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ABSTRACT

Alternative splicing is widespread throughout eu-
karyotic genomes and greatly increases transcrip-
tomic diversity. Many alternative isoforms have func-
tional roles in developmental processes and are pre-
cisely temporally regulated. To facilitate the study of
alternative splicing in a developmental context, we
created MeDAS, a Metazoan Developmental Alterna-
tive Splicing database. MeDAS is an added-value re-
source that re-analyses publicly archived RNA-seq
libraries to provide quantitative data on alternative
splicing events as they vary across the time course
of development. It has broad temporal and taxonomic
scope and is intended to assist the user in identify-
ing trends in alternative splicing throughout devel-
opment. To create MeDAS, we re-analysed a curated
set of 2232 Illumina polyA+ RNA-seq libraries that
chart detailed time courses of embryonic and post-
natal development across 18 species with a taxo-
nomic range spanning the major metazoan lineages
from Caenorhabditis elegans to human. MeDAS is
freely available at https://das.chenlulab.com both as
raw data tables and as an interactive browser allow-
ing searches by species, tissue, or genomic feature
(gene, transcript or exon ID and sequence). Results
will provide details on alternative splicing events
identified for the queried feature and can be visu-
alised at the gene-, transcript- and exon-level as time
courses of expression and inclusion levels, respec-
tively.

INTRODUCTION

Alternative splicing, whereby multiple distinct functional
transcripts are produced from a single gene, is a widespread
process present in most eukaryotic genomes (1). Alterna-
tive splicing increases transcriptomic diversity and is an im-
portant mechanism of functional innovation (see (2–4) for
reviews) that may underlie changes in organismal complex-
ity over evolutionary time (5,6), morphological differentia-
tion (7), and speciation (8). Many alternatively spliced iso-
forms have restricted transcriptional profiles, for instance
being sex- (9–11), tissue- (12,13) or cell type-specific (14–
16). Numerous studies have highlighted the critical role al-
ternative splicing plays in developmental processes (see re-
views (17,18)). Accordingly, many alternative isoforms are
also precisely temporally regulated (19) and so would only
be found within particular developmental stages (as demon-
strated, for example, in pre-implantation embryos, where
the division between stages is a matter of hours (20)).

To facilitate the study of alternative splicing in a develop-
mental context, here we present MeDAS, a Metazoan De-
velopmental Alternative Splicing database. MeDAS is an
added-value database presenting quantitative data on al-
ternative splicing events as they vary across developmental
stages. MeDAS was constructed by re-analysing a curated
set of 2232 Illumina polyA+ RNA-seq libraries that chart
detailed time courses of embryonic and post-natal develop-
ment across 18 species with a broad taxonomic range span-
ning the major metazoan lineages from Caenorhabditis ele-
gans to human.

There are several alternative splicing databases avail-
able, although these typically represent either the in-depth
functional characterization of a small number of model
species or are otherwise more specialised in scope, primar-
ily concerned with specific splicing event types or tissues.
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Databases in the first category include APPRIS (21), which
annotates the principal spliced isoforms of vertebrates, fly
and worm, and VastDB (22), which offers detailed profiling
of human, mouse, and chicken genes across multiple cell
and tissue types. More specialized databases include Fas-
terDB (23,24), which focuses on splicing events as they re-
late to the phenotypic plasticity of cancer cells, and HEX-
Event (25) and ExonSkipDB (26), both of which are dedi-
cated solely to human exon-skipping events, with the latter
further specialising in cancer tissues.

MeDAS is structured around the temporal aspects of
alternative splicing and is freely available at https://das.
chenlulab.com with an interface that allows searches by
species, tissue and feature (gene, transcript, or exon ID and
sequence). Results will provide details on alternative splic-
ing events identified in the queried region and can be visu-
alised at the gene-, transcript- and exon-level as time courses
of expression level and inclusion level, respectively.

MATERIALS AND METHODS

Database creation and content

MeDAS currently comprises data on alternative splicing
events for 18 species, each sampled from nine to 24 dis-
tinct developmental stages (Supplementary Table S1). For
each species, developmental stage and individual library,
MeDAS provides a genome-wide survey of alternative splic-
ing events in the form of exon inclusion estimates for ev-
ery internal exon of each multi-exonic gene. To allow the
user to identify significant variability and temporal trends
in alternative exon usage along with development, MeDAS
provides Spearman’s correlation coefficients for each exon’s
percent spliced-in (PSI) value––a measure of its level of
inclusion––with the temporal rank order of developmental
stages per tissue. We also provide the Kruskal-Wallis statis-
tic of the PSI distribution as it varies among discrete devel-
opmental stages, and stage specificity index Tau (27). The
contents of MeDAS are described in Table 1, in the form of
an annotated example entry for Kdm1a, an exon which is
precisely temporally regulated and functionally associated
with neurite outgrowth (19).

