
Published online 12 October 2020 Nucleic Acids Research, 2021, Vol. 49, Database issue D1311–D1320
doi: 10.1093/nar/gkaa840

Open Targets Genetics: systematic identification of
trait-associated genes using large-scale genetics and
functional genomics
Maya Ghoussaini1,2, Edward Mountjoy1,2, Miguel Carmona2,3, Gareth Peat2,3,
Ellen M. Schmidt1,2, Andrew Hercules2,3, Luca Fumis2,3, Alfredo Miranda2,3,
Denise Carvalho-Silva2,3, Annalisa Buniello 2,3, Tony Burdett 2,3, James Hayhurst2,3,
Jarrod Baker2,3, Javier Ferrer2,3, Asier Gonzalez-Uriarte2,3, Simon Jupp2,3,
Mohd Anisul Karim1,2, Gautier Koscielny2,6, Sandra Machlitt-Northen2,6,
Cinzia Malangone2,3, Zoe May Pendlington2,3, Paola Roncaglia2,3, Daniel Suveges2,3,
Daniel Wright1,2, Olga Vrousgou2,3, Eliseo Papa2,4, Helen Parkinson2,3, Jacqueline
A. L. MacArthur3, John A. Todd5, Jeffrey C. Barrett1,2, Jeremy Schwartzentruber1,2,
David G. Hulcoop2,6, David Ochoa2,3, Ellen M. McDonagh 1,3 and Ian Dunham 1,2,3,*

1Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK, 2Open Targets,
Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK, 3European Molecular Biology Laboratory,
European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD,
UK, 4Systems Biology, Biogen, Cambridge, MA 02142, USA, 5Wellcome Centre for Human Genetics, Nuffield
Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Roosevelt Drive, Oxford
OX3 7BN, UK and 6GlaxoSmithKline plc, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage SG1
2NY, UK

Received August 14, 2020; Revised September 16, 2020; Editorial Decision September 17, 2020; Accepted September 17, 2020

ABSTRACT

Open Targets Genetics (https://genetics.
opentargets.org) is an open-access integrative
resource that aggregates human GWAS and func-
tional genomics data including gene expression,
protein abundance, chromatin interaction and con-
formation data from a wide range of cell types
and tissues to make robust connections between
GWAS-associated loci, variants and likely causal
genes. This enables systematic identification and
prioritisation of likely causal variants and genes
across all published trait-associated loci. In this
paper, we describe the public resources we ag-
gregate, the technology and analyses we use,
and the functionality that the portal offers. Open
Targets Genetics can be searched by variant, gene
or study/phenotype. It offers tools that enable
users to prioritise causal variants and genes at
disease-associated loci and access systematic
cross-disease and disease-molecular trait colocal-

ization analysis across 92 cell types and tissues
including the eQTL Catalogue. Data visualizations
such as Manhattan-like plots, regional plots, credible
sets overlap between studies and PheWAS plots
enable users to explore GWAS signals in depth. The
integrated data is made available through the web
portal, for bulk download and via a GraphQL API,
and the software is open source. Applications of
this integrated data include identification of novel
targets for drug discovery and drug repurposing.

INTRODUCTION

The identification of novel druggable targets for developing
safe and effective medicines is a key priority for the phar-
maceutical industry. However, drug development is ineffi-
cient, with over 90% of the drugs that enter clinical trials
failing, often at late stages, with the primary reason being
an inability to demonstrate efficacy (1). These failures in-
flict major resource and time losses where it is estimated
that the total R&D cost per new drug is over $2.5 billion
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(2). They also largely reflect our poor understanding of dis-
ease biology and hence it is critical to incorporate new ev-
idence in drug development decisions that could help im-
pact drug success. Drugs with targets that have underlying
genetic evidence for disease association have been shown to
be twice as likely to succeed in clinical development (3,4).
Therefore, systematic evaluation of genetic associations for
a particular disease or trait can aid discovery of suitable tar-
gets (genes) for drug development. There is now a large and
ever-growing number of human genome-wide association
studies (GWAS) and population biobank studies generat-
ing evidence for the role of genetic variants in common or
complex disease phenotypes.

