (or encoding) the gene expression data in a
non-linear format such that, in contrast to the linear com-
pression of CS-SMAF, it can preserve the nonlinear pat-
terns of the high-dimensional gene expression. The decoder
phase aims at decompressing (or decoding) the transcrip-
tomic profiling data. In addition, we also investigate the per-
formance of DeepAE in other biotechnologies, such as mass
cytometry and metabolic profiling. After that, we propose
a method to identify and explain the key dimensions from
the central hidden layer of DeepAE in terms of its functions
and pathology.

MATERIALS AND METHODS

In this section, we introduce the transcriptomic datasets of
interest. After that, we propose the DeepAE model for the
compression and decompression of high-dimensional gene
expression data. For comparisons, we discuss the related
methods and the performance evaluation metrics.

Datasets

We have adopted nine single-cell RNA-seq datasets from
Gene Expression Omnibus (GEO) as the benchmark
datasets in this study. Table 1 summaries the nine gene ex-
pression datasets from single-cell RNA-seq including the
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Table 1. Summary of the nine benchmark gene expression datasets

GEO Accession Species Genes (Probes) Cell Samples Journal

GSE60361 (23) M. Musculus 19 972 3005 Science
GSE65525 (58) M. Musculus 24 175 2717 Cell
GSE62270 (59) M. Musculus 23 630 288 Nature
GSE48968 (60) M. Musculus 10 972 564 Nature
GSE52529 (61) H. Sapiens 47 192 372 Nature Biotechnology
GSE84133 (62) M. Musculus 14 878 1886 Cell Systems
GSE78779 (63) M. Musculus 22 814 96 Genome Biology
GSE69405 (64) H. Sapiens 57 820 201 Genome Biology
GSE102475 (65) Saccharomyces 6789 163 PLoS Biology

GEO accession number, organism, the number of genes
(or probes), the number of cell samples, and the pub-
lication venues. The nine gene expression datasets are
collected from three species: Homo Sapiens (GSE71858,
GSE52529, GSE77564, and GSE69405), Mus Musculus
(GSE60361, GSE62270, GSE48968, and GSE78779), and
Saccharomyces Cerevisiae (GSE102475). For the dimension
of genes (or probes), most of the gene expression datasets
have more than 10 000 dimensions except GSE102475. For
the sample dimension (i.e. cell dimension), most are ranged
from 100 to 600. In particular, GSE77564 has the fewest cell
samples (=20) while GSE60361 has the largest cell samples
(>3000).

Auto-encoder

Auto-encoder is an artificial neural network to identify
the efficient representation (i.e. key dimensions) of high-
dimensional data. The structural form of the auto-encoder
is a feed-forward neural network composed of encoding and
decoding. We can mathematically define these two phases
as mappings displayed in equation (1). The mapping is con-
ducted by projecting the input data vector with the weight
matrix W, bias term b, and the non-linear activation opera-
tion (�) such as sigmoid and tanh. In a basic auto-encoder,
it contains an input layer, an output layer, and a hidden layer
in between. The output layer has the same number of neu-
rons as the input layer to identify the key dimensions from
the hidden layer. The hidden layer is smaller than the input
layer; it enables the model to create the compressed repre-
sentation of input data in the hidden layer through the en-
coding (�: X → Z). In addition, the auto-encoder can re-
cover the input layer X by generating a reconstructed input
X

′
(output layer) through minimizing the difference between

input X and output X
′

called decoding (�: Z → X
′
). Since

the auto-encoder can force the networks to compress the
high-dimension data into a low-dimension representation
which captures the non-linear relationships within the orig-
inal data, it can thus be adopted for massive dimensionality
reduction and data compression. For instance, large image
reconstruction (44), health state identification (signal data)
(45), and transcriptomic machinery representation (46). Ex-
ploiting such advantages, we would like to explore the auto-
encoder potential on the interpretation of high-dimensional
transcriptomic profiles.

