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ABSTRACT

Animal models are crucial for advancing our knowl-
edge about the molecular pathways involved in hu-
man diseases. However, it remains unclear to what
extent tissue expression of pathways in healthy in-
dividuals is conserved between species. In addition,
organism-specific information on pathways in animal
models is often lacking. Within these limitations, we
explore the possibilities that arise from publicly avail-
able data for the animal models mouse, rat, and pig.
We approximate the animal pathways activity by inte-
grating the human counterparts of curated pathways
with tissue expression data from the models. Specif-
ically, we compare whether the animal orthologs of
the human genes are expressed in the same tissue.
This is complicated by the lower coverage and worse
quality of data in rat and pig as compared to mouse.
Despite that, from 203 human KEGG pathways and
the seven tissues with best experimental coverage,
we identify 95 distinct pathways, for which the tis-
sue expression in one animal model agrees better
with human than the others. Our systematic pathway-

tissue comparison between human and three ani-
mal modes points to specific similarities with human
and to distinct differences among the animal mod-
els, thereby suggesting the most suitable organism
for modeling a human pathway or tissue.

GRAPHICAL ABSTRACT

INTRODUCTION

Animal models play important roles in understanding hu-
man diseases. A main concern in using animal models for
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studying human diseases is the fundamental, but not clearly
proven, assumption that the genes, pathways and diseases
in model organisms are comparable to those of human. No
systematic studies have tested this assumption at the tissue
expression or pathway levels, although specific tissues or
pathways have been compared (1,2). Even with closely re-
lated species, such as human and chimpanzee, it might not
be trivial to identify the subtle differences in pathway reg-
ulation, which may be critical for disease modeling or drug
design (3,4). Moreover, the most used animal models, often
a rodent such as mouse or rat or an ungulate as the pig, are
much more distantly related to human.

Model animals are extensively used to dissect underlying
mechanisms of human diseases and to develop new treat-
ments (5), but this is not trivial to do as recently demon-
strated (6–9). For example, the most important class of drug
metabolizing enzymes, the cytochrome P450 protein fam-
ily, differs greatly between rodents and humans, both in
terms of substrate specificity and multiplicity of the differ-
ent cytochrome P450 subfamilies (10). For this reason, mice
and rats are poor model organisms for testing the effects
of drugs that undergo first-pass metabolism in the liver. By
contrast, the cytochrome P450 protein family in pig repre-
sents a more promising model of human drug metabolism
(11). Studies of diseases in animal models cannot be per-
formed without first establishing the physiological pathway
regulation in a specific tissue of the healthy animal. It is also
important to know to what extent the pathway regulation is
the same as in healthy humans, since complex diseases are
usually associated with alterations in the activity of one or
more pathways (12,13).

Even though many genes between human and model ani-
mals are highly similar in both sequence and function, their
regulation and interplay can differ. While many databases
and resources characterize genes in numerous species (14–
16), most pathway annotation efforts focus on human, and
most of those available for animal models are thus de-
rived from human pathways (17,18). In the case of primary
protein–protein interaction databases that contain experi-
mentally determined physical interactions (19–21), very lit-
tle data is available for animal models. On the other hand,
integrative databases such as STRING (22,23) and IID (24)
can provide more comprehensive annotations of the inter-
play between genes in animal models. These databases com-
bine data from multiple resources, spanning interactions
from the primary databases, text mining of biomedical liter-
ature, and orthology transfer from other organisms. How-
ever, because orthology transfer is used to construct such
databases, it is not meaningful to subsequently compare hu-
man and animal pathways in order to identify similarities
and differences between them. For that, organism-specific
data on the pathways is needed, which is missing in current
databases. Whereas organism-specific pathway annotations
and interactions are scarce, expression data is available for
many relevant model organisms.

We present the first systematic comparison of human and
animal pathway activity for three specific model organisms
(mouse, rat and pig), and aim to facilitate researchers in
prioritizing animal models for human disease modeling.
Key limitations in establishing disease-specific animal mod-

els include incomplete pathway annotation in animals and
lack of knowledge of organism-specific pathway regulation.
However, we show that it is possible to derive the animal
pathways by orthology-based transfer of their human coun-
terparts and study their regulation using organism-specific
data such as gene expression. We thus map tissue expres-
sion data from healthy individuals onto the established de-
rived animal pathways. Tissue expression data has already
been compiled for human, mouse, rat, and pig through the
TISSUES database (25). However, comparing human and
the animal models is still challenging because of differences
in the amount and quality of data available for the differ-
ent organisms. Although we cannot identify animal path-
ways that deviate from the human version due to lack of
organism-specific pathway data, we can detect similarities
and differences in pathway activity between human and the
animal models. We highlight several pathways, which, for
a given healthy tissue, show better agreement in expression
between human and one animal model but not the others.

MATERIALS AND METHODS

Genomes and gene annotations

Gene numbers for the genomes of human, mouse, rat and
pig were extracted from the Ensembl release 95 websites (26)
for each organism in January 2019 (Table 1). These corre-
spond to genomes GRCh38 (human), GRCm38 (mouse),
Rnor 6.0 (rat) and Sscrofa11.1 (pig). GENCODE numbers
(27) were reported in Supplementary Table S1 for human
GENCODE 30 (08.04.19) and mouse GENCODE M21
(08.04.19).

Orthology relationships

To identify the orthology relationships between the genes of
the studied organisms, we made use of the public resource
eggNOG v4.5 (evolutionary genealogy of genes: Non-
supervised Orthologous Groups) (28). It provides >190 000
orthologous groups (OGs) of proteins for 2031 organisms
at different taxonomic levels and is based on Ensembl re-
lease 70. We used the 26 253 OGs at the mammalian level
(mOGs). When comparing two or more organisms, it is im-
portant to keep in mind that there are different sets of OGs
that can be used. Thus, depending on the analysis, one or
the other option can be more suitable: (a) OGs that have at
least one protein for any organism, (b) OGs that contain at
least one protein for each organism, (c) OGs with exactly one
protein for any organism, (d) OGs with exactly one protein
for each organism.