The majority of GWAS-associated variants fall in the
non-coding part of the genome suggesting that they affect
complex traits and diseases through altering expression of
neighbouring genes using regulatory mechanisms. Identi-
fying the causal gene underlying each association signal is
an intense process requiring the integration of data from
GWAS with transcriptomics, proteomics and epigenomics
datasets from a wide range of cell types and tissues. Exper-
imental validation is then used to confirm the likely causal
variant(s) and the gene it is regulating. International efforts
and consortia have used integrative approaches to identify
target genes for specific therapy areas but there are currently
no resources that leverage publicly available GWAS and
functional genomics data in a scalable and reproducible way
to systematically assign causal variants and target genes at
all disease-associated loci.

In the absence of a publicly available portal that helps
address these challenges and allows a wide array of bio-
logical questions to be answered systematically, we devel-
oped Open Targets Genetics (https://genetics.opentargets.
org), an open-access integrative resource that enables statis-
tical genetics and functional genomics scientists to translate
signals from Genome Wide Association Studies (GWAS)
and Biobank data into target gene(s) across thousands of
traits genome-wide using a workflow suited to their needs.
This portal was constructed based on the latest technol-
ogy to enable data to be easily added and browsed. It con-
tains genetic and functional genomics data from a wide
range of repositories and datasets, as well as additional data
analyses generated internally using robust statistical meth-
ods. The data integrated into Open Targets Genetics can
be searched by gene, variant or trait/disease. It offers sev-
eral features that are fundamental for refining GWAS sig-
nals and identifying the likely causal variant(s) and target
gene(s) at trait-associated loci. These include: (i) systematic
statistical fine-mapping across thousands of trait-associated
loci to resolve association signals, (ii) cross-trait/disease-
disease colocalisation analysis and disease-molecular trait
colocalisation analysis across 92 tissues and cell types, (iii)
linking each variant to its likely target gene(s), using a
single evidence score aggregating across a range of func-
tional genomics datasets (disease agnostic), (iv) prediction
of the likely causal gene(s) for all GWAS-associated loci
using a machine learning model combining genetics and
functional genomics information in a single ‘locus to gene’
(L2G) score, (v) Phenome Wide Association Study (Phe-
WAS) analysis across a wide range of diseases and traits,
(vi) enriched trait––gene evidence with orthogonal evidence

including clinical trials that might support therapeutic hy-
pothesis by linking with the Open Targets Platform (https:
//www.targetvalidation.org/) (5,6).

This stand-alone genetics resource within the Open Tar-
gets ecosystem complements the existing Open Targets Plat-
form and provides underlying genetic evidence to aid drug
target identification and prioritisation.

Overview of the Open Targets Genetics Portal

Figure 1 outlines Open Targets Genetics Portal: the
publicly-available data sources (A), the processes required
to ingest and integrate the datasets together (B), the internal
statistical genetics and causal inference data analyses car-
ried out to provide additional information to users (C and
D), and the available access options (E).

Data resources

Several sources of GWAS data are integrated into the por-
tal in order to establish the link between variants and
traits/diseases (Figure 1A). Firstly, GWAS studies with
summary statistics are retrieved from the NHGRI-EBI
GWAS Catalog summary statistics database (N = 300 cur-
rently) (7). Due to a lack of suitable reference genotypes
for conditional analysis required for non-European pop-
ulations, full summary statistics are only used for studies
that are predominantly of European ancestry. Although
most studies to date have been in European populations,
we aim to expand the scope of studies in Open Targets
Genetics to new populations as soon as large enough ref-
erence panels become available. Secondly, two published
GWAS analyses utilising UK Biobank data have been inte-
grated: the SAIGE study of 2139 binary (case-control) phe-
notypes, and the Neale lab study of 1283 quantitative traits
(http://www.nealelab.is/uk-biobank) (8). Ingestion of sum-
mary statistics includes harmonisation of alleles, genome
build liftover, formatting, partitioning and filtering (Figure
1B). Lastly, studies from the NHGRI-EBI GWAS Cata-
log which do not have summary statistics are also included,
adding a further 14 013 studies (7).