φ : X → Z : x −→ φ(x) = σ (Wx + b) = z

ϕ : Z → X′ : z −→ ϕ(z) = σ (W̃z + b̃) = x′ (1)

DeepAE

In this section, we describe the main elements of the pro-
posed DeepAE. We describe how such deep learning net-
works interpret the high-dimensional gene expression data.
The DeepAE is trained by n cell samples X = {x1, x2, ...,
xi, ..., xn} where each sample xi consists of g genes (i.e. at-
tributes or probes) xi = {xi

1, xi
2, ..., xi

j , ..., xi
g}. Thereby, xi

j
denotes the j-th gene (probe) of the i-th sample. Figure 1 il-
lustrates a schematic view of the proposed DeepAE neural
network. It consists of one flattened input layer representing
the original gene expression profiles, multiple hidden layers,
and one output layer representing the reconstructed gene
expression profiles. The encoder (dotted blue box) is com-
posed of the input layer and multiple hidden layers, while
the decoder (dotted red box) consists of the output layer
and the remaining hidden layers. The central hidden layer
refers to the compressed data in both encoder and decoder.
All hidden layers have different numbers of hidden units.
The neural connections between layers are fully connected.

The DeepAE is a multi-layer feedforward neural network
composed of two non-linear mappings (i.e. encoding and
decoding). The encoder and decoder form a symmetrical
architecture with nine layers of neurons; each layer is fol-
lowed by a nonlinear function and its parameters �. The
encoder mapping ��( · ) maps an input vector sample xi to
a compressed representation zi in the latent space Z. The
latent representation zi is then mapped back by the decoder
��( · ) to a reconstructed vector x̂i of the original input
high-dimensional space. The non-linear encoder and de-
coder mapping of the DeepAE encompassing several neu-
ron layers can be formally defined as below.

φl
θ (·) = σ l (Wl (φl−1

θ (·)) + bl ) ,

ϕl
θ (·) = σ l (W̃l (φl−1

θ (·)) + b̃l ) .
(2)

where � denotes the non-linear activation function such as
sigmoid or tanh functions, � denotes the model parameters,
{W, b, W̃, b̃}, {W ∈ R

dz×dx, W̃ ∈ R
dx×dz} denote the weight

matrices, {b ∈ R
dz , b̃ ∈ R

dx} denote the offset bias vectors,
and l denotes the layer index.

In this study, the leaky ReLU function is adopted as the
non-linear activation function in all hidden layers and the
output layer as shown below.

σ (x) = leaky ReLU(x) =
{

x if x > 0
αx if x ≤ 0 . (3)

where � represents the non-zero gradient which is usually
set to 0.01.
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Figure 1. Overview of the proposed DeepAE. It consists of one input layer representing the original gene expression profiles, multiple hidden layers, and
one output layer representing the reconstructed gene expression profiles. The encoder (dotted blue box) is composed of input layer and half hidden layers,
while the decoder (dotted red box) consists of the output layer and the rest of hidden layers. The central hidden layer refers to the compressed data in both
encoder and decoder. All the hidden layers have different hidden units. The neural unit connections between layers are fully connected.

The DeepAE is trained to learn the optimal model pa-
rameters � that minimize the difference between the orig-
inal gene expression data xi and its reconstruction x̃i =
ϕθ (φθ (xi )). Thus, the average sum is formulated as the loss
function as shown below.

Loss(xi , x̃i ) = 1
g

g∑
j=1

|xi
j − x̃i

j | . (4)

CS-SMAF and other benchmark methods

The early work, CS-SMAF published on Cell, leveraged
the compressed sensing from signal processing to project
the high-dimensional gene expression profiles into low-
dimensional gene modules; Cleary et al. (17) proposed to
identify the sparse module dictionary and sparse mod-
ule activities from the high-dimensional data using matrix
factorization. Thus the SMAF refers to finding the gene-
modular activities from the high-dimensional gene expres-
sion data.