At the mammalian eggNOG level, there are 8665 mOGs,
which contain exactly one protein for each of the four con-
sidered organisms (human, mouse, rat and pig), and 11 500
mOGs, which contain more than one protein for each of the
four organisms. When we only require pair-wise relation-
ships, the number of mOGs is larger (see Table 2). For the
comparison of annotations and the pathway transferability,
we used the mOGs with at least one protein for each organ-
ism in the compared pairs. For the pathway–tissue analysis,
we focused on the set of 11 500 mOGs that contain at least
one protein for each of the organisms.
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Table 1. Data availability per resource and organism (human, mouse, rat and pig)

Resource/annotation Human Mouse Rat Pig

Ensembl genome annotations
Coding genes 20 418 22 619 22 250 22 452
Non-coding genes 22 107 15 795 8 934 3 250

eggNOG mammalian orthology
Coding genes assigned to orthologous groups 86.7% 84.3% 76.4% 82.2%

Mentions in biomedical literature
Organism – 1 824 080 1 629 280 133 937
Gene – 1 304 170 734 243 57 230

Gene Ontology annotations
Experimental 107 301 89 360 49 281 817
Author statement 48 894 4 760 3 396 27
Inferred 86 785 170 033 188 718 47 225
Electronic 74 049 44 022 40 559 101 074

High-scoring STRING protein-protein interactions
Experimental 18 069 1 304 920 1 266
Experimental transferred 12 713 22 030 39 381 32 312

TISSUES expression data
Experimental datasets 4 4 3 3
Tissues covered by experimental data 20 20 12 20

The number of coding and non-coding genes for the assemblies of human, mouse, rat, and pig in Ensembl release 95 are reported. From the eggNOG
v4.5 orthology database, we report the percentage of genes from each organism that are assigned to a mammalian orthologous group. Text mining of all
PubMed abstracts and a subset of full text articles available from PMC provided the number of publications that mention each organism and its genes. We
grouped the most recent Gene Ontology annotations into four categories based on their evidence codes and counted the number of annotations for each
group in each organism. High-scoring protein–protein interactions from the STRING v10.5 database (overall confidence score above 0.7) were counted.
For the TISSUES 2.0 database of mammalian expression, the number of experimental datasets supporting the 21 main tissues is reported together with
the number of tissues covered by these datasets. See Supplementary Table S1 as well as Methods for more details.

Table 2. Pair-wise overlap of annotations for human–mouse, human–rat, human–pig and mouse–rat

Resource/annotation Human–mouse Human–rat Human–pig Mouse–rat

eggNOG mammalian orthology
Common 1-to-1 groups 12 736 11 038 10 916 12 157
Common groups 15 094 13 429 13 573 14 155

Gene Ontology annotations
Experimental 15 215 4 680 133 3 754
Author statement 1 433 494 2 193
Inferred 50 473 39 740 18 751 64 879
Electronic 25 632 12 430 15 054 13 937

High-scoring STRING protein-protein interactions
Experimental 537 72 672 66
Experimental transferred 10 422 6 705 9 290 10 859

TISSUES expression data
Tissues covered by experimental data 19 12 20 12

For each of the selected resources, appropriate features are highlighted. For the eggNOG orthology resources, the number of common (1-to-1) mammalian
orthologous groups are reported. For the Gene Ontology annotations and the high-scoring (overall confidence score above 0.7) STRING protein–protein
interactions, the number of associations shared between a pair of organisms was determined using the eggNOG mammalian orthology. For the TISSUES
2.0 database, the number of tissues (out of the 21 main tissues) covered by an experimental dataset in both organisms are reported.

Mentions in biomedical literature

Our in-house text mining software tool called tagger runs
every week on the whole corpus of more than 31 million
PubMed abstracts and the Open Access subset of full-text
articles available from PMC (29). In order to determine
how often each organism and its genes are mentioned in
the biomedical literature, we downloaded the correspond-
ing files on 25 May 2020 from http://download.jensenlab.
org/ (30). For each organism, we reported the number of
unique PubMed entries (abstracts or full-text articles) in
which the organism name occurs based on the file organ-
ism textmining mentions.tsv. To count the number of pub-
lications, in which genes of a specific organism occur, we

downloaded the separate file for mouse, rat and pig (e.g.
mouse textmining mentions.tsv), which contains a list of
PubMed identifiers for each gene of this organism. In these
files, a publication is assigned to a gene in an organism
if both the gene and the organism were mentioned in the
same publication according to tagger. In Table 1, we re-
port the number of unique PubMed identifiers assigned to
each gene. Since researchers often do not explicitly write in
a publication that they study human specifically, and this
would thus have to be inferred from the context, the num-
bers for publications mentioning human or human genes
would be inaccurate. For this reason, we refrained from in-
cluding these in Table 1.
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Gene Ontology annotations

To investigate the coverage of functional annotations, all
Gene Ontology (GO) annotations were retrieved on 25 May
2020 from the GO FTP server (31). Each GO annotation
has a code assigned to it, which describes how it was deter-
mined. The codes were divided into four different groups:
(i) Experimental: supported directly by an experiment, in-
cluding high-throughput methodologies (EXP, HAD, HEP,
HMP, IDA, IEP, IPI, IGI, IMP); (ii) Author statement:
based on statements by the authors in the cited reference
(TAS, NAS); (iii) Inferred: derived from phylogenetic (IKR,
IBA) and computational (ISS, RCA, ISO, ISA, ISM) anal-
ysis as well as inferred by curators (IC); (iv) Electronic: au-
tomatically generated and not reviewed electronic evidence
(IEA). For each organism and group, we counted the num-
ber of unique pairs of GO terms assigned to a protein (see
Table 1). The overlap of GO term annotations between pairs
of organisms was determined by mapping the annotated
genes to their corresponding mOGs and determining the
intersection of pairs of GO term and mOGs between the
organisms (see Table 2).

STRING protein–protein interactions

Protein–protein associations were retrieved from STRING,
a database of known and predicted protein–protein inter-
actions (22). Raw STRING data (divided into orthology-
transferred and original interactions) was downloaded from
STRING v10.5. Each file contains the interacting genes
(ENSEMBL IDs) and the confidence for each evidence (be-
tween 0 and 1), whereas evidences are divided into the orig-
inal data and the transferred interactions (by orthology). To
compare the available, high-confidence, not predicted inter-
actions, we considered the experimental and experimental
transferred interactions for each organism. For each interac-
tion type, we counted the number of interactions that have a
confidence score ≥0.7 (Table 1) or ≥0.4 (Supplementary Ta-
ble S1). The overlap of interactions between each pair of or-
ganisms was determined by mapping each interacting gene
to the corresponding mOG. An interaction was considered
overlapping between two organisms if the pairs of interact-
ing genes were in the same mOGs.

