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ABSTRACT

The Open Targets Platform (https://www.
targetvalidation.org/) provides users with a
queryable knowledgebase and user interface to
aid systematic target identification and prioritisation
for drug discovery based upon underlying evidence.
It is publicly available and the underlying code
is open source. Since our last update two years
ago, we have had 10 releases to maintain and
continuously improve evidence for target–disease
relationships from 20 different data sources. In
addition, we have integrated new evidence from
key datasets, including prioritised targets identified
from genome-wide CRISPR knockout screens in
300 cancer models (Project Score), and GWAS/UK
BioBank statistical genetic analysis evidence from
the Open Targets Genetics Portal. We have evolved
our evidence scoring framework to improve target
identification. To aid the prioritisation of targets and
inform on the potential impact of modulating a given

target, we have added evaluation of post-marketing
adverse drug reactions and new curated information
on target tractability and safety. We have also devel-
oped the user interface and backend technologies to
improve performance and usability. In this article, we
describe the latest enhancements to the Platform, to
address the fundamental challenge that developing
effective and safe drugs is difficult and expensive.

INTRODUCTION

The drug discovery and development process is costly and
ineffective; it is predicted that around 90% of drugs enter-
ing phase 1 clinical trials will not reach approval, and over-
all costs for each approved compound come to around $1.4
billion (1,2). In addition, patients treated with approved
drugs may experience a lack of therapeutic response or ad-
verse drug reactions, and many diseases still remain un-
treatable. The aim of the Open Targets consortium, which
brings together research institutes, academic and indus-
try partners in a pre-competitive collaboration, is to ad-
dress the fundamental issue of drug attrition due to a
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lack of efficacy or safety, and support the identification of
novel targets for disease treatment. The Open Targets Plat-
form (https://www.targetvalidation.org/) provides an open
source, publicly available knowledgebase and tools that en-
able evidence-based systematic prioritisation of targets for
disease treatment (3,4). Our informatics pipeline addresses
the challenges of ingesting different datasets and formats,
handles large amounts of data, and standardises the data to
integrate it together into one platform.

In the past two years, we have built upon this foundation
by expanding target–disease evidence data, adding phar-
macovigilance, safety and tractability information, improv-
ing the scoring of evidence and prioritisation of targets,
and enriching our disease ontology. We have incorporated a
new drug index to include all parent molecules with known
pharmacological action or disease indication. We have inte-
grated novel data generated from Open Targets consortium
informatics and experimental projects. These updates have
been informed by our users and members of the Open Tar-
gets consortium. We have also expanded our training and
outreach scope, providing tutorials and interactive sessions
to help inform and support users.

Users can explore therapeutic hypotheses within the Plat-
form, ensuring that targets have supportive evidence for ef-
ficacy and safety prior to transition to the next stages of
drug development. These preclinical target assessments are
important as they can increase the chance of drug approval
for specific indications. For example, drugs that have targets
with underlying evidence for a genetic association with the
relevant disease are twice as likely to succeed in clinical trials
and be approved (5,6). To this end, a major new feature in
the Platform is the incorporation of evidence from the Open
Targets Genetics Portal (https://genetics.opentargets.org/),
which integrates publicly available human genome-wide as-
sociation (GWAS) data with functional genomics to asso-
ciate disease loci with target genes (7). The evidence from
the genetics portal is integrated into our scoring system and
informs target prioritisation for a given disease. With re-
gard to safety, a key addition we provide is the evaluation
of significant post-marketing adverse drug reactions from
the FDA Adverse Event Reporting System (FAERS) for ap-
proved drugs, as well as curated safety information, to help
inform the potential impact of modulating a given target.

Herein, we detail the key enhancements to the data and
features within the Open Targets Platform, as well as im-
provements to the user interface and underlying technology.