In addition to GWAS, functional genomics data provides
evidence for the effect of variants on genes (Figure 1A).
Molecular phenotype quantitative trait loci data (QTLs) in-
cludes protein QTL (pQTL) data of 2994 plasma proteins
assessed in 3301 individuals of European descent (9). Gene
expression QTLs (eQTLs) are integrated from the eQTL
Catalogue, eQTLGen and GTEx (https://www.gtexportal.
org/home/) (10,11). Other datasets that provide evidence
for variant to gene (V2G) association include epigenet-
ics chromatin conformation and interaction experiments
with promoter capture hiC (PCHI-C) from 27 different cell
types, enhancer-TSS pairwise cap analysis of gene expres-
sion (CAGE) correlation, and DNase I hypersensitive site
(DHS)-gene promoter correlation (12–14). Each epigenetic
data point is represented as a pair of interacting genomic
intervals and an association statistic. Interval pairs are re-
tained with one end encompassing an Ensembl gene Tran-
scription Start Site (TSS) and the other end containing any
variant in GnomAD 2.1 (Figure 1B) (15,16).
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Figure 1. Data resources, ingestion process, data analyses and accessibility of the Open Target Genetics Portal. (A) The datasets ingested into Open Targets
Genetics, (B) the data ingest and mapping processes, (C) statistical genetics analyses carried out, (D) the Locus to Gene pipeline (L2G), (E) accessibility
options for users. Abbreviations: API; Application Programming Interface, EFO; experimental factor ontology, EMBL-EBI; European Molecular Biology
Laboratory – European Bioinformatics Institute, LD; linkage disequilibrium, FTP; file transfer protocol.

All traits have been manually mapped to the Experimen-
tal Factor Ontology (EFO) (17). This level of data standard-
isation provides additional value for users interested in in-
tegrating data across studies.

Statistical genetics analysis

In addition to the large resource of genetics and functional
genomics datasets, Open Targets Genetics also analyses the
available evidence in order to link variants to disease, vari-
ants to genes and ultimately genes to disease. This, for ex-
ample, enables prioritisation of causal genes for a specific
disease based on robust genetic and functional genomics in-
formation, thus allowing better prioritisation of potential
drug targets.

We use the following data model:

Study(S) − Lead Variant(VL) − Tag Variant(VT)

− Gene(G)

Disease and trait association information (Study) are ob-
tained from the GWAS which links disease status (or other
trait measurements) to common genetic variation. A com-
mon association significance threshold of P < 5e–8 is set for
all studies. While some studies provide the complete sum-
mary statistics, others only report the lead variant (VL) at
each associated locus. However, it cannot be assumed that
the VL is causing the association; due to linkage disequilib-
rium (LD), the VL might belong to a set of SNPs that have
travelled together with the true causal SNP on a haplotype
block. For this reason, fine-mapping/credible set analysis
and LD expansion are implemented to include all tag vari-

ants (VT) and provide a more comprehensive set of poten-
tially causal variants linked to the trait (Figure 1C).

Given that not all GWAS have summary statistics avail-
able, two fine-mapping methods are applied, one using full
summary statistics, and another using LD information only.
For studies with full summary statistics, we use GCTA-
COJO to identify independent signals, and then perform
per-signal conditional analysis adjusting for other indepen-
dent signals in a ±2 Mb region from the lead variant (18).
For every conditionally independent signal, fine-mapping
using the Approximate Bayes Factor approach is performed
(19). For GWAS without summary statistics, we use the
PICS method with an LD reference from the most closely
matched 1000 genomes project superpopulation (20). This
enables us to estimate the probability that each variant is
causal across 133,441 study-lead variant associated loci.
Output from both methods provides a posterior probabil-
ity (PP) for each variant being causal for a given association.
In order to identify complex traits and diseases that share
common molecular mechanisms, we also perform cross-
trait colocalization analyses for 3,621 GWAS studies with
summary statistics.

To assign likely causal genes for a given variant, we ini-
tially developed a disease-agnostic Variant to Gene (V2G)
analysis pipeline which provides a single aggregated score
for each variant-gene prediction. This analysis combines
four different data types; molecular phenotype quantita-
tive trait loci datasets (eQTLs and pQTLs), chromatin in-
teraction and conformation datasets, in silico functional
predictions (using the Variant Effect Predictor or VEP
score), and distance from the canonical transcript start
site (21). The data harmonisation and aggregation process
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as well as the weighting applied to each of the datasets
are described here: https://genetics-docs.opentargets.org/
our-approach/data-pipeline. More recently, we have devel-
oped a disease-specific gene prioritisation approach (Locus
to Gene score, L2G) to prioritise genes at all trait-associated
loci using a machine learning model. For this, we inte-
grate fine-mapping credible set analysis across all 133,441
loci with functional genomics data (including pathogenicity
prediction, colocalisation with molecular quantitative trait
loci, genomic distance and chromatin interaction data) to
generate L2G predictive features. We then train a super-
vised model using over 400 gold-standard positive GWAS
loci for which we are confident of the gene implicated
to predict causal genes at each locus (see https://github.
com/opentargets/genetics-gold-standards). It is important
to note that the existing gold-standard genes are likely to be
biased towards those that are near the centre of the GWAS
peak and which have clear (nonsynonymous) variant con-
sequences, which will influence the features learned in the
L2G model. We intend to continue expanding the reposi-
tory of gold standard loci to enable building the most accu-
rate model possible for gene prioritisation. More details on
the machine learning method are described in available on-
line documentation (https://genetics-docs.opentargets.org/
our-approach/pipeline-overview).

