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ABSTRACT

The identification of new targeted and personalized
therapies for cancer requires the fast and accurate
assessment of the drug efficacy of potential com-
pounds against a particular biomolecular sample. It
has been suggested that the integration of comple-
mentary sources of information might strengthen the
accuracy of a drug efficacy prediction model. Here,
we present a web-based platform for the Prediction
of AntiCancer Compound sensitivity with Multimodal
Attention-based Neural Networks (PaccMann). Pac-
cMann is trained on public transcriptomic cell line
profiles, compound structure information and drug
sensitivity screenings, and outperforms state-of-the-
art methods on anticancer drug sensitivity predic-
tion. On the open-access web service (https://ibm.
biz/paccmann-aas), users can select a known drug
compound or design their own compound structure
in an interactive editor, perform in-silico drug testing
and investigate compound efficacy on publicly avail-
able or user-provided transcriptomic profiles. Pacc-
Mann leverages methods for model interpretability
and outputs confidence scores as well as attention
heatmaps that highlight the genes and chemical sub-
structures that were more important to make a pre-
diction, hence facilitating the understanding of the
model’s decision making and the involved biochemi-
cal processes. We hope to serve the community with
a toolbox for fast and efficient validation in drug repo-
sitioning or lead compound identification regimes.

INTRODUCTION

Despite major investments in drug discovery and drug re-
purposing, 97% of anticancer candidate drugs fail in clinical
trials and never receive food & drug administration (FDA)

approval (1). This low success rate has been attributed to ei-
ther lacking target efficacy or off-target cytotoxicity (2). In-
deed, it has been very recently demonstrated that off-target
cytotoxicity is not only a frequent, undesired ancillary ef-
fect, but also a common mechanism of action of anticancer
drugs in clinical trials (3). Furthermore, in cancer precision
medicine, high heterogeneity in patients molecular makeup
typically results in even higher drug response variability (4).
Hence, potent in silico and in vitro models that can accu-
rately predict the effect of new candidate drugs on a specific
biomolecular profile are necessary to enable personalized
therapies.

With the rise of deep learning in drug discovery (5), works
that integrate omics information and compound chemical
descriptors have been proposed to predict drug sensitiv-
ity on specific cell lines (6,7). Many of these works repre-
sent compound chemical information using molecular fin-
gerprints descriptors, which have been extensively used in
drug discovery, virtual screening and compound similar-
ity search (8). However, the usage of engineered features
might constrain the learning ability of machine learning
algorithms or not even by available for new compounds.
An alternative compound representation is the Simpli-
fied Molecular-Input Line-Entry System (SMILES) (9).
SMILES allow structure specification by using a small
chemical grammar, and are preferred over hand-engineered
descriptors such as molecular fingerprints, as they are ubiq-
uitously available, easier to interpret, closer to the actual
molecular entity, and furthermore, they enable efficient data
augmentation (10).

To address the limitations of previous works and en-
able the efficient integration of molecular and chemical
information in the form of SMILES, we developed in
the past the Prediction of AntiCancer Compound sensi-
tivity with Multimodal Attention-based Neural Networks
(PaccMann) (11). PaccMann is a multimodal deep learn-
ing model for drug sensitivity prediction that integrates
three key pillars of information: compounds’ structure in
the form of a SMILES sequence, gene expression profiles
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Figure 1. PaccMann framework for multimodal prediction of IC50 drug sensitivity. Three key data modalities that influence anticancer drug sensitivity
are integrated: biomolecular measurements of cancer cells, e.g. gene expression data, a network of known interactions between the biomolecular entities
and the chemical structure of the anticancer compounds (SMILES strings or molecular fingerprints).