Tissue expression data

For this analysis, we used data from the TISSUES database,
which contains gene–tissue associations for human, mouse,
rat and pig (25). The database integrates multiple sources of
evidence, including transcriptomics data covering all four
species, proteomics data only for human, manually curated
annotations from UniProt and associations mined from the
scientific literature. Importantly, the expression data has
been processed such that it is comparable across all sources
of evidence and across organisms through a scoring scheme.
For each gene–tissue association in each organism, there is
an integrated confidence score based on all evidence types.
For consistency, the tissue evidence is further summarized
into tissue labels, which are based on Brenda Tissue Ontol-
ogy terms (32).

We retrieved all gene–tissue associations with their cor-
responding experimental and integrated confidence scores

on 26 January 2018. From the 21 tissues, we focused on
the seven tissues that are covered by at least two transcrip-
tomics datasets: heart, kidney, liver, nervous system, muscle,
lung and spleen. Even though the TISSUES database pro-
vides unified confidence scores, the amount and quality of
available tissue data varies a lot between organisms due to,
for example, study bias. This influences the range of confi-
dence scores as can be seen in the distributions of confidence
scores for each tissue (Supplementary Figures S1 and S2).
In order to define whether a gene is expressed or not, we cal-
culated organism- and tissue-specific cutoffs based on the
50 percentile of confidence scores (median) for each organ-
ism and tissue (Supplementary Table S2). We specifically
used the percentile instead of a fixed cutoff such that we
have a comparable number of genes for each tissue and or-
ganism irrespective of the differences in the distribution of
the scores. Furthermore, we chose exactly the 50 percentile
in order to better approximate the expected number of ex-
pressed genes in a given tissue (33). For completeness, we
also performed the analysis using the 25, 40, 60 and 75 per-
centiles of confidence scores as cutoffs (see Supplementary
Results).

Orthology-based pathway transferability

KEGG is one of the most well-known and widely used path-
way databases (18). It contains manually drawn pathway
maps representing molecular interaction and reaction net-
work diagrams. For our analysis, we obtained the set of 216
human KEGG pathways from the STRING v10.5 KEGG
benchmark dataset (22). Pathways with less than five genes
matched to OGs in either organism were omitted from the
analysis, which resulted in a set of 205 human KEGG path-
ways.

To assess the transferability of each of these pathways
from human to another organism, we used the eggNOG
mammalian orthology. For each pathway, we mapped each
human gene in this pathway to the mOG it belongs to
and thereby converted the pathway–gene association to a
pathway–OG association. Then, the pathway transferability
from human to another organism was calculated as the pro-
portion of pathway genes in the other organism that have
orthologs in the same OGs that contain the human genes.
This means that a limiting factor of the pathway transfer
is the number of mOGs shared between human and the re-
spective organism. In the special case of pathway transfer-
ability from human to all three analyzed organisms, we only
considered the 11 500 mOGs that cover all four organisms.

Integration of tissue expression data

Given the set of human and orthology-transferred path-
ways and the tissue expression data from TISSUES, we per-
formed a pathway–tissue analysis, in which we considered
for each organism, which pathway genes are expressed in
each tissue and compared these among the four analyzed
organisms. For each organism, for each tissue and pathway,
we calculated the fraction between all pathway genes ex-
pressed above the chosen confidence cutoffs (from here on
called expressed pathway genes) and all genes with any ex-
pression information in this pathway (Supplementary Ta-
bles S3 and S4). When at least 85% of the orthologous

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/49/4/1859/6125659 by guest on 23 April 2024



Nucleic Acids Research, 2021, Vol. 49, No. 4 1863

pathway genes with tissue information were above the cho-
sen tissue confidence cutoff, we considered these pathways
expressed in the given tissue and organism. We chose the
cutoff of 85% after inspecting the proportion of expressed
genes in several known pathways (Citrate cycle (TCA cy-
cle), Spliceosome, Ribosome, Proteasome, Oxidative phos-
phorylation and Propanoate metabolism) such that these
pathways were expressed in most tissues (Supplementary
Figures S3–S6). Note that there is a connection between this
cutoff and the TISSUES confidence cutoff, which we chose
for defining whether a gene is expressed in a tissue or not.
The fewer genes are considered as expressed, e.g. only the
genes in the 75 percentile of confidence scores, the lower we
need to put the cutoff for an expressed pathway (for exam-
ple to 75%) to have an appropriate result (see Supplemen-
tary Results and Supplementary Figures S7–S10).

To compare between organisms, we used the eggNOG
mOGs that contain at least one orthologous gene for each
of the considered organisms. The TISSUES expression con-
fidence scores of two genes from different organisms were
considered comparable, if these two genes belong to the
same mOG. If several genes from the same organism be-
long to the same mOG, the highest confidence score was
used in the comparison. In addition, we omitted pathways
with less than five genes with expression information in ei-
ther organism, which resulted in 203 pathways suitable for
analysis. Note that this number is slightly lower than the
205 transferred pathways due to the restriction of mOGs to
have coverage in all four compared organisms.

Comparison of tissue–pathway combinations across organ-
isms

In order to compare the pathway expression in each tissue
between human and the model organisms, we computed
the Jaccard index (JI) for each tissue–pathway combina-
tion (203 pathways and seven tissues). We defined the JI
for a given pathway and tissue between two organisms as
the intersection of expressed pathway genes of the two or-
ganisms divided by the union of expressed pathway genes
in any of the two organisms. A pathway gene is considered
expressed if it has a TISSUES confidence score above the
chosen organism- and tissue-specific cutoff.

The principal component analysis (PCA) on the JIs for
the comparison of human–mouse, human–rat and human–
pig was computed using the scikit-learn Python package
(34) for all pathway–tissue pairs with at least five pathway
genes expressed in the given tissue. We used PCA not to re-
duce the dimensionality but purely as a visualization tech-
nique. The loadings for each of the considered variables,
which correspond to the JIs for each pair of compared or-
ganisms, were computed as the product of the PCA compo-
nent and the square root of the explained variance for each
principal component. Based on the plot of principal com-
ponents 2 (PC2) and 3 (PC3), we identified a set of pathway–
tissue pairs, which are more consistent between human and
a specific model organism, by calculating the Euclidean dis-
tance of each pathway–tissue pair to the center of the PC2
& PC3 plot. Based on their distance to the loadings, we also
grouped the pathway–tissue pairs into six different groups:
mouse, rat, pig, mouse & rat, mouse & pig, rat & pig. These

groups contain pathway–tissue combinations, for which one
or two of the model organisms agree more with human than
the other(s).