To summarise, three statistical genetics data analyses
are carried out as outlined in Figure 1C. Lead variant
annotation, and lead variant to tag variant expansion
methods, which include fine-mapping/credible set analysis
and linkage-disequilibrium expansion are described in full
here: https://genetics-docs.opentargets.org/our-approach/
assigning-traits-to-loci. Disease-molecular trait colocal-
isation analysis for studies with full summary statistics
is explained in more detail here: https://genetics-docs.
opentargets.org/our-approach/colocalisation-analysis.
Similar analyses have been conducted for GWAS studies
without full summary statistics, using an approximate
colocalisation heuristic based on variant probabilities from
the PICS method. These analyses then feed into the causal
inference L2G analysis pipeline to connect the associated
loci to genes, utilising underlying evidence in order to
ultimately rank the genes most likely to be underlying the
associated trait/disease (Figure 1C).

A technical look into the Genetics Portal

Retrieving, processing, analysing and presenting the large
amount of biological data in the Genetics Portal intro-
duces some challenges. The majority of the data currently
in the Portal corresponds to public information that we
downloaded from the respective resources and analysed in
Google Cloud Platform (GCP). Other datasets such as the
UK Biobank LD reference panel have more restrictive ac-
cess conditions and so were analysed locally. Storing and
processing the hundreds of TB of raw data has also required
some technical solutions for large scale data manipulation.
Other challenges relate to the algorithmic part of the analy-
sis. For example, the full cross-trait and QTL colocalisation
currently takes about 4 weeks, conducting 2,035,470 suc-
cessful comparisons on a compute cluster using 60 CPU

cores. Since computing pairwise similarities is an O(N2)
problem, we are looking into new methods that might allevi-
ate the current constraints. Considering the speed at which
population genomics data is currently generated, maintain-
ing a set of reference datasets (e.g. LD panels, variant in-
dexes) also introduces the need for keeping infrastructure
up-to-date.

All data is harmonised, analysed and merged using a
combination of programming languages (Python v3, R
v3.3, Scala v2.12) and computational libraries and frame-
works (e.g. Apache Spark v2.4.5, GCTA v1.93) and stored
in Parquet format when possible. The resulting 2TB of in-
ferences are loaded into ClickHouse v20.1.4.14 and Elas-
ticSearch v5.6.16 (Supplemental Figure S1). These two ser-
vices are configured, loaded and optimised in GCP. More
importantly, they are released publicly to users interested
in creating their own instances of the Genetics Portal. The
API is also available at https://genetics-api.opentargets.io
and implemented using GraphQL v2.0.0, Play Framework
v2.7.3, Slick framework v3.3.2 and Sangria v2.0.0. The web
application is available at https://genetics.opentargets.org
and utilises React v16.8 as well as a number of javascript
libraries with emphasis on D3.js v5.5 for custom interac-
tive visualisations. The large amount of data also intro-
duces challenges for some user interface components. To
build the locus plot (Supplemental Figure S2) for exam-
ple, we use a canvas element as it is not possible to accom-
plish the visualisation with regular DOM nodes. To ensure
global access, Open Targets Genetics is deployed on GCP
across three different regions: in Europe (Belgium zone),
United States (South Carolina zone) and Asia (Tokyo zone)
(Supplemental Figure S1). Each regional deployment is
the same and globally balanced. All code is open source
and accessible in the repositories listed in Supplementary
Table S1.

Navigating the available features within the Open Targets
Genetics Portal user interface

Users can utilise the Genetics Portal to address a range of
biological questions (Supplemental Figure S3). Depending
on their question, users may start with a search for a gene,
variant (genomic position or dbSNP reference sequence ID)
or a trait/disease of interest. The data visualisations and
tools provided on these pages allow users to navigate and ex-
plore the information to help answer their biological ques-
tions (Figures 2–5, Supplemental Figures S2 and S4).