(GEP) of tumors, and prior knowledge on intracellular
interactions from protein–protein interaction networks to
predict drug sensitivity as measured by IC50 (half maxi-
mal inhibitory concentration) on drug-cell-pairs (Figure 1).
The predictions are complemented with two key mecha-
nisms that render the model transparent and interpretable,
which is becoming of paramount importance in precision
medicine (12). First, PaccMann employs a novel contextual
attention mechanism (11) that highlights the most informa-
tive genes and compound sub-structures to make a predic-
tion. Second, for each prediction, the model executes a con-
fidence estimate that is computed by measuring aleatoric
(or data) uncertainty and epistemic (or model) uncertainty
(13).

Here, we present PaccMann web service (https://ibm.biz/
paccmann-aas), an open-access, web-based platform that
serves as an access point for the PaccMann model. In the
following, we introduce PaccMann’s web application and
present a brief evaluation of the model performance, show-
ing that it surpasses state-of-the-art results in anticancer
drug sensitivity prediction. At last, we demonstrate in two
case studies how PaccMann web service can be applied to
drug repurposing and can provide useful insights about a
drug mode of action.

METHODOLOGY AND DATA PORTAL

Data

We pooled together the drug sensitivity screening results
from two publicly available databases, namely Genomics
of Drug Sensitivity in Cancer (GDSC) and Cancer Cell
Line Encyclopedia (CCLE) (14,15). From GDSC, we re-

trieved 385 712 IC50 values from 397 compounds (includ-
ing both target drugs and chemotherapeutics), each of them
screened on a subset of 988 pan-cancer cell lines. Since the
SMILES representation for 17 of the GDSC compounds
was not available, we discarded the associated IC50 values.
From CCLE, an additional 325 375 samples from 514 com-
pounds measured on 1038 cell lines were retrieved. The to-
tal database consisted of 688 308 samples with drug sensi-
tivity represented as log micromolar IC50. For all investi-
gated cell lines, transcriptomic data (RMA gene expression)
of around 20 000 genes were retrieved and favored over ge-
nomics data due to its higher predictive power (16). In order
to sub-select the most informative genes, a network prop-
agation procedure (17) was applied over the PPI network
STRING (18). By restricting to the top 20 neighbors of ev-
ery drug, an interaction-aware subset of 2128 genes repre-
senting ostensible drug targets was assembled (17) (more
details about network propagation can be found in the Sup-
plementary Material). The expression values of CCLE and
GDSC cell lines were standardized individually prior to ap-
plying the ComBat method to remove batch effects (19) (see
the Supplementary Materials for more details on the pre-
processing).

Model

The implemented neural network architecture is a multi-
scale convolutional attention (MCA) encoder, as described
in (11). This model combines convolutions of varying re-
ceptive field sizes over the SMILES sequences with con-
textual and self-attention mechanisms. The transcriptomics
data are processed by a self-attention layer, which highlights
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the most relevant genes for the current sample, prior to a
contextual attention mechanism on the SMILES sequences
that aligns the genes with molecular substructures (e.g. toxi-
cophores) with high-predictive power. Moreover, the model
is equipped with two simple techniques to assess its own
prediction confidence. First, to estimate epistemic uncer-
tainty, we apply Monte Carlo dropout (i.e. dropout during
test time) on SMILES sequences, which draws Monte Carlo
samples from the approximate predictive posterior (20).
Second, to estimate aleatoric uncertainty, we apply test time
data augmentation (21). In both cases, 10 forward passes are
computed for each drug-cell-pair and the sample standard
deviation (i.e. inverse precision) is interpreted as an approx-
imation of the predictive posterior (for details see Supple-
mentary Material).

Data splitting strategy and training regime

Previous work that integrated compound structure infor-
mation with omics data for drug sensitivity prediction uti-
lized lenient splitting strategies that ensured no drug-cell
pair in the test data were seen during training (6,7). How-
ever, PaccMann adopts a more stringent splitting strategy.
Namely, the PaccMann model was validated following a 25-
fold cross validation strategy with completely disjoint sets of
both compounds and cell lines in every fold. In this regime,
neither any of the drugs nor any of the cell lines in the test
set were encountered by the model during training, forcing
the model to learn generic relations between transcriptomic
information and molecular substructures with anticancer
properties and leading to better generalization capabilities.
This approach tackles jointly the two complementary goals
of drug sensitivity prediction models, namely, the need for a
predictive model that generalizes to unseen cancer cell lines
(precision medicine regime) and a model that generalizes to
unseen compounds (drug discovery regime).