In addition, we also consider other existing matrix factor-
ization methods as the benchmark methods including the
Singular Value Decomposition (SVD) (47), k sparsity Sin-
gular Value Decomposition (k-SVD) (48), and sparse Non-
negative Matrix Factorization (sNMF) (49). Those bench-
mark methods are all commonly used matrix factoriza-

tion methods. SVD is unconstrained, while k-SVD is con-
strained to manually set k eigenvectors. However, SVD and
k-SVD suffer from the limitation that they are not suit-
able to sparse data. The sparsity-enforcing methods sNMF
and CS-SMAF can generate sparse solutions (17). Most
importantly, CS-SMAF can generate compact, sparse, and
distinctive dictionaries, whereas the dictionaries generated
from SVD and sNMF are largely redundant (17). As afore-
mentioned, the CS-SMAF involves an iterative process of
LASSO and OMP that cannot optimize such a non-convex
problem, limiting the recovery accuracy. We introduce them
into the context of compressed sensing to identify the non-
negative, sparse module dictionary, and sparse module ac-
tivities from the high-dimensional gene expression data.

Performance evaluation metrics

In this study, three evaluation metrics are computed to
measure the encoding performance between the original
high-dimensional gene expression data and the recon-
structed gene expression data: Pearson Correlation Coef-
ficient (PCC), Euclidean Metric (EM), and Mean Absolute
Error (MAE) as shown below.

PCCX,X′ = Cov(X, X′)
σXσX′

. (5)
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Table 2. The proposed architectures ranging from the shallow architecture with a single fully connected hidden layer to the deep architecture with seven
hidden layers

Architectures Number of Neurons in Each Layer

DeepAE1 [Input layer]-50-[Output layer]
DeepAE2 [Input layer]-256-50-256-[Output layer]
DeepAE3 [Input layer]-640-256-50-256-640-[Output layer]
DeepAE4 [Input layer]-1280-640-256-50-256-640-1280-[Output layer]

EM =
√√√√ n∑

i=1

g∑
j=1

(Xi j − X′
i j )2 . (6)

MAE = 1
gn

n∑
i=1

g∑
j=1

|Xi j − X′
i j | . (7)

where n and g represent the numbers of rows and columns
in Xn × g and X

′n × g.
PCC is ranged from −1 to 1, indicating the linear corre-

lation between X and X
′
. The value of 1 (or −1) indicates

total positive (or negative) linear correlation, while 0 indi-
cates the absence of linear correlation. EM and MAE are
two commonly used methods to evaluate the two matrices’
distance and errors.

RESULTS

In this section, we built the proposed models on nine gene
expression datasets collected from GEO (https://www.ncbi.
nlm.nih.gov/geo/). We show the implementation details of
DeepAE and its compression and decompression perfor-
mance on high dimensional gene expression profiles. In ad-
dition, we explore the applications of DeepAE in other
high-throughput biomolecular contexts such as metabolic
profiling and mass cytometry. Source code implemented in
Python can be found at https://github.com/sourcescodes/
DeepAE.

Implementation details and model selection

We experimented four distinct neural network architectures
to identify the best DeepAE model. Table 2 tabulates the
overview of those architectures. The Leaky ReLU function
is adopted as the non-linear activation function in all hidden
layers and the last (output) layer where � is set to 0.2. The
Adam algorithm is adopted as the optimization method
for back-propagation to minimize the cost function (equa-
tion 4) with the hyper-parameters �1 = 0.9, �2 = 0.999, and
� = 1e − 08. The initial learning rate is set to 0.0001. The
number of iterations to train the model is set to 1000. We ap-
ply the DeepAE model to each dataset where 5% of samples
for training and 95% for testing. Each dataset is randomly
divided into the training set and testing set with distinct ran-
dom seeds. Each experiment was run five times for robust
performance estimation.

To identy the best DeepAE model, we tested the four
architectures as shown in Table 2 on the nine single-
cell RNA-seq datasets summarized in Table 1. Supple-
mentary Table S1 tabulates the performance compar-
ison of the four distinct DeepAE architectures eval-
uated in three metrics: PCC, EM, and MAE. The