Revisiting the open targets platform

Figure 1 provides a visual overview of the Open Targets
Platform; the underlying data model representation (Fig-
ure 1A), entity details (Figure 1B), evidence generation
and target–disease association scoring to aid target priori-
tisation (Figure 1C). The data and analyses are available
through the user interface and programmatically (Figure
1D). Each stage is described in more detail below, with up-
dates since our last publication (3).

A universe of data built around targets, diseases and drugs

The decision-making process in a drug discovery project re-
quires a thorough understanding of as many variables as

possible to maximise the clinical trial success. The Open
Targets Platform, therefore, aims to provide a comprehen-
sive characterisation of targets, diseases or phenotypes and,
more recently, known drugs that can help inform target
identification and prioritisation (Figure 1B). To reconstruct
these main biomedical concepts, we retrieve information
from 26 different data sources (Supplementary Table S1).
While most datasets are seamlessly integrated, others re-
quire some post-processing. For example, our focus on drug
targets implies that all gene products could potentially be
targeted, so information from core resources such as En-
sembl (8) or Uniprot (9) needs to be integrated to cover both
RNAs and proteins. Sometimes, more detailed analysis is
required to extract the relevant information or adjust the
available data to a clinical setup. To recapitulate all the lit-
erature available for each of the entities, for example, we per-
formed named-entity recognition on the available abstracts
from Europe PMC (https://link.opentargets.io/). Other re-
cent additions, such as the chemical probes or the target en-
abling packages require a consistent manual curation effort
as data is scattered across different resources (10–12).

To provide a more complete representation of the thera-
peutic space, we recently expanded our entities to include
drugs from the ChEMBL database (13). ChEMBL curates
and aggregates bioactive molecules with drug-like prop-
erties, as well as records from different public resources
including Drugs@FDA, ClinicalTrials.gov and DailyMed,
among others. The new drug index consists of all parent
molecules with known pharmacological action or disease
indication to a total of 6515 entries belonging to seven
different modalities. Among the most relevant drug infor-
mation, users can find curated mechanisms of action, ap-
proved or experimental indications, small molecule repre-
sentations, synonyms and trade names. Moreover, we ex-
panded the drug annotation with a statistical analysis on
post-marketing significant adverse drug reactions (ADRs)
from FDA Adverse Event Reporting System (FAERS)
(14). From the >12 million publicly available reports in
FAERS, we filtered the most reliable entries following
similar published approaches (15). The significant drug-
ADR pairs were then evaluated using a Likelihood Ra-
tio Test (LRT) and critical values inferred using a Mon-
tecarlo simulation (16). The significance of a given drug-
ADR is implicitly corrected by how often a drug is found
in a report and how often an event is reported across
drugs (Figure 2).

Continuous improvement of target–disease evidence

Identifying evidence implicating targets with diseases or
phenotypes constitutes one of the pivotal challenges of the
Open Targets Platform (Figure 1C). We currently maintain
20 different data sources capturing knowledge on target–
disease relationships covering the following categories: ge-
netic associations (for germline variation on common and
rare diseases), somatic mutations, drugs, pathways and sys-
tems biology, RNA expression, text mining and animal
models (Figure 3). All 10 154 924 pieces of evidence are
mapped and curated using a reference target entity identifier
(Ensembl gene) and disease or phenotype identifier (exper-
imental factor ontology, EFO) (17).
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Figure 1. Overview of the Open Targets Platform. (A) The Platform data model includes the entities targets, diseases and drugs. The relationships between
the three entities is shown. (B) Annotation of biomedical entities is provided from 26 underlying data sources. (C) The target identification and prioritisation
framework is based on evidence from 20 evidence sources providing target–disease relationships. EFO expansion allows for capture of further associations
between targets and diseases/phenotypes. For each target–disease association, the underlying data sources that provide evidence are scored, and an overall
scoring ranks targets associated with the disease. Targets are further prioritised based on additional key attributes including tractability, safety and expres-
sion. (D) Platform data is accessible via a user interface or programmatically via the EMBL-EBI FTP server, API endpoints or as downloads via Google
Cloud. Abbreviations: D, disease/phenotype; Dr, drug; EFO, Experimental factor ontology; T, target.