Validation of PaccMann on benchmark datasets

The MCA architecture of PaccMann was thoroughly vali-
dated in (11). The method achieves high prediction perfor-
mance (R2 = 0.86 and RMSE =0.89, coefficient of deter-
mination with experimentally determined IC50 values and
root mean square error respectively), outperforming sev-
eral proposed deep learning models as well as previously
reported state-of-the-art results for multimodal drug sensi-
tivity prediction. Recently, this has been corroborated inde-
pendently in an extensive benchmark study (22) that found
PaccMann to outperform a stack of 28 deep learning and
non-deep learning approaches, and found almost on-par
performance on the specific task of protein kinase inhibitor
response prediction.

For a more detailed description of the neural network
architecture, the data (preprocessing) and the evaluation,
please see the associated publications (11,23).

Web application

The PaccMann web application integrates basic function-
alities, such as data assembly, upload, processing, inference
and interactive visualization using Bokeh (24).

Figure 2. PaccMann molecular editor. Compound structure can be pro-
vided in various forms, including single or bulk SMILES or through an
interactive molecule editor.

Table 1. Predictions for Temsirolimus

Site Cell line IC50 [log(�mol)]

Ovary A2780 −3.06
Lung NCIH1975 −3.42
Stomach NCCSTCK140 −3.12

Input and output data. A compound structure can either
be provided by selecting a drug from a drop-down menu of
existing compounds, by inserting a valid SMILES string in
the input field, by interactively drawing a compound in the
molecular editor or, for bulk processing, by uploading a file
of the format {.smi,.smiles,.json,.rxn,.mol,.sd,
.sdf, .cml, .kcj, .kcx} (see Figure 2).

The left panel of the molecule editor contains several
tools for editing the molecule, e.g. the erase tool, which
erases specific atoms or bonds, the bond tool, which adds
a bond from a set of typical bonds, the ring structure
tool, which adds a ring from a set of typical rings and the
atom and formula tool, which allows to insert new atoms.
Upon finishing the molecule design the user can confirm the
molecule and run the prediction or simply download and
export the molecule into one of the aforementioned formats.
Optionally, GEP of a single or multiple cancer cell lines can
be uploaded in .csv format. The data matrix is expected
to have samples on rows, genes on columns and a header
reporting the entity names, as follows:
LAMP3,DDR1,...,GCNT1
-0.48,0.32,...,1.473
-0.89,0.12,...,0.238
The header should specify all 2128 gene names re-

quired as model input. The gene list can be downloaded
from https://ibm.box.com/v/paccmann-aas-gene-list. Su-
persets and random permutations of column names are also
accepted. Missing genes are mean-imputed and feature-wise
standardization is applied. In the absence of a user-defined
specification of the transcriptomic profile, the IC50 value
for all 2022 cancer cell lines from GDSC and CCLE are
predicted simultaneously. Additional column names will be
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Figure 3. Visualized gene attention weights. Top: The averaged gene at-
tention weights across all cell lines from the panel using the interactive
visualization available in the web service. Bottom: Gene attention weights
for two kidney cancer cell lines, ACHN (left) and RCC10RGB (right), are
displayed using an orange color map. The colored genes received highest
attention weights and are displayed with neighboring genes according to
the STRING network. This network visualization is not available in the
web service.