RESULTS

Several limitations and possibilities about modelling hu-
man pathways in animal models arise from publicly avail-
able data for the two well-established animal models mouse
and rat as well as for the emerging one, pig. The quality
of genome assemblies and orthology mapping between or-
ganisms have significantly improved in the last years, and
increasingly more tissue expression data is becoming avail-
able. In contrast, annotations in terms of functions, path-
ways, and protein interactions are still lacking high-quality
experimental data to allow detection of differences between
animal models and human. Therefore, we derive animal
pathways from curated human pathways using reliable or-
thology relationships and further integrate these pathways
with tissue gene expression data from the animal models.
Despite the better coverage and quality of data in mouse
and human as compared to rat and pig, we can identify sev-
eral pathways in specific tissues that agree better with hu-
man in one animal model compared to the other two.

Available functional annotations for animal models are lim-
ited compared to human

For the systematic comparison of animal models to hu-
man, we need to answer the following important questions:
Which data is publicly available and what is the quality of
this data? Here, we analyze and compare the following re-
sources: Ensembl for quality of genome assembly and gene
annotation (26), eggNOG for orthology relationships (28),
text mining of genes and organisms in the biomedical liter-
ature, Gene Ontology (GO) functional annotations of the
genes (31), the TISSUES database for gene expression (25),
and the STRING database of known protein interactions
(22). For each of these resources, representative numbers are
listed in Table 1 (for further details, see Supplementary Ta-
ble S1). The amount of data available varies greatly across
resources and organisms; for example, mouse is very well
covered by most resources, while rat and pig are covered to
a lesser extent and their coverage is different for the differ-
ent resources. Each resource’s content and limitations are
presented in more detail below.

Genome annotations. Based on the overall statistics avail-
able from Ensembl release 95 for each of the most recent as-
semblies, we conclude that there is good annotation of cod-
ing genes, while annotation of non-coding RNA genes still
needs improvement, especially for rat and pig (Table 1). The
corresponding numbers of coding and non-coding genes for
human and mouse in GENCODE (27) are very similar to
the ones in Ensembl (see Supplementary Table S1). A com-
prehensive genome quality assessment of human and 20 do-
mesticated animals was performed by Seemann et al. (35).
At that time, the mouse assembly ranked very high based on
its quality as opposed to pig and many of the other animals’
assemblies.
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eggNOG mammalian orthology. To compare annotations
for human, mouse, rat, and pig, we used the eggNOG
database 4.5.1, which provides orthologous groups (OGs)
at different taxonomic levels. We chose the OGs at mam-
malian level (mOGs) as they are the most fine-grained OGs
that contain all four organisms of interest. The number of
genes of each organism that are assigned to mOGs is given
in Table 1. The coverage is best for human (86.7%), closely
followed by mouse (84.3%) and pig (82.2%), whereas rat has
only 76.4%. From the 26 253 mOGs in eggNOG, 11 500
cover all four organisms, e.g. contain at least one gene from
each organism, and 8665 of them have one-to-one orthologs
for human and the three animal models.

Biomedical publications. To approximate the popularity of
the three model organisms of interest, we counted how often
they are mentioned in PubMed entries (abstracts and pub-
lications) using the tagger text-mining software (29), which
also generates the text-mining associations for the STRING
database (23). We considered two different measures: (i)
how many PubMed entries mention the organism itself and
(ii) how many PubMed entries mention a gene from this or-
ganism. The latter number is based on identifying both the
organism and the gene in the same PubMed entry and al-
lows us to distinguish publications, which discuss the an-
imal models, especially pig, in connection with veterinary
treatments, from the publications, which actually study the
molecular biology of the organisms as given by the men-
tions of genes. As shown in Table 1, mouse and rat are men-
tioned at least 10 times more often than pig. However, 72%
of the entries that mention mouse and only ∼45% for rat
and pig appear to specifically study their genes.

Gene Ontology annotations. The Gene Ontology is one
the most used resources for functional annotation of genes
and proteins. GO annotations can be supported by dif-
ferent types of evidence, including experimental, author
statements, computationally inferred such as based on phy-
logeny, as well as non-curated electronic annotation. For
each of these categories, we listed the number of annota-
tions for each organism. As for other resources, there is
an imbalance between the different types of evidence and
the different organisms, human having most annotations
with experimental (107 301) or author statement support
(48 894). By contrast, even mouse has a huge proportion
of annotations inferred computationally (170 033), in addi-
tion to many experimentally supported ones (89 360). For
rat, and especially for pig, most annotations are supported
only by computationally inferred evidence or electronic an-
notations (Table 1).

Protein–protein interactions. To assess the availability of
molecular interaction data for each organism, we counted
the high-confidence (confidence score ≥ 0.7) experimen-
tal protein–protein interaction data in STRING v10.5. The
lack of such data in most considered organisms is evident
with only ∼900 interactions for rat and ∼1300 for mouse
and pig, which is surprising considering how well studied
mouse and rat are (e.g. as indicated by their mentions in the
literature). In all four organisms, however, many protein–
protein interactions can be transferred by orthology from

the other organisms in STRING (Table 1, experimental
transferred interactions) due to the good quality annotation
of protein-coding genes.

Tissue expression data. An important aspect of study-
ing and comparing animal models is the availability and
accessibility of tissue expression data. TISSUES 2.0 inte-
grates evidence on mammalian tissue expression from man-
ually curated literature, proteomics, and transcriptomics
screens, and automatic text mining. The numbers in Table 1
clearly demonstrate that only a few large-scale experimen-
tal datasets cover several tissues. This is especially the case
in pig and rat, which generally have poor coverage in terms
of tissue expression data. Having sufficient experimental ev-
idence is also a challenge for less studied tissues in human as
shown in Supplementary Table S1 and by Palasca et al. (25).

Annotation similarity between organisms is mainly deter-
mined by data availability

Although the available functional annotations for animals
are limited compared to human, it is still possible to per-
form a direct comparison between human and the animal
models. Our goal is to assess the extent to which the overlap
is driven by data availability, as opposed to evolution. Thus,
we determined the pairwise overlap of annotations between
human and the three model animals and compared these to
the overlap between mouse and rat (see Table 2). Assum-
ing data with good quality and coverage, we would, due to
the evolutionary relationship, expect the agreement between
mouse and rat to be better than between human and mouse.
However, it appears that the difference in data availability
between organisms impacts the overlap more than the evo-
lutionary relationship does.

For one-to-one orthology mapping we get compara-
ble numbers for each pair of organisms, reflecting the
good annotation quality of protein-coding genes in all
four genomes. This is also the case when broadening the
orthologous groups to contain one-to-many and many-
to-many orthology assignments (common groups). Using
the mammalian-level orthology assignments to compare
between organisms, we further analyzed GO annotations
based on experimental and author statement evidence type.
We observe by far the highest overlap between human and
mouse, reflecting that these are the two most studied or-
ganisms. The high similarity of inferred GO terms between
mouse and rat can be attributed to database curators anno-
tating GO terms based on sequence similarity to the same
experimentally characterized human genes (14,16). Finally,
the GO terms in pig come from inferred or electronic an-
notations (Table 1), which is reflected in the large overlap
between human and pig in these categories.