The nature of the data sources vary and therefore have
different requirements to keep them updated. Many re-
main stable and provide constant updates for every one of
our releases––such as ChEMBL (13), COSMIC (18), Re-
actome (19), ExpressionAtlas (20), Cancer Gene Census
(21) or ePMC (22). Some other providers (such as IntO-
gen) undergo major upgrades that require changes to our
data model or considerable manual curation effort to inte-
grate. During 2020, we have also included the curation of
COVID-19 evidence, for example the 299 clinical trials with
COVID-19 as primary indication and known drug targets
annotated by ChEMBL. The most important changes to
our evidence throughout the most recent period are shown
in Figure 3. Supplementary Figure S1 provides an overview
of the number of validated evidence strings from each indi-
vidual source for each Platform release.

Project score

In April 2019, we expanded our range of evidence to
include the genome-wide CRISPR–Cas9 dropout screens
conducted by Behan et al. (23). This collaborative Open
Targets study performed 941 fitness screens in 339 cancer
cell lines targeting 18 009 genes. Moreover, a prioritisa-
tion framework designated ‘Project Score’ was developed

to integrate cell fitness effects, genomic biomarkers and tar-
get tractability, to systematically prioritise new cancer tar-
gets (https://score.depmap.sanger.ac.uk/). A minimum tar-
get priority score of 40 is used (based on scores calculated
for targets with approved or preclinical cancer compounds),
providing a dataset of synthetic-lethality evidence for the
association between 623 genes and 19 cancer types (Supple-
mentary Figure S1).

Open targets genetics portal

Genome-wide association studies (GWAS) provide a rich
source of disease-associated genomic loci. Nevertheless, it
remains a long-standing challenge to link these loci to tar-
getable causal genes. The Open Targets Genetics Portal ad-
dresses this problem by interpreting manually curated as-
sociations from the GWAS catalog, as well as indepen-
dent signals from GWAS with publicly available summary
statistics, most importantly the UK Biobank GWAS data
(7,24,25). The Genetics Portal performs fine-mapping to
narrow down the likely set of causal variants at a given trait-
associated locus and to identify the potential causal gene
for a particular association. The recently added locus-to-
gene score (L2G) uses machine learning to prioritise causal
genes by integrating fine-mapping credible sets, QTL colo-
calisation and functional genomics data. This method can
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Figure 2. Post-marketing pharmacovigilance analysis for Pazopanib. Significant adverse events associated with Pazopanib (CHEMBL477772), based on
systematic analysis of all available FDA Adverse Event Reporting System. Analysis is displayed in the Open Targets Platform for all drugs with available
data.

pinpoint causal connections between loci and distant genes,
and can predict multiple causal genes, a significant improve-
ment over approaches based on gene distance to lead SNPs.

The inclusion of the Genetics Portal evidence in the Open
Targets Platform supersedes the previous GWAS catalog
evidence, removed in release 20.02 (Figure 3, Supplemen-
tary Figure S1). The inclusion of a more stringent GWAS
p-value cutoff (5e–8 instead of 1e–5) removed 69 298 non-
significant GWAS catalog evidence data points. Overall, the
Genetics Portal provides a cutting-edge framework to ob-
tain the most up-to-date GWAS evidence for complex or
common diseases or phenotypes.