considered as metadata that will be used to complement the
prediction results

Following model inference, the IC50 predictions are dis-
played in an interactive table where columns report: id,
the sample identifier (numeric) in the dataset considered;
IC50 (min/max scaled), the IC50 score transformed
to a unitary scale for each (drug, sample) pair (as seen by
the model); IC50 (log(�mol)), the IC50 in logarithmic
�mol units for each (drug, sample) pair. In case no omic
data are uploaded, the web service provides predictions for
a panel of 2022 cell lines (from GDSC and CCLE) and add
the following metadata to the table: histology, histologi-
cal information of the cell line; site, the tissue origin of the
cell line; cosmic id, the COSMIC id of the cell line when
available;cell line, the cell line identifier when available;
cell line name, the name of the cell line; and dataset,
the dataset containing the cell line (GDSC or CCLE). If
the user provides custom omic data, the columns of the csv
uploaded that are not matching the gene names from the
panel considered will be used as metadata in the results ta-
ble. In case the user enables the prediction confidence es-
timates, two additional columns will be displayed: epis-
temic confidence, the confidence estimated via Monte
Carlo dropout; and aleatoric confidence, the confi-
dence estimated using test time augmentation.

The table can be customized by sorting or filtering indi-
vidual columns, and results can be exported into csv for-
mat.

Upon user request, the service lays over the tested com-
pound the SMILES attention distribution that highlights
the molecular sub-structures most relevant for the predic-

tion as shown in (Figure 2). Similarly, the most attended
genes and their proportional contribution to the prediction
are shown in an interactive barplot. Both attention plots are
computed based on an averaging of all samples of the com-
plementary data modality.

User data storage. All entities provided by the users (com-
pound structure and omics profiles) are temporarily stored
to run the selected methods and are never persisted in a
cloud object storage (COS). Compound structure, predic-
tions and visualizations are stored for one week in the COS
and can be accessed for inspection or download by the user
that submitted the task.

Asynchronous task system. The service runs asyn-
chronously using a queuing system for the submitted
inference tasks. The task queue is dispatched to a set of
containerized workers that run the model inference and
generate interactive visualizations upon request. The web
service will automatically allow the user to open the result
visualization tab once the predictions for the uploaded data
are completed.

Runtime. The current release offers a selection of meth-
ods with different computational complexities. Each for-
ward pass for a compound-cell line pair takes roughly 0.15 s.
When no omic data are uploaded, the web service performs
a single forward pass of all given compounds for all 2022
cell lines, which can take up to 5 min. On demand, the
user can execute the confidence score prediction, which can
require several minutes, since multiple forward passes are
computed.

CASE STUDIES

Repurposing of Temsirolimus

Temsirolimus is a mTOR and serine/threonine kinases in-
hibitor that is FDA approved for renal cell carcinoma (an
aggressive type of kidney cancer). It was the first discovered
clinically effective mTOR inhibitor against mantle cell lym-
phoma for which it is also approved in Europe. Using Pacc-
Mann, Temsirolimus is predicted as effective (IC50 < 1 �m)
for a wide range of cell lines, with lowest IC50 on ovary, lung
and stomach cancer cell lines Table 1. Furthermore, Tem-
sirolimus is predicted as effective (IC50 < 1 �m) for 74% of
the stomach cell lines, 52% of lung and 48% of ovary cell
lines––highest proportions across all cancer sites with more
than 30 samples, excepting leukemia.

Since mTOR is a key pathway for cell proliferation (25)
and mTOR is well known to be dysregulated in many forms
of lung cancer, it has been suggested to repurpose mTOR
inhibitor novel lung cancer treatments (26–28). However,
the only FDA approved mTOR inhibitor for lung cancer
is Everolimus, another analog of Rapamycin, that is not
part of the GDSC/CCLE database used to train the model.
Indeed, Temsirolimus was only recently repurposed for in-
vitro and in-vivo studies of lung adenocarcinoma, where it
showed desired inhibitory effects, especially when synergis-
tically paired with the chemotherapeutical Cisplatin (29).