When comparing protein–protein interactions from
STRING, we observe that the overlap of experimental inter-
actions is more heavily influenced by the availability of data
than is the overlap of experimental transferred interactions.
The small number of overlapping experimental interactions
between rat and both human and mouse is in part explained
by the fewer experimental rat interactions (Table 1). In the
case of experimental transferred, we see a good overlap of
∼10 000 interactions for human with mouse and pig as well
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as between mouse and rat, and a somewhat smaller, but still
considerable overlap of 6705 interactions between rat and
human.

For the analysis of the tissue expression data, we consider
the number of tissues and their coverage by experimental
datasets. There are at least 19 tissues covered by at least one
experimental dataset for each of the pairs human–mouse,
human–pig and mouse–rat but only 12 tissues for human–
rat, which is consistent with the poor tissue coverage for rat
(Table 1). In the case of pig, there is data for 20 of the tissues,
however, for 13 of them, the evidence originates only from
one experimental dataset. As a result, there are only seven
tissues (heart, kidney, liver, nervous system, muscle, lung,
spleen) that are covered by at least two datasets in all pairs
of organisms.

In conclusion, we observe that the extent to which the
available annotations overlap between pairs of human and
animal models depends more on data availability than on
how closely related the organisms are. Given the current
data, mouse is better annotated than pig and rat and thus
has a better overlap with human than with rat.

Quantification of orthology-based pathway transfer from hu-
man to animal models

Our observations so far provide an estimate of how well hu-
man and animal models are covered and agree with each
other for individual resources and types of annotations.
However, this comparison is limited to individual genes or
at most, pairs of genes in the case of STRING interactions.
Here, we analyze how consistent pathways can be in terms
of their gene content at the organism level.

Most pathway databases focus their annotation efforts on
human and thus, even for popular model organisms such
as mouse and rat, contain only very few experimentally de-
termined and curated pathway interactions. Instead, they
resort to using orthology transfer from human to derive
pathways for other organisms. This is the case for popular
pathway databases such as Reactome (17) and KEGG (18).
Similarly, integrative protein interaction databases such as
STRING (23) and IID (24) include orthology transfer of
interactions as an information source. However, the exact
methodology of pathway transfer differs between databases
and even between different organisms within the same
database. This can easily cause inconsistencies both between
and within the databases, which makes it very difficult to
make a meaningful pathway comparison of the organisms.

To meet these challenges, we started with a set of human
KEGG pathways and, for each of these pathways, we as-
sessed how well it can be transferred to mouse, rat and pig
using the eggNOG orthology relationships within the mam-
malian taxonomic level. We quantified the transferability of
each pathway from human to a model organism as the frac-
tion of genes in the human pathway that could be trans-
ferred to the model organism in question (Figure 1).

The limiting factor in this comparison is the number of
orthologous groups that contain genes from both organisms
being compared; this number is lower for rat and pig than
for mouse (Table 2). Thus, the pathway transferability from
human to mouse has the highest coverage, in terms of both
the number of pathways and the number of genes within a

Figure 1. Transferability of 205 KEGG pathways from human to mouse,
rat, and pig. Each bar represents the number of pathways, for which a given
fraction of genes can be transferred. Transferability to each organism is
shown in different colors: mouse in green, rat in red, pig in orange and all
organisms in grey.

pathway. Out of the 205 considered human pathways, 55 can
be transferred to mouse completely, compared to only 8 to
rat and 12 to pig. The distribution of pathway transferabil-
ity for mouse has a mean of 95% and ranges between 73%
and 100%. In contrast, the distributions of rat and pig are
shifted to lower transferability values with a mean of 85%
and 87% (minimum of 61% and 65%), respectively.

We are also interested in how well a human pathway can
be transferred to all selected animal models at the same
time, i.e. what is their overlap (grey colored bars in Fig-
ure 1). In this specific case, we consider only orthologous
groups that contain at least one gene from each of the four
organisms. Overall, there is a good agreement between hu-
man and the three animal models with a pathway transfer-
ability range between 48% and 100% and a mean of 76%.
This range means that for all pathways (but one), more than
half of the pathway genes can be transferred from human to
mouse, rat, and pig.

The pathways that can be transferred best to all or-
ganisms are mainly pathways in the KEGG categories
Metabolism, Replication and repair or Human diseases. A
complete list of pathways and number of genes transferred
for each of them for each model organism can be found in
Supplementary Table S5. For example, the largest pathways
among the ones, which are 100% transferable between hu-
man and mouse, include Prostate cancer (81 genes), TGF-
beta (67 genes) and Adipocytokine signaling pathways (61
genes), for rat they belong to the Glycan biosynthesis and
metabolism KEGG subcategory (15 pathway genes on av-
erage), and for pig they include RNA polymerase (29 genes),
Mismatch repair (22 genes) and Steroid biosynthesis (19
genes). The least transferable pathways (50–60% of genes
transferred) relate to the nervous system (Long-term poten-
tiation and Dopaminergic synapse), certain signaling path-
ways (such as Notch and VEGF signaling pathways), and
the Circadian rhythm pathway. The latter is consistent with
rat and mouse being nocturnal animals.
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Detection of tissue-specific and broadly-expressed pathways
through data integration

In the last couple of years, more and more healthy tissue
expression data for animal has been produced and made
available in public repositories (36–39). However, this data
is difficult to compare across datasets or organisms. Thus,
in a previous study, we introduced the TISSUES database
(25), which contains tissue expression evidence for human,
mouse, rat, and pig in the form of confidence scores that are
designed to simplify comparison across datasets and organ-
isms.

In order to explore the differences between the human
and animal models at both pathway and tissue level, we inte-
grated the orthology-transferred KEGG pathways with ex-
pression data from TISSUES for each organism. We define
a pathway gene to be expressed in a tissue if it has a con-
fidence score above the chosen cutoff (see Methods for de-
tails). In this analysis, we considered the confidence scores
based on experimental evidence for seven tissues with good
coverage, i.e. at least two experimental datasets available for
each organism. We also performed the analysis using the
scores that integrate all types of evidence in the TISSUES
database as well as different cutoffs for the tissue confidence
scores (Supplementary Results and Supplementary Tables
S12 and S13).