best performance on each dataset is highlighted in
bold. In Supplementary Table S1, the DeepAE4 with
seven hidden layers outperforms other DeepAE ar-
chitectures on all single-cell RNA-seq datasets except
GSE69405. For the evaluation metric PCC, all DeepAE
models exceed 80%. In addition, DeepAE4 achieves
97.03% (±0.7%) on GSE77564. We also tried two extra-
deep architectures (DeepAE5 [Input layer]-2580-1280-640-
256-50-256-640-1280-2580-[Output layer] and DeepAE6
[Input layer]-2580-1280-640-256-128-50-128-256-640-1280-
2580-[Output layer]). We test those two extra-deep architec-
tures on GSE84133 and GSE65525. In addition to calculat-
ing PCC, EM and MAE, we also evaluate the running time
to compare with DeepAE4. The results from Supplemen-
tary Table S2 shows that, for GSE84133, DeepAE5 slightly
outperforms DeepAE4 and DeepAE6 in PCC, EM and
MAE, while its running time is increased significantly from
1445.55 sec (DeepAE4) to 2542.33 sec (DeepAE5); for
GSE65525, DeepAE4 outperforms other two architectures
in all four metrics. The observed results show that the
auto-encoder depth is the key factor to recover the high-
dimensional sparse structure within each profiling dataset.
Therefore, we select DeepAE4 (architecture: [Input layer]-
1280-640-256-50-256-640-1280-[Output layer]) as the final
model, consistent with the consensus gene regulation hier-
archy as observed from the ENCODE project (50).

Performance on transcriptomic profiling data

In this section, we applied the proposed DeepAE model
to compress and decompress the high-dimensional tran-
scriptomic profiles. The DeepAE consists of seven hidden
layers and the architecture is [Input layer]-1280-640-128-
50-128-640-1280-[Output layer]. The central hidden layer
(also called latent space) has 50 units corresponding to the
key dimensions. We use ‘measurements’ to represent the
learned key dimensions. Taking the advantages of com-
pressed sensing, CS-SMAF can compress the gene expres-
sion data from high-dimensional levels (∼20 000) into low-
dimensional space (∼100) and then can reconstruct it with
good quality. In the model selection section, we have in-
vestigated the possibility to compress the gene expression
data to 50 dimensions with the proposed DeepAE models.
Hence, in this section, we conduct the performance compar-
ison of the proposed DeepAE and the benchmark methods.
Moreover, we would like to explore the possibility to com-
press the gene expression levels into lower key dimensions
(measurements = 25 or even 10). To rigorously estimate its
performance, several methods are also considered as the
benchmark methods, including SVD (47), k-SVD (48), and
sNMF (49).
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Figure 2. Performance comparisons of the proposed DeepAE and benchmark methods on nine single-cell RNA-seq datasets with distinct measurements
(10, 25, 50, and 100) evaluated in PCC metric. Each bar height stands for the mean performance value across multiple runs, and the black line on the
top of bar denotes the standard deviation; the Y-axis scale of sub-figure (GSE60361, GSE66525, and GSE84133) is different from other sub-figures to
accommodate the performance of SVD. The benchmark methods include SVD (47), k-SVD (48), sNMF (49), and CS-SMAF (17).

Supplementary Table S3 tabulates the performance com-
parisons of the proposed DeepAE and benchmark meth-
ods for reconstructing the high-dimensional transcriptomic
profiling data from the learned lower space representations.
We randomly select 5% samples as the training set and 95%
samples as the testing set. Each method was run five times
on each dataset as shown in Supplementary Table S3. The
best performance on each dataset is highlighted in bold.
The results from Supplementary Table S3 reveal that, at the
same compression level (measurement = 50), the proposed
DeepAE outperforms the benchmark methods across all
nine transcriptomic profiling datasets. Supplementary Ta-
ble S4 tabulates the pair-wise statistical significance results
after comparing DeepAE with each benchmark method on
nine transcriptomic profiling datasets in all metrics by t-
test. All P-values in EM and MAE on each dataset are
significant (p<0.01). In PCC, most P-values are <0.05 ex-
cept few cases. Table 3 tabulates the average performance
comparisons across nine transcriptomic datasets. On aver-

age, the DeepAE can achieve 90.56% in Pearson correlation
(PCC) while the best benchmark method (sNMF) can only
achieve 85.53%. Moreover, the DeepAE has significant ad-
vantages in reducing the recovery errors (EM and MAE).
The DeepAE reduces the recovery errors by 50% in EM and
75% in MAE.