mTOR also plays a prominent role in gastric cancer
(over-active in 60% of the patients (30)) but to date, no ap-
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Figure 4. Visualization of the SMILES attention weights. Neural attention on molecules available in the web service. The molecular attention maps demon-
strate how the model’s attention is shifted when the thiazole group in Masitinib is replaced by a piperazine group in Imatinib. The change in attention across
the two molecules is particularly concentrated around the affected rings, signifying that these functional groups play an important role in the mechanism
of action for these tyrosine kinase inhibitors when they act on a CML cell line.

proved mTOR inhibitor for gastric cancer exists. Very re-
cently however, several mTOR inhibitors have been tested
in patient-derived xenografts of gastric cancer, which re-
vealed Temsirolimus as the most effective mTOR inhibitor
against gastric cancer (31). Since Temsirolimus has already
been tested in clinical trials against ovarian cancer, where
it did not showed the desired effects (32,33), it may seem
reasonable to follow instead the gastric or lung cancer pre-
dictions as possible repurposing options for Temsirolimus.

Analysis of attention mechanism

Based on predictions on the entire test samples of the
GDSC dataset, we extracted a subset of 371 (out of 2128)
highly attended genes (23). A pathway enrichment analy-
sis (34) revealed a significant activation (adjusted P < 0.004)
of the apoptosis signaling pathway in PANTHER (35), as
expected from anticancer drugs. In Figure 3 we show the
gene attention weights for two kidney carcinoma cell lines,
ACHN and RCC10RGB. Although the cell lines are ge-
nomically distinct, both computed attention weights under-
line the role of EIF2A, a key gene for tumor initiation (36).

In Figure 4, we report the molecular attention computed
on a chronic myelogenous leukaemia (CML) cell line for
two very similar anticancer compounds (Imatinib and Ma-
sitinib) (11). The attention weight patterns change in the
thiazole and the piperazine group, whereas the remaining
regions are unaffected (Pearson’s R = 0.96 and P < 6e − 20
outside functional group and R = 0.29 and P > 0.2 inside
functional group). The localized discrepancy in attention
centered at the different rings suggests that these substruc-
tures drive the sensitivity prediction for the two compounds
on the CML cell line. A more quantitative analysis of the at-
tention weights can be found in (11).

Comparison to existing web servers

There are several existing web servers dedicated related
although different drug discovery tasks, such as predict-
ing synergistic effects of cancer drug combination treat-
ment, e.g. DrugComb (37), DeepSynergy (38) or Syner-
gyFinder (39). In addition, DrugMint (40) is a server
for predicting drug-likelihood of a compound, although
not specifically designed for cancer. Drug ReposER is a
database of protein folding structure information that aims

to facilitate drug repurposing by sub-structure similarity
search (41). At last, way2drug is a web service for predicting
cytotoxic effects of chemicals (42). However, their so-called
PASS model (based on naive-Bayes) is not specifically ded-
icated to cancer. Moreover, it does not allow prediction of
IC50 scores on the molar scale and can not handle new cell
lines (one model per cell-line); and it does not provide any
explanation of the results.

DISCUSSION

We have presented here a user-friendly web service called
PaccMann. PaccMann provides state-of-the-art perfor-
mance at the task of predicting drug sensitivity for any pair
of compound structure, represented as SMILES and tran-
scriptomic profile, represented by means of 2128 preselected
genes. In two case studies, we have shown how PaccMann
may be used for drug repositioning while providing inter-
pretable insights about the input features that were more
informative to make a prediction.

PaccMann can facilitate in-silico studies of drug efficacy
and repurposing of anticancer drugs for novel cancer types.
For example, PaccMann can be used for applications in
medicinal chemistry that involve comparative analyses such
as scaffold hopping, i.e. exploring the chemical space locally
around a promising scaffold (43). Furthermore, PaccMann
can pave the way for future applications supporting drug
discovery, such as small molecule generation using gener-
ative models and reinforcement learning to target specific
molecular profiles (44). This opens up a scenario where per-
sonalized treatments and therapies can become a concrete
option for patient care in cancer precision medicine.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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