Out of the 205 pathways, we analyzed only those con-
taining at least five orthologous genes for each of the four
compared organisms, resulting in a set of 203 KEGG path-
ways. Supplementary Table S3 provides the complete list of
pathways and, for each of them, the proportion of genes
expressed in each tissue and organism. On average in all
tissues and organisms, 59.7% of the pathway genes are ex-
pressed (Supplementary Table S4). In human, the average
across tissues and pathways is 62.1%, while for mouse it is
59.9%, for rat 57.7% and for pig 59.3%. Tissue-wise, we ob-
serve that the most pathway genes are expressed in the kid-
ney and liver (>62%), closely followed by lung and spleen
with ∼62%, and the least are expressed in the nervous sys-
tem, heart and muscle (∼57%).

Furthermore, we specifically considered the almost com-
pletely expressed pathways, which we define as those having
at least 85% of the orthologous pathway genes expressed
in a specific tissue for each organism (Table 3 and Supple-
mentary Figure S4A). Note that the number of expressed
pathways for each tissue and organism is affected both by
the requirement of 85% pathway genes as well as the tissue
confidence cutoffs, which were chosen such that only the
genes with a confidence score above the median value for
each tissue were considered expressed. We also performed
a more detailed analysis on the connection between these
two cutoffs and the robustness of the findings using differ-
ent cutoffs (see Supplementary Results). Overall, the num-
bers vary among tissues and organisms, but there are some
specific trends. For example, liver has the highest number
of expressed pathways (between 29 and 37) in all four or-
ganisms, followed by kidney with 26 expressed pathways
in human, 25 in mouse and rat, and 19 in pig. For the re-
maining tissues, we observe a range between 8 and 16 ex-
pressed pathways depending on the specific organism and
tissue.

Table 3. Number of pathways expressed in each tissue and organism

Tissue/organism Human Mouse Rat Pig

Heart 12 16 14 8
Kidney 26 25 25 19
Liver 36 37 29 32
Lung 11 12 13 14
Muscle 12 14 13 12
Nervous system 12 15 10 12
Spleen 12 13 10 13

A pathway is considered expressed if 85% of the pathway genes are above
the chosen tissue confidence cutoff. The analysis was done on the 203 hu-
man KEGG pathways and the same number of transferred pathways for
mouse, rat and pig using the experimental confidence scores from TIS-
SUES for the seven tissues with support by at least two experimental
datasets. The highest number of pathways for each organism (each col-
umn) is indicated by a bold font.

Based on the number of tissues, in which a pathway
is expressed (Supplementary Figure S5A and Supplemen-
tary Table S6), we can divide the pathways into broadly
expressed and tissue-specific pathways. The Citrate cycle
(TCA cycle) is an example of a broadly expressed KEGG
pathway with >92% of pathway genes expressed in each
organism in all seven tissues (except for lung in mouse) as
shown in Supplementary Figure S6A. By contrast, the Axon
guidance KEGG pathway (Supplementary Figure S6B) is –
not surprisingly – much more expressed in the nervous sys-
tem in all organisms (average of 63%) compared to all other
tissues (average of 47% over tissues and organisms). Among
the 203 pathways, we find 16, 18, 16 and 13 to be expressed
in at least three tissues in human, mouse, rat and pig, re-
spectively (Supplementary Table S7). Of these, 10 pathways
are expressed in at least three tissues in all four organisms,
namely Citrate cycle (TCA cycle), Spliceosome, Ribosome,
Proteasome, Oxidative phosphorylation, Protein processing
in endoplasmic reticulum, Propanoate metabolism, Pyruvate
metabolism, 2-Oxocarboxylic acid metabolism and Valine,
leucine and isoleucine degradation.

Evaluation of pathway–tissue agreement between human and
animal models

To evaluate which of the pathways expressed in human tis-
sues agree with those in mouse, rat and pig, we assessed how
many genes from a pathway are expressed in the same tis-
sue for each pair of organisms (human–mouse, human–rat,
human–pig). For each tissue and pathway, we calculated the
Jaccard index (JI) as the overlap of expressed pathway genes
divided by the union of all expressed pathway genes. A path-
way gene is considered expressed if it has a TISSUES con-
fidence score above the chosen cutoff. As a result, for each
pathway–tissue combination, we have three JIs of how well
this pathway agrees between human and one of the model
organisms in the given tissue (Supplementary Table S8).

The average JI over all tissues between human and mouse
is 0.63, followed by 0.62 for human–pig, and 0.60 for
human–rat (Supplementary Table S9). When we compare
the average agreement (over all pathways) between human
and the model organisms for each tissue separately, the liver
stands out as the tissue with the best agreement for all com-
parisons, while the remaining tissues are ordered differently
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depending on the model organism. For example, the tis-
sue with the lowest average JI for the comparisons human–
mouse and human-pig is heart (JI of 0.61 and 0.56, respec-
tively), while, for rat, both lung and muscle have the lowest
JI (0.57). The distributions of tissue-wise JIs for each of the
three comparisons are shown in Supplementary Figure S11
and further confirm that the agreement between the organ-
isms can strongly vary between the tissues.

To further analyze the similarities and differences be-
tween human and the three model organisms on pathway–
tissue level, we performed a principal component analy-
sis (PCA) on the JIs for all pathway–tissue pairs, where
at least 5 pathway genes are expressed in the given tissue
(data shown in Supplementary Table S8). We also plotted
the PCA loadings, which show the weight that each model
organism has in each principal component (Figure 2). Prin-
cipal component (PC) 1 accounts for the most variability
of the data (82.5%) and highlights the difference between
pathway–tissue combinations with high JI and those with
low JI, capturing the general agreement between human
and all the animal models. From the 34 pathway–tissue
combinations that are right-most according to PC1 (PC1
> 0.5), 23 are broadly expressed house-keeping pathways,
such as Citrate cycle and Proteasome. Of those, the high-
est number of pathways is associated with liver tissue and
none of them with the lung. The 43 left-most pathway–
tissue pairs according to PC1 (PC1 < –0.5) are mostly small
pathways (average size of 8.6 human genes) with low JI (av-
erage JI of 0.24 for rat and 0.3 for mouse and pig) and they
are distributed across all tissues.