In addition, we investigated the possibility of DeepAE to
compress the high-dimensional gene expression data from
high-dimensional levels (∼20 000) into lower levels (mea-
surements = 25 or even 10) and then recover the full data
for robust performance estimation. Figures 2, 3, and Sup-
plementary Figure S1 depict the performance comparisons
among the proposed DeepAE and benchmark methods on
nine single-cell RNA-seq datasets with distinct measure-
ments (10, 25, 50, and 100) in PCC, EM, and MAE sepa-
rately. From Figure 2, we can observe that the PCC values
of DeepAE are always solid and robust as the measurements
are decreased from 100 to 10 key dimensions. The bench-
mark methods, however, exhibit significant performance
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Figure 3. Performance comparisons of the proposed DeepAE and benchmark methods on nine single-cell RNA-seq datasets with distinct measurement
(10, 25, 50, and 100) evaluated in EM metric. Each bar height stands for the mean performance value across multiple runs, and the black line on the top
of bar denotes the standard deviation; the Y-axis scale of sub-figure is different from each other. The benchmark methods include SVD (47), k-SVD (48),
sNMF (49), and CS-SMAF (17).

Table 3. Average performance comparisons of DeepAE and benchmark methods on nine single-cell RNA-seq datasets (measurements = 50)

Metrics SVD k-SVD sNMF CS-SMAF DeepAE

PCC 0.7708 0.8428 0.8553 0.8561 0.9056
EM 1.939E + 06 1.939E + 06 1.933E + 06 1.931E + 06 9.836E + 05

MAE 1.353E + 06 1.352E + 06 1.347E + 06 1.345E + 06 3.693E + 05

The best performance is highlighted in bold.

degradation as the measurements are decreased with signifi-
cant performance deviation and sensitivity on each dataset.
From Figure 3 and Supplementary Figure S1, none of the
recovery error metrics (EM and MAE) shows significant
fluctuations; the EM and MAE of DeepAE are still signif-
icantly lower than benchmark methods across all datasets.
Figure 4 presents the average performance comparisons of
DeepAE and benchmark methods on all datasets with mea-
surements decreasing from 100 to 10. The DeepAE can keep
the Pearson correlation (PCC) over 90% without any no-
ticeable fluctuation. All benchmark methods have been de-

graded to varying degrees. Only CS-SMAF can retain the
PCC above 80% among the benchmark methods. Therefore,
the proposed DeepAE shows robust performance in recon-
structing the high-dimensional expression profile from the
compressed space by identifying the key dimensions.

To illustrate the performance of the proposed DeepAE
and benchmark methods on transcriptomic profiling data,
we depict an example of these methods on reconstruct-
ing high-dimensional gene expression profiles from its
learned lower space. Figure 5 consists of the original high-
dimensional gene expression profiles (GSE60361) and the
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Figure 4. Average performance comparisons of the proposed DeepAE and
benchmark methods on nine single-cell RNA-seq datasets with distinct
measurements (10, 25, 50, and 100) evaluated in PCC metric.

profiles reconstructed from the proposed DeepAE and
benchmark methods including SVD (47), k-SVD (48),
sNMF (49), and CS-SMAF (17) with measurements =
10. The high-dimensional gene expression profiles are pro-
cessed with log(data + 1). Heatmaps in Figure 5 show the
gene expression patterns and the hierarchical clustered sam-
ples and genes. Each row corresponds to a specific gene;
each column corresponds to a particular cell sample. White
to green colours suggest high to middle expression whereas
green to black colours suggest low to null expression. In Fig-
ure 5, each method has varying degrees of information loss
while DeepAE can preserve most of the original gene ex-
pression patterns.