Figure 2 provides an example of the information dis-
played on the study-trait page. The first section provides an
overview of the study sample size and links to the original
publication (Figure 2A). The second section provides a
Manhattan-like plot that displays the independently asso-
ciated variants that reached GWAS significance threshold
(Figure 2B). A table provides the effect sizes of the alter-
native allele and the genes likely to be involved at each
susceptibility locus prioritised by the statistical genetics
analysis pipelines (colocalisation, L2G score, and closest
gene) (Figure 2C). Using the ‘compare studies’ button on
the study page, users can also compare the Manhattan plot
for the root study with Manhattan plots for other studies
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A

C

D

B

Figure 2. Study-trait page. The study-trait page in the Open Targets Portal for the associated trait inflammatory bowel disease from the study (22).
Abbreviations: IBD; inflammatory bowel disease, ID; identifier, GWAS; Genome-wide association study, LD; linkage disequilibrium, L2G; locus-to-gene,
SNP; single nucleotide polymorphism.

to identify shared independent loci across the genome
(https://genetics-docs.opentargets.org/how-to-use-open-
targets-genetics-starting-with/multiple-traits-or-diseases)
(Figure 2D).

Figure 3 provides an example of the information dis-
played on the variant page. If a user is interested in the
genes that are likely to be functionally implicated by a given
variant in a disease-agnostic way, the first section ‘Assigned
genes’ displays the results from the Variant to Gene (V2G)
pipeline, with a list of genes prioritised by their V2G score
and the functional genomics evidence that supports this
connection (Figure 3B). If gene expression data supports
this connection, it is possible to view the effect of the variant
on gene expression together with the directionality of effect
and the tissue/cell type in which the effect is observed. If
the user is interested in the traits/diseases associated with

a given variant, then a PheWAS plot together with the di-
rectionality of effect of the alternative allele across different
phenotypes is displayed (Figure 3C).

Figure 4 provides an example of the information dis-
played on the gene page. Searching for a gene of interest (in
this case ITGA4), the user can find links to further infor-
mation in the Open Targets Platform such as information
about drugs in clinical trials that target this gene, animal
model phenotype data, pathway data and expression data,
along with links to other key resources. In order to iden-
tify traits and diseases associated with a given gene, the user
can access the output from two statistical genetics analysis
pipelines: the L2G analysis (Figure 4B) and the colocalisa-
tion (Figure 4C). For the L2G score, the traits prioritised
can be ranked by their L2G score varying between 0 and 1,
with 1 being the highest confidence trait-gene assignment at
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Figure 3. Variant page. (A) Each variant in the Open Targets Genetics Portal is represented with a standardised identifier of: chromosome chromosomal
location (Build GRCh38) reference allele alternative allele. Overview information is provided for the variant at the top of the page, such as allele frequency
and predicted functional consequence. (B) Assigned genes using the Variant to Gene score and expression data evidence for the link between the variant and
gene. (C) PheWAS plot and data. Abbreviations: eQTL; expression quantitative trait loci, LD; linkage disequilibrium, PheWAS; phenome wide association
study, V2G; variant to gene.

a given locus. To identify other causal gene assignments at
a given susceptibility locus, the button ‘gene prioritisation’
takes the user to the study-locus page defined by a lead vari-
ant and a GWAS study.

Figure 5 provides an example of the information dis-
played on the study-locus page. In this example, we are in-
vestigating an Inflammatory Bowel Disease susceptibility
locus defined by 2 181443625 A G where the alternative al-
lele (G) is protective (22). The first section (Figure 5A) dis-
plays the genes prioritised at this locus by the L2G analysis
pipeline, with a breakdown of the individual predictors to
show the score each gene would receive in a model includ-
ing a single predictor category. The second section displays
the genes prioritised at this locus using the colocalisation
pipeline as a table (Figure 5B) or as a heatmap (Figure 5C).
The third section displays GWAS traits and diseases that
colocalise at this locus (Figure 5D). The final section pro-
vides the set of likely causal variants (credible sets) at this
locus together with a regional plot view and enables the user
to look at credible sets overlap between this study and other
GWAS and QTL studies that colocalise at this locus (Figure
5E).

Programmatic access to the Genetics Portal

Users can access the Genetics Portal data in different pro-
grammatic ways depending on their requirements and pref-
erence: downloading data via EMBL-EBI’s FTP download

service or Google Cloud Storage service; running system-
atic analyses on datasets using Google Cloud BigQuery ser-
vice; and executing specific queries with various GraphQL
API endpoints (Figure 1E). Details on data download
access is available at https://genetics-docs.opentargets.org/
technical-pipeline/data-download while information on
GraphQL API access is available at https://genetics-docs.
opentargets.org/technical-pipeline/graphql-api.