Based on the PCA analysis, PC2 and PC3 separate the
three animal models from each other with explained vari-
ance of 10.3% and 7.1%, respectively. The loadings of PC2
separate pathway–tissue pairs that show good agreement
between human and rat, but poor agreement between hu-
man and pig from those showing the opposite behavior.
Meanwhile, the loadings of PC3 separate the pathway–
tissue pairs based on whether they specifically (or specif-
ically not) show better agreement between human and
mouse. We thus used the PC2 & PC3 plot to further identify
combinations of pathways and tissues, for which the agree-
ment between human and one of the model organisms is
better than with the others. Pathway–tissue pairs that are
close to the center of the PC2 & PC3 plot show consis-
tent agreement between human and any of the model or-
ganisms; this agreement can be consistently good, if all the
JIs are high, or consistently bad, if the JIs are low. In con-
trast, any point that is very far from the center of the PC2 &
PC3 plot represents a specific pathway–tissue combination,
for which one of the model organisms has better agreement
with human than the others (for a distance distribution see
Supplementary Figure S12A). If such a pair is close to one
of the three loadings, we assign it to that model organism
(mouse, rat, or pig) and consider this pathway–tissue pair
to agree more with human and the model organism given
by the loading than the other two model organisms (see
Supplementary Figure S12B and Methods section). In the
cases, where a pathway–tissue combination is between two
loadings and furthest away from the third one, we assign
it to a category shared between two of the model organ-
isms: mouse & rat (opposite of pig), mouse & pig (oppo-

site of rat), and rat & pig (opposite of mouse). We observed
consistent results for the top 100, 200 and 500 pathway–
tissue pairs, which are located furthest away from the cen-
ter (Supplementary Table S10). We observed similar trends
when applying the analysis on all data in the TISSUES
database (Supplementary Figure S13) and when varying
the tissue confidence cutoff (Supplementary Figure S14).
Here, we show and discuss only the top 200 in more detail
(Table 4).

Among the top 200 in the three compared organisms
(Supplementary Table S11), pig has the largest number of
41 pathway–tissue pairs, which show agreement with hu-
man for this organism only. The 24 pathway–tissue com-
binations, which are more consistent between mouse and
human, have an average JI of 0.72 and cover all ana-
lyzed tissues. Specifically, lung tissue has the largest cov-
erage of seven pathways, while spleen has the lowest with
one. For the 35 pathway–tissue pairs, for which rat specif-
ically agrees more with human, the average JI is 0.74 and
the largest number of nine pathways is associated with
spleen, while the lowest of one with muscle. The 41 pairs,
which show good agreement specifically between pig and
human, have an average JI of 0.72 and also cover the
seven analyzed tissues. Whereas only two of these path-
ways are associated with nervous system, 10 are with
muscle.

Half of the top 200 pathway–tissue combinations were
not assigned to one specific organism, but instead to two
organisms, which show similar, higher consistency with hu-
man than the third organism does. Mouse & rat have the
highest number of 44 such shared pathway–tissue pairs,
with 10 pathways assigned to heart, nine to muscle and only
two to spleen. Since mouse and rat are closely related to
each other, this result is not surprising. The high number
of 36 pathway–tissue pairs, for which mouse & pig are con-
sistent with human, comes as a close second. Out of these,
lung has the largest coverage of 12 pathways, while heart
and spleen are represented only by two and three pathways,
respectively. For the 20 pathway–tissue pairs, for which rat
& pig agree with human more than mouse, six are associ-
ated with nervous system, and only one pathway is selected
for heart, kidney, and muscle.

Overall, the pathway–tissue pairs that show distinct con-
sistency between human and certain model organisms dis-
tribute as follows. The two biggest groups are the 41
pathway–tissue pairs unique to pig and the 44 shared by
mouse & rat, i.e. not seen in pig. Of these, 19 pathways re-
late to muscle. For pig, these pathways are in the KEGG
category Organismal Systems, while for rodents they are in
the Metabolism category. The next two groups are those
unique to rat (35 pathways) and those shared by mouse &
pig (36 pathways), i.e. not seen in rat. For the latter, lung
stands out by the highest number of 12 pathways. Finally,
the liver stands out as the tissue with the most expressed
pathways and the one for which all three animal models
agree equally well with human.

Although there are limitations due to varying data avail-
ability for each organism, our findings indicate that we
can successfully approximate the tissue-specific pathway ac-
tivity and identify similarities and differences between the
three considered model organisms and human.
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Figure 2. Principal component analysis of the pathway–tissue agreement between human and animal models. PCA was performed on the Jaccard indices
(JIs) for all pathway–tissue pairs (grey dots) with at least five expressed pathway genes, where the JIs represent the comparisons human–mouse, human–rat,
and human–pig. The PCA loadings are shown as solid lines and colored by the model organism responsible for their direction. While the PC1 & PC2 plot
(panel A) shows a clear separation between pathway–tissue pairs with high JI and thus, good agreement between human and the respective animal model,
the PC2 & PC3 plot (panel B) clearly separates the data based on the differences between the animal models. The pathway–tissue pairs located closest to
each loading and furthest away from the center of the PC2 & PC3 plot are colored in the same color as the organism loading to indicate that for these
pairs, this organism agrees more with human than the others (see Methods section for more details).

Table 4. Top pathway–tissue combinations showing distinct agreement between human and a model organism

Mouse Rat Pig Mouse & rat Rat & pig Mouse & pig

Pathway–tissue pairs 24 35 41 44 20 36
# pathways 20 28 34 34 17 27
Average JI 0.72 0.74 0.72 0.69 0.62 0.70
# pathways by tissue

Heart 4 7 5 10 1 2
Kidney 3 8 4 8 1 5
Liver 2 3 6 6 2 4
Lung 7 2 8 4 4 12
Muscle 4 1 10 9 1 4
Nerv. system 3 5 2 5 6 6
Spleen 1 9 6 2 5 3

This table shows the top 200 pairs, while Supplementary Table S10 gives an overview of the top 100 and 500 pathway–tissue pairs. The first three columns
indicate the numbers of pairs, for which one of the model organisms (mouse, rat or pig) is specifically more consistent with human than the other two. The
last three columns refer to the pairs, which are shared between two model organisms and thus consistent with human in a similar way for both organisms.
The average Jaccard index (JI) for all pathway–tissue pairs assigned to a group is also listed. For each tissue row, the number of (#) pathways assigned to
this tissue is listed. Numbers shown in bold indicate the tissue covered by the highest number of pathways for each column.

DISCUSSION

To summarize our observations, there is an abundance
of both experimental and inferred information with good
quality for human, including genome quality, orthology
relationships, biomedical literature, tissue expression data,
gene annotations, and protein associations. Unfortunately,
the same is not the case for mouse, rat or pig. While mouse
is very often mentioned in the literature and is well covered
by tissue expression data and GO annotations, there are
very few experimentally determined protein associations re-
ported for it. Meanwhile there is a shortage of most types of

annotations and data for both rat and pig. Thus, one of the
biggest limitations of the current analysis is the availability
of public data for model organisms. This can be improved
in the future by encouraging researchers to make publicly
available more experimental, curated, high-quality findings
generated for organisms other than human, especially when
these organisms are popular model animals such as mouse
and rat.