Evolving target identification and prioritisation

A few challenges remain after evidence is appropriately col-
lected and normalised (Figure 1C):

1. Annotation sparsity. Evidence can sometimes be infor-
mative to discriminate targets in similar diseases or phe-
notypes. For example, a target associated with Crohn’s
disease could also be associated, albeit indirectly, with
the more general term ‘inflammatory bowel disease’. To
systematically benefit from this evidence, we take advan-
tage of the ontological properties of EFO by propagating
evidence from any child node to its parent nodes all the
way up to its corresponding therapeutic area(s) (Figure
1C, i). In the 19.11 release, we adopted EFO v3 which
transformed our reference ontology to include other ex-

isting domain-specific ontologies. By liaising with the
Monarch Disease Ontology (MonDO) (26), EFO v3
provides a comprehensive ontology of diseases and phe-
notypes as well as cutting-edge algorithmic and manual
curation to classify them using different ontologies. To
better align with the clinical purpose of the Open Tar-
gets Platform, we collaborated to reorganise the EFO
diseases using the most relevant therapeutic areas. As a
result of adopting EFO v3, the number of associations
increased by 90% in the 19.11 release.

2. Target–disease evidence scoring. Deciding what consti-
tutes a strong evidence source and how it compares with
similar data sources remains an ongoing question and
is open for interpretation. The lack of appropriate gold
standards across therapeutic areas limits the effective-
ness of appropriate benchmarks. Despite these limita-
tions, we score all our evidence in the range between 0
and 1, providing an informed estimation on the strength
of the association between the target and the disease
(Figure 1C, ii). The scoring functions for all data source
evidence including the latest modifications are listed in
Supplementary Table S2. This is regularly reviewed and
benchmarked, in particular when new datasets are intro-
duced.

3. Consolidating evidence into target–disease associations at
data source or data type level. Independent evidence for
the same target–disease pair might accumulate boosting
the confidence in that particular association. The plat-
form attempts to group the repeated evidence per data
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Figure 3. Target - disease evidence in the Open Targets Platform. Data sources are grouped by data type––left. Unique validated evidence available in each
of the platform releases since April 2016 (16.04)––middle. Relevant changes in the most recent period are annotated in further detail––right. A full list of
the data sources with references is found in Supplementary Table S2.

source by calculating the harmonic sum of the vector
of evidence scores (Figure 1C, iii). Moreover, to provide
an indicative score for groupings of data sources based
on the nature of the evidence (e.g. genetic association,
known drugs), a weighted harmonic sum is estimated for
each of the data types (3).

4. Estimating an overall association score. To summarize
the overall strength of a given target–disease associa-
tion, we perform a weighted harmonic sum of the as-

sociation scores using all individual data-source specific
scores (Figure 1C iv). The resulting overall score is pro-
vided for each of the 7 282 832 target–disease associa-
tions. All weights are listed in Supplementary Table S2
(weight factor), including the most recent changes (3).

By following this multi-step process, the Open Targets
Platform presents a ranked list of the targets associated with
a disease or phenotype or vice versa. However, the prioriti-
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sation of targets sometimes requires the addition of extra
information on how suitable these targets are for a given
therapeutic hypothesis, for example how tractable the target
is to modulation by different drug modalities (Figure 1C).
To expand on target annotations that can assist in decision-
making when reviewing a target list, an updated Open Tar-
gets tractability assessment for small molecules or antibod-
ies is now included on our prioritisation view (27). We also
provide information on target safety where available, in-
cluding known side effects (28,29), safety risk information
(30,31) and non-clinical experimental toxicity (32,33).

Enhanced interface and upcoming changes

Recognising the need to deliver a best-in-class user expe-
rience, we commenced a two-year project to redesign the
Open Targets Platform and its technical infrastructure. The
project emerged from user feedback that identified new re-
quirements to streamline the overall user journey, enhance
entity annotations, and support the exploration of different
therapeutic hypotheses. External contributors also require a
more amenable codebase to expand the current functionali-
ties on their own private instances. Further, our web analyt-
ics pointed to increasing interest in specific sections, includ-
ing target tractability and safety. Overall, a modern techni-
cal infrastructure combined with a fresh new interface will
ensure the Platform can continue to adapt to more complex
data and generate further unique insights in the drug dis-
covery area.