Users of the Genetics Portal

The public availability and wide applicability of the
genetics-trait association data provided can serve a wide
range of users with different expertise. As the portal soft-
ware is also open source, users can install their own instance
and integrate their own data. In addition, the gene priori-
tisation data using the L2G score from the Open Targets
Genetics Portal feeds into the genetic association evidence
to support target – disease associations in the Open Targets
Platform (5).

DISCUSSION

We have built an integrated system for incorporating
GWAS, eQTL, pQTL and epigenetics data resources to-
gether and provide statistical genetics analysis of this data
within an easy-to-navigate portal, which requires compat-
ibility of data features (for example genes are mapped to
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Figure 4. Gene page. (A) Overview of the gene and chromosome location (Build GRCh38), with links to the Open Targets Platform and other key data
resources for relevant information. (B) GWAS studies or traits associated with the gene from the Locus-to-Gene analysis pipeline. (C) GWAS studies
or traits associated with molecular quantitative trait loci for the gene, based on colocalization analysis evidence. Abbreviations: GWAS; Genome-wide
association study, QTLs; quantitative trait loci, L2G; locus-to-gene.

Ensembl gene IDs and variants to chromosomal position
on genome build GRCh38). To integrate genetic and func-
tional genomics data from the wide array of disease asso-
ciation studies and functional genomics datasets, a major
challenge is the mapping of traits from different data re-
sources to a standardised terminology to allow systematic
aggregation of associations linked to the same underlying
trait or disease. We have used the Experimental Factor On-
tology (EFO) to map disease terms across data resources
and have added new EFO terms where required. This in-
volves extensive manual review for each new data resource
added to ensure automatic mappings are correct. Another
challenge is the availability and format of data, and the re-

quirement of making human genetic and disease data pub-
licly available within an ethical framework. This limits the
resources and types of data we are able to bring into the
portal, utilising datasets that have permissions for public
dissemination, have been published previously, or providing
summary statistics of cohort-level information. Some of the
statistical genetic analyses we carry out utilise data sets such
as LD matrices that are kept for internal use only, provided
to us by the data resource but that contain individual-level
data that cannot be shared publicly. Availability of suitable
LD matrices for non-European populations is also a limi-
tation preventing application of all analyses across all avail-
able data. The data analysis pipelines pose challenges, such
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Figure 5. Study-locus page. An example of the gene prioritisation page for the lead variant 2 181443625 A G and the inflammatory bowel disease GWAS24.
Gene prioritisation results from (A) the locus-to-gene analysis pipeline and (B) colocalisation analysis. (C) A heatmap view of genes that colocalise at this
locus. (D) GWAS study colocalisation. (E) Credible set overlap. Abbreviations: GWAS; Genome-wide association study, IBD; inflammatory bowel disease,
L2G; locus-to-gene, OR; odds ratio, QTLs; quantitative trait loci.
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as the length of time it takes to run co-localisation (currently
a month) due to the amount of data involved, and which we
are improving to gain faster response times. The strength of
the Open Targets Genetics Portal is that we overcome these
challenges for the benefit of our users.

In addition to backend improvements which will enable
more frequent release cycles, future work focuses on the
integration of available data sets for more diverse popu-
lations. This includes international biobanks and popula-
tion studies as they become publicly available, as well as
developing LD matrices for non-European populations to
allow GWAS catalog and Biobank data for these popu-
lations to be analysed. We plan to integrate COVID-19
infection susceptibility genetic study results as these be-
come available, to aid in the drug discovery effort for the
global pandemic by providing supporting genetic evidence
for key human target genes. We also plan to develop exist-
ing features, such as expanding the colocalisation view to be
genome-wide.

In conclusion, with the advent of GWAS, exome and
whole genome sequencing and a growing number of na-
tional genomics population studies and biobanks, there is
now a huge volume of human genetic and functional data
linked to disease traits. The challenge is integration and sys-
tematic analysis of this data to enable robust statistical asso-
ciations and prioritisation of genes underlying disease cau-
sation. The Open Targets Genetics Portal addresses these
challenges and provides the results in a unique open plat-
form which can be queried programmatically or via an in-
formative user interface. This enables users to address a
wide range of research questions, and provides underlying
evidence to aid drug discovery.
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