Pathway transferability, both in our study and in path-
way databases in general, is limited by the data availabil-
ity and agreement of the individual resources, in particu-
lar, the amount of pathway annotations and the quality of
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orthology relationships. Nevertheless, the pathway transfer
from human works very well for mouse (95% on average)
and fairly well for rat or pig (85% and 87% on average, re-
spectively). The pathway transferability also highlights the
extent to which the animal models agree with human at
a pathway level given the available data. Due to the lack
of organism-specific information on pathways, we are not
able to detect more pronounced differences between the or-
ganisms by using only this type of data. Ideally, we would
like to have one single resource with pathways that are cu-
rated separately for each organism. Using it would allow us
to identify the specific parts of the pathways that are only
present in the animal model but not in human. Unfortu-
nately, this is not possible with the current pathway and in-
teraction databases, even though individual resources such
as the Mouse and Rat Genome Database (14,16) try to col-
lect and provide organism-specific data. Therefore, we are
in practice forced to think of the human curated pathways
as more general representations of what is happening in any
tissue. We then try to approximate how these pathways be-
have in specific tissues or model organisms through integra-
tion of other types of data such as tissue expression.

The availability of organism-specific tissue expression
datasets is considerably better, although still far from ideal.
The deposited datasets often come from one individual and
tissue and only sometimes cover several tissues in the same
individual(s). This gap has been decreasing lately as more
and more high-throughput sequencing data is being gener-
ated and deposited in public repositories for human (36–38)
and farm animals, including pig (39). For example, several
large-scale sequencing and annotation efforts have been un-
dertaken by the FAANG (Functional Annotation of AN-
imal Genomes) consortium with the goal to improve the
functional annotation of animal genomes, including pig,
goat, sheep, cattle, horse, and chicken (40). These efforts
will improve both the genome quality and gene annotation.
However, a limitation is still the need to update resources
based on the new genome assemblies, which does not always
happen quickly enough. Furthermore, there is a clear need
for more resources like the TISSUES database, which can
calibrate the data from the different technologies and or-
ganisms and make it comparable. This also means that the
analysis performed here can be significantly improved in the
future once more and better quality data becomes available.
Another possibility would be to extend the current analysis
to include other less popular model animals.

Another important aspect and possible limitation of our
analysis is the comparability between organisms. Most im-
portantly, we need well defined orthology relationships be-
tween the compared organisms. Identifying orthology be-
tween species has improved over the years (41) and allows us
to compare even organisms, which are evolutionarily more
distant (42). However, orthology assignments are still heav-
ily influenced by the quality of the underlying genomes and
their annotations. In our case this means that some of the
orthology relationships between human and pig or human
and rat might be missing due to the annotation quality of
these genomes at the time when the orthology resources
were constructed and updated. This lack of complete or-
thology relationships influences both the pathway transfer-
ability and the extent, to which the organisms agree with

each other at pathway–tissue level, and thus only allows us
to see part of the whole picture now. However, with better
annotated genome assemblies and improved orthology, we
expect that our framework will reveal an even more com-
plete picture of the similarities and differences between hu-
man and different animal models.

The comparison of individual types of data between the
selected four organisms indicates that the observed agree-
ment is more driven by the availability of data than by
evolutionary relationships. This is likely due to the lack of
organism-specific data at various levels. However, we also
showed that through integration of pathway data with tis-
sue expression, we can identify both similarities between
human and the model organisms and differences with re-
spect to how well the animal models agree with human
at a pathway–tissue level. The resulting pathway–tissue–
organism associations revealed both expected and unex-
pected findings as mentioned previously. For example, so-
called house-keeping pathways consist primarily of genes
that we see expressed in most tissues and organisms, while
other pathways were found to be much more tissue-specific.
In terms of pathway–tissue differences between the organ-
isms, all tissues except for the liver were associated with
more pathways, for which only one or two, but not all three
model organisms were consistent with human. With respect
to the question, which of these animal models is best suited
for modelling a human disease, we can conclude that there
is no universal answer and that it depends on the specific
tissue and sometimes even the specific pathways involved in
the disease.

To make sure that this specific approach of integrat-
ing orthology-derived pathways with tissue expression data
from human and animal models is robust with respect to
the chosen algorithms and cutoffs, we performed a robust-
ness analysis. In order to use the confidence scores for gene–
tissue associations from the TISSUES database, we needed
to set a cutoff for whether a gene is expressed or not in a
given tissue, which is not a straightforward choice. In ad-
dition, when identifying which and how many pathways
are expressed in a given tissue, we chose a cutoff for the
number of expressed pathway genes. The robustness anal-
ysis confirmed that, although the absolute numbers change,
the trends remain the same, and thus, our findings are con-
sistent and reproducible irrespective of the specific cutoffs
chosen.

Our systematic data integration of pathways with tissue
expression enables the investigation of mammalian path-
way activity in several different healthy tissues of mouse, rat
and pig as well as the comparison with the corresponding
human tissues. We highlight tissue-specific features of the
pathways and point out similarities and differences between
human and the model organisms. Ultimately, we identify
distinct pathway–tissue combinations, which are specifically
more consistent with human for either of the three studied
animal models. These findings can support researchers in
the decision of which model organism to choose for a hu-
man disease of interest.

In the current analysis, we focused only on the three
animal models mouse, rat and pig and on the seven tis-
sues, which are well covered by experimental datasets in the
TISSUES database. However, if the used resources become
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more elaborate in the future, it should be possible to con-
duct the same type of analysis on more tissues and for more
model organisms. This would of course require enough tis-
sue expression data that can be calibrated and made compa-
rable, for example, as done for the TISSUES database. Fur-
thermore, although we based our study on the KEGG path-
ways database, our workflow for data integration and com-
parison is applicable to other pathway databases or gene–
phenotype and gene–disease associations. The presented
framework can also be extended to study the similarity of
pathways upon activation or perturbation or to take into
account the effect of specific genes, drugs or even diseases
on the pathways in the same tissue for different model or-
ganisms, given that such a comprehensive collection of data
exists and is made publicly available. Thus, future analy-
sis would require the systematic assembly of associations
between pathways, tissues and diseases to further aid re-
searchers in choosing the best model organism for studying
human diseases.
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