In the redesigned version of the Platform, users have ac-
cess to a powerful search functionality that includes the abil-
ity to search by drug, trade name and generic names and
synonyms. Updated entity profile pages contain summary
widgets that provide an at-a-glance overview of the data
available for a specific entity (Figure 4). A scrollable page
with detailed views provides more in-depth aggregation and
analysis of data. Users can also rearrange and reorder sum-
mary widgets and detail views to customise their experience
based on data they frequently access. Whilst this new ver-
sion of the Platform is still under active development, users
are able to move between the current version of the Plat-
form and the new redesigned Platform. In addition to an
enhanced user interface, the redesigned Platform also in-
cludes a new GraphQL API that allows for more powerful
and nuanced queries of the data.

A technical look into Open Targets Platform

All data in the Open Targets Platform is publicly available.
However some datasets require ad hoc pipelines to perform
mapping or post-processing steps required to align them to
the current data model. A JSON validator ensures all ev-
idence respects the schema. All annotation, evidence and
ontologies are then processed by the data pipeline to re-
construct entities, clean and score evidence and associa-
tions, generate search indexes and calculate disease-disease
similarities. The extract-transform-load pipeline is written
in Python v3 and the results loaded in ElasticSearch v7.6.
The REST API is currently available at https://platform-
api.opentargets.io/ and implemented using Python v2 and
Flask framework v1.1. The web application is written us-
ing Angular 1.7 as well as a number of libraries such as

D3.js v.3.5 for interactive visualisations. To ensure global
access, the infrastructure is deployed across three different
regions. Each regional deployment is the same and glob-
ally balanced. All our services are configured, loaded and
optimised in Google Cloud Platform and our code is open
source and accessible in the repositories listed in Supple-
mentary Table S3.

Our pipeline and infrastructure is currently undergoing
the aforementioned re-design towards more modern pro-
gramming languages (Scala v2.12), frameworks (Apache
Spark v3.0.0, React 16.8, Sangria v2.0) and technologies
(Elasticsearch v7.6, Clickhouse v20.5). Partially released
during 2020, these technologies will enable new function-
alities in the Open Targets Platform.

Data availability and outreach activities

The Open Targets Platform is publicly available at https:
//www.targetvalidation.org/ and there are five releases each
year that include updates to existing annotation and ev-
idence data and integration of new datasets and features
based on user requests and scientific advancements. Details
of each release are available from the Open Targets blog
and the Platform release and technical notes. The output
data from our pipelines remains accessible in different for-
mats depending on the user’s individual requirements. It is
available through the user interface, various REST API end-
points, our Python client, and our Data Downloads page.
All data, which includes the input files used for each release
pipeline run, can also be downloaded from EMBL-EBI’s
FTP service (Figure 1D).

To support general and more disease-specific use cases
of the Platform, we continue to offer free hands-on work-
shops on how to use the Open Targets Platform in webi-
nar and face-to-face formats (34). Over the past two years,
we have delivered training workshops in the United King-
dom, United States of America, Saudia Arabia, South Ko-
rea and Romania. Furthermore, given our commitment to
open source software and open science, our entire code-
base, including data integration and analysis pipelines and
user interface, is available on GitHub and licensed under
the Apache License Version 2.0. A full list of relevant data
access, availability, and outreach resources are provided in
Supplementary Table S4.

DISCUSSION

The drug discovery process remains a complex challenge
in which systematic data integration can help unravel
new findings. Although progress has been made on
improving data standards (for example through efforts
such as the Global Alliance for Genomics and Health
(https://www.ga4gh.org/genomic-data-toolkit/), Elixir
(https://elixir-europe.org/services/tag/interoperability-
and-standards), and the Gene Curation Coalition
https://thegencc.org/), harmonizing different biomedi-
cal datasets still constitutes one of the key bottlenecks
when it comes to interpreting the available knowledge.
Several other resources including Pharos (35), Disgenet
(36) or CanSAR (37) have recently approached the target
prioritisation problem, providing a complementary view
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A B