We also run the proposed DeepAE and benchmark meth-
ods on single cell RNA-seq datasets with smaller mea-
surements (5, 2, and 1). The datasets are all preprocessed
with z-score normalization. Supplementary Figure S5 illus-
trates the results on GSE84133, GSE65525, and GSE60361.
We can find that, for the PCC metric, DeepAE shows a
slight performance degradation when the measurement is
dropped from 100 to 1, while the benchmark methods are
decreased significantly; for EM and MAE, the DeepAE
demonstrates slight error elevations when the measurement
is dropped from 100 to 1. The gene expression profiles re-
constructed from benchmark methods contain many zeros
or very close to zeros while the linear correlations (measured
by PCC) are sensitive to the highly expressed cells.

We have run the proposed DeepAE and benchmark
methods on single-cell RNA-seq datasets with 1 to 100 mea-
surements based on a new performance metric (Spearman
correlation coefficient), instead of the PCC one. Spearman
correlation coefficient can measure the non-linear relation-
ship between two vectors which can be orderly flattened
from two matrices respectively. The datasets are all prepro-

cessed with z-score normalization. Supplementary Figure
S6 illustrates the results on GSE84133 and GSE60361. We
can observe that, for the Spearman metric, DeepAE does
show a significant performance degradation when the mea-
surement is dropped from 100 to 1 if we measure the per-
formance in Spearman correlation coefficient instead of the
PCC one. It implies that DeepAE mainly works by cap-
turing the absolute magnitudes (z-scores here) of the in-
put biomolecular data, explaining the good performance as
measured in the PCC one. Model overfitting is not an issue
here since the current objective is to reduce dimensions with
independent test set instead of classification or clustering.

To examine it further, we have visualized the central hid-
den layers (encoded data) of DeepAE with the measure-
ment = 1, 2, 5, and 10 on GSE60361 in Supplementary Fig-
ure S7. The heatmaps reflect that DeepAE can retain gene
expression patterns to varying degrees with different mea-
surements = 1, 2, 5, and 10 in absolute magnitudes. The
proposed DeepAE model contains four encode hidden lay-
ers, one central hidden layer, and four decode hidden layers.
After training process, each hidden layer has preserved all
parameters (weights and biases) that contribute to encode
(from high dimensions to its low space) and decode (from
low dimensions to its original space) the testing data.

Performance on metabolic profiling data

Metabolomics describes the profiling of small molecular
metabolites in a biological sample, including body fluids
(urine, blood, saliva), tissues, and exhalation (51). Recent
technological advances have made it possible to perform
high-throughput profiling on large amounts of metabolites
in biological samples. In this section, we investigate the
potential of DeepAE to encode and decode the metabolic
profiling data in a compressed format by identifying the
key data dimensions. Two metabolic profiling datasets were
collected from the hepatic steatosis of obese mice (25 806
genes and 29 samples) (52) and the irradiated leaves re-
sponse to UV-B in maize (43 451 genes and 136 sam-
ples) (53). Figure 6 illustrates the performance compar-
isons between DeepAE and benchmark methods on those
metabolic profiling datasets. The proposed DeepAE out-
performs the benchmark methods in all metrics of interest.
In addition, DeepAE shows robust key dimension identifi-
cation performance with the decreasing compressed levels
(measurements decreasing from 100 to 10).

Performance on mass cytometry data

Mass cytometry is a relatively new and promising technol-
ogy for high-dimensional multi-parameter single cell anal-
ysis (54). Mass cytometry can provide unprecedented mul-
tidimensional single cell profiling and has recently been ap-
plied to medical fields including immunology, hematology,
and oncology (55). However, the high dimensionality, large
data size, and non-linearity of mass cytometry data also
bring great challenges in data collection and analysis (54).
In this section, we apply the proposed DeepAE to encode
the mass cytometry data in a compressed manner and re-
cover it with quality. The mass cytometry dataset analyzed
in this study is derived from a project (56) and is pub-
licly available on Cytobank (https://community.cytobank.
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Figure 5. Original gene expression profiles (GSE60361) and the profiles reconstructed by DeepAE, SVD (47), k-SVD (48), sNMF (49), and CS-SMAF
(17). The data in the heatmaps is processed with log(data + 1).
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Figure 6. Performance comparisons among the proposed DeepAE and benchmark methods on two metabolic profiling datasets with different numbers of
measurements (10, 25, 50, and 100). Each bar height denotes the mean performance value across multiple runs and the black line on the top of bar denotes
the standard deviation; the Y-axis scale of each sub-figure is different from each other. The benchmark methods include SVD (47), k-SVD (48), sNMF
(49), and CS-SMAF (17). Note that PCC is positively correlated to the performance while EM and MAE are negatively correlated to the performance.