C

Figure 4. Enhanced user interface and new functionality. Platform interface redesign for PTGS2 target profile page. (A) Identifiers and links to other
resources are provided at the top of the page. Target information widgets outline the available data (in blue). By clicking on a widget, the user is taken
to that section. Sections can be rearranged by the user, allowing them to personalise their experience. (B) The ‘Known drugs’ widget takes the user to a
sortable and filterable table including information on clinical candidates or approved drugs, sourced from ChEMBL (12). (C) The ‘Tractability’ section
provides a druggability assessment by small molecule, antibody or other modality.

given their respective areas of expertise (38). The Open
Targets Platform aims to help address this challenge by
providing users with an up-to-date systematic interpre-
tation of the relevant resources across therapeutic areas
and––ultimately––complete the knowledge-gap with data
generated within the Open Targets consortium.

By expanding the Open Targets Platform to new en-
tities such as drugs, we hope to enhance the ability for
our data model to capture information in order to bet-
ter answer real world questions. This has allowed us to
incorporate important drug and compound information
such as mode of action, approved and experimental indi-
cations, small molecule representations as well as analysis
of post-marketing ADRs. Enhanced target information in-
cludes chemical probe and target enabling packages infor-
mation. Adoption of EFO version 3 has been pivotal in ex-
panding the number of target–disease associations within
the Platform. The expanded ontology allows new direct
target–disease associations to be incorporated from the data
sources, as well as ‘indirect’ associations where evidence is
applied throughout the ontological structure of disease clas-
sification. As an example, this can be useful to users inter-
ested in targets that have been associated with a broad ther-

apeutic area, or conversely a very specific disease. It also
allows the collation of evidence for a target for a given ther-
apeutic area, when the evidence annotations may be sparse
for individual diseases that fall under this.

We have continued to update evidence for target–
disease associations through routine releases from our data
providers, as well as additional experimental evidence gen-
erated through Open Targets projects (such as Project
Score) and the statistical genetics analyses from the Open
Targets Genetics Portal. This has included clinical trial and
drug target information for COVID-19 to aid in the effort to
identify targets for the repurposing of existing drugs or de-
velopment of novel treatments to help fight the pandemic.
We have reviewed and reiterated our scoring of evidence,
and enhanced the prioritisation of targets for particular dis-
eases with the addition of tractability and safety informa-
tion generated through Open Targets informatics projects.
We are implementing a redesign of the Portal infrastructure,
data pipelines and frontend to enhance usability and allow
for more complexity in the data for the future.

The emergence of new large-scale technologies with in-
creased evidence granularity (e.g. scRNAseq or CRISPR),
as well as the increasing interest to stratify diseases based on
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these or other phenotypic readouts, introduces challenges
that the Platform will seek to address in the near future
through adaptation of our data model and new ways to rep-
resent data. Determining the relative importance of differ-
ent pieces of evidence when combining the available infor-
mation to suggest potentially successful targets for drug dis-
covery is a further challenge. The inclusion of new system-
atic data sources, such as the state-of-the-art GWAS data
from Open Targets Genetics Portal, revealed the need to ap-
propriately weight and benchmark scored evidence against
other orthogonal data sources, a challenging task due to the
lack of appropriate gold standards. Moreover, recent stud-
ies have pinpointed to the usefulness of expanding experi-
mentally determined evidence using protein interaction net-
works (39,40). Network data can help to circumvent issues
such as non-tractable targets or safety liabilities, as well as
identify functionally linked novel targets with no prior ev-
idence. We are therefore exploring different approaches to
further exploit the Platform target–disease evidence in the
context of their molecular interactions.

To address a diverse set of challenges, and to ensure that
the data within the Platform remains at the cutting-edge
to inform drug discovery decision-making, we will work
alongside our data providers and the Open Targets consor-
tium members to introduce innovative solutions for the sys-
tematic identification and prioritisation of targets based on
diverse and complex publicly available data.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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