org/cytobank/experiments/68981). We chose the mass cy-
tometry data of MDA-MB-231 cells measured at the con-
trol time point (0 min). This mass cytometry data consists
of 3452 rows (i.e. cells) and 57 columns (i.e. features). Fig-
ure 7 illustrates the performance comparisons of DeepAE
and benchmark methods on mass cytometry data. The pro-
posed DeepAE outperforms the benchmark methods in all
metrics, similar to the previous datasets.

Biological analysis on the central hidden layer of DeepAE

The aforementioned subsections showed the key dimension
identification performance of the proposed DeepAE and
benchmark methods on transcriptomic profiling data, mass
cytometry data, and metabolic profiling data. We also in-
vestigated the robustness of DeepAE when the compression
level (measurements) is dropped from 100 to 10. In this sec-
tion, we would like to infer biological insights from the key
dimensions of the DeepAE models.

First, we use the fully trained DeepAE to compress the
original high-dimensional expression data (∼20 000) into
10 key dimensions (measurements = 10). After that, we vi-
sualize the original data and the compressed data across
all samples (columns) using t-SNE (57). We expect that the
compressed data can be close to the original data. Figure 8
and Supplementary Figure S2 illustrate the visualization re-
sults on the original data (∼20 000 dimensions) and com-
pressed data (10 dimensions) of nine transcriptomic profil-
ing datasets listed in Table 1. We can observe that the com-
pressed data can still preserve the main topological patterns
of the original data.

In addition, we explained each hidden key dimension in
the central hidden layer (10 dimensions) one by one biolog-
ically. In our DeepAE model, each node in the input layer
represents a gene and the high-dimensional input layer is
compressed into the central hidden layer by multiple hid-
den layers as illustrated in Figure 1. The genes in input
layer have different contributions or importance to the cen-
tral hidden layer and it is represented by neural connection
weights. We calculate the weight of each gene in input layer
and sort it with a descending order. We select the top 10%
(1997 for GSE60361) with the highest weights corresponded
to each hidden dimension and conduct the Gene Ontology
(GO) enrichment analysis on the selected gene set. We tested
the GO enrichments in the central hidden layer of DeepAE
trained on the GSE60361 dataset (single-cell RNA-seq of
mouse cerebral cortex), and found that the selected genes
corresponded to each key dimension are enriched in GO
terms (biological process) to varying degrees. Supplemen-
tary Figure S3 shows the top 30 categories of biological pro-
cess ontology ordered by P-values from the first key dimen-
sion to the tenth key dimension in the central hidden layer.
For example, from the first key dimension, there are 1684
out of the 1997 genes enriched in 5709 GO terms (biolog-
ical process). Supplementary Figure S3a (the first key di-
mension) shows the top 30 GO terms where 35 genes are
enriched in the first biological process term (ammonium
ion metabolic process). The enriched biological process on-
tology is varied in each central hidden dimension, reveal-
ing that DeepAE can capture multiple characteristics of the
pathology under the context of the given dataset (full GO
results can be found in the supplementary document).
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Figure 7. Performance comparisons among the proposed DeepAE and benchmark methods on mass cytometry dataset with different numbers of mea-
surement (10, 25, 50, and 100). Each bar height stands for the mean performance value across multiple runs, and the black line on the top of bar denotes
the standard deviation; the Y-axis scale of sub-figure is different with each other. The benchmark methods include SVD (47), k-SVD (48), sNMF (49), and
CS-SMAF (17). Note that PCC is positively correlated to the performance while EM and MAE are negatively correlated to the performance.

Figure 8. 2D Visualization on the Key Dimensions (Measurements) us-
ing t-SNE between the original data (∼20 000 dimensions) and com-
pressed data (10 dimensions) from the transcriptomic profiling datasets
(GSE60361 and GSE62270).

Moreover, we analyze the molecular pathways behind the
key dimensions using WikiPathways. Supplementary 2 tab-
ulates all the pathways found in each hidden dimension
from each transcriptomic profiling dataset (as listed in Ta-
ble 1) and ordered by the P-value with a cut-off of 0.05. We
select the pathway with the lowest P-value in each dataset
to illustrate the pathway information encoded in each key
dimension of the central hidden layer. Figure 9 and Sup-
plementary Figure S4 display the selected pathways loaded
as networks. In each pathway, the rectangle boxes repre-
sent the genes involved in the pathways, while the yellow
boxes represent the genes corresponded to the central hid-
den layer of DeepAE. From the pathways, we can observe

that our DeepAE model can capture the key driver genes
in most of the pathways; its downstream regulations can
impact on the whole pathway outcomes. It explains why
our DeepAE model can easily recover the whole transcrip-
tomic data from the key dimensions in an efficient and ro-
bust manner.

DISCUSSION

In this study, we proposed a deep neural network frame-
work, termed as DeepAE, to identify the key dimensions
from high-dimensional biomolecular data (i.e. single-cell
RNA-seq data, metabolic profiling data, and mass cytom-
etry data). DeepAE is composed of an input layer, seven
hidden layers, and output layer to form the encoder and de-
coder phases that are corresponded to the compression and
decompression via three hidden layers, consistent with the
three-layer cell regulation architecture revealed in the EN-
CODE project (50).

In compression, the encoder phase compresses the gene
expression data without any restriction, in contrast to the
linear limitation of CS-SMAF published on Cell; DeepAE
can keep the non-linear patterns of the high-dimensional
gene expression for key dimension identifications. Multi-
ple experiments were conducted on nine single-cell tran-
scriptomic datasets to compare the proposed DeepAE with
the state-of-the-arts benchmark methods including SVD,
k-SVD, sNMF, and CS-SMAF. The comparative results
demonstrated that DeepAE outperforms other benchmark
methods even when the compression level (measurements)
is dropped from 100 to 10 key dimensions. Moreover, the
recovery errors of DeepAE are significantly lower than the
benchmark methods; it implies that DeepAE can recover
the gene expression patterns in a quantitatively accurate
manner.

In addition, we also investigate the performance of
DeepAE in other biotechnologies such as mass cytome-
try and metabolic profiling. The mass cytometry data and
metabolic profiling data are also stranded by high dimen-
sionality and data sparsity issues. The experimental results
demonstrated the performance of the proposed DeepAE as
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Figure 9. WikiPathways found from the central hidden layers trained on GSE65525, GSE48968, GSE52529, and GSE62270. (A) Myometrial relaxation
and contraction pathways found in GSE65525. (B) Nonalcoholic fatty liver disease found in GSE48968. (C) VEGFA-VEGFR2 signaling pathway found
in GSE52529. (D) Translation factors pathway found in GSE62270. In each pathway, the rectangle boxes represent the genes involved in the pathways,
while the yellow boxes represent the genes corresponded to the central hidden layer.

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/48/10/e56/5814052 by guest on 23 April 2024



e56 Nucleic Acids Research, 2020, Vol. 48, No. 10 PAGE 14 OF 15

a general framework for uncovering key dimensions from
high-throughput biomolecular data.

Moreover, we conducted a key dimension analysis on the
central hidden layer of DeepAE to understand the biologi-
cal meaning of each compressed key dimension. The visual-
ization results from the original high-dimensional data and
compressed data across all samples show that the the com-
pressed data have still preserved the main topological pat-
terns of the original data. We also investigated the biologi-
cal meaning of each dimension of the central hidden layer
through the GO enrichment analysis and pathology studies.
It explains why and how the DeepAE model can capture key
insights from the high-throughput biomolecular data of in-
terest.

In the future, we hope that our DeepAE model can serve
as a general platform for identifying the molecular drivers
behind high-throughput biomolecular data with broad im-
pacts on multiple directions such as cancer driver gene iden-
tification and stem cell lineage tracing.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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