The alternative splicing events in MeDAS were identi-
fied by analysing a curated set of 2232 RNA-seq libraries
(detailed in Supplementary Table S2), all sourced from
the NCBI Sequence Read Archive (28). For inclusion into
MeDAS, we required all libraries to be polyA+ enriched,
in order to analyse fully spliced mature RNAs, and to be
sequenced using an Illumina platform at a minimum read
length of 50 bp (2126 libraries, 95% of the total, were se-
quenced with average read lengths of 100 or 101 bp, and
2181 libraries, 97% of the total, were sequenced using ei-
ther an Illumina HiSeq 2000 or HiSeq 2500). We also se-
lected only those species associated with a BioProject com-
prising multiple developmental stages (ranging from nine
in chicken to 24 in human). Specifically, MeDAS contains
data from whole organism RNA-seq libraries for eight
chordates: the anole lizard (29), Ciona intestinalis (30),
two species of amphioxus (Branchiostoma floridae (30) and
Branchiostoma lanceolatum (31)), two species of frog (Xeno-
pus laevis (30) and Xenopus tropicalis (30)), turtle (30) and
zebrafish (30); six of these species were sequenced by the

EXPANDE (EXpression Profiling AloNg Development
and Evolution) consortium (30). MeDAS also contains data
from seven major organs (forebrain, hindbrain, heart, liver,
kidney, testis and ovary) in developmental stages spanning
from organogenesis to (where possible) adulthood in seven
other chordates (chicken, human, macaque, mouse, pos-
sum, rat and rabbit) (32). Note that for early embryonic
stages comprising few cells, replicates in the original stud-
ies often represent pooled samples from multiple individ-
uals. Libraries with multiple biological replicates per tis-
sue and developmental stage were used for most species ex-
cept C. elegans (33), the fruitfly (33), and the sea urchin
(34), where replicates were not available. These three non-
chordates were added to ensure a more comprehensive tax-
onomic coverage of metazoans. The specific developmental
stages covered by MeDAS are summarised in Supplemen-
tary Table S3.

Developmentally-associated gene expression, isoform abun-
dance and alternative splicing events

All RNA-seq libraries were processed for alternative splic-
ing event identification and quantification using standard
pipelines (Figure 1). All scripts are available at https://
github.com/LuChenLab/MeDAS and can be applied to
other datasets and species. Briefly, low-quality reads were
trimmed using Trimmomatic v0.38 (35) with parameters IL-
LUMINACLIP:adapters.fa:2:30:10 LEADING:3 TRAIL-
ING:3 SLIDINGWINDOW:4:15 MINLEN:25. Trimmed
reads were aligned to their respective reference genomes
(Supplementary Table S1) using STAR v2.6.1a (36) with
default parameters plus –quantMode TranscriptomeSAM,
with the resulting BAM files input into RSEM v1.3.1 (37)
to quantify gene expression and isoform abundance both as
raw counts and as transcripts per million (TPM). When not
otherwise available from the experimental information, the
strand specificity of each library was inferred using RSeQC
v3.0.0 (38), and RSEM used with the –strandedness option.
To identify dynamically regulated genes and isoforms (those
where the expression profile for a given tissue varies signif-
icantly over the time course), we followed a method previ-
ously described (32,39). For genes and transcripts expressed
(TPM ≥ 1) in at least 15% of the samples, we first normal-
ized raw counts per million (CPM) using the ‘trimmed mean
of M’ (TMM) method implemented in the R/Bioconductor
package edgeR v3.30.3 (40). For each organ and species, we
then calculated the goodness-of-fit (r2) between these val-
ues and the rank order of developmental stages, using the
R/Bioconductor package maSigPro v1.60.0 (41).

Identification of AS type

To identify splicing events, we required that each splice
junction could be independently detected by 10 uniquely-
mapped reads in at least two samples, and that it was sup-
ported by ≥ 100 uniquely-mapped reads, counted across all
samples. We required that novel splice junctions also had
one of three intron motifs (GT/AG, GC/AG, AT/AC, each
considered relative to the forward strand; the total counts
of each motif are summarised in Supplementary Table S4,
with the vast majority of splice junctions having the canon-
ical GT/AG motif). While in principle this approach also
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Figure 1. Overview of the pipelines underlying MeDAS. All RNA-seq li-
braries included in MeDAS were quality-checked (FastQC) and cleaned
(Trimmomatic) then aligned to their respective reference genome using
STAR. This produces a BAM file and an associated set of reads aligned
to each splice junction (SJ) in each isoform. By combining alignment data
across splice junctions with a set of exon parts (subsets of exonic regions
according to their overlap among isoforms), we could obtain counts of in-
clusion and exclusion reads. These are, respectively, reads which overlap
a given exon (or part) and support its inclusion in a transcript, and those
which derive from split alignments and hence originate from transcripts
which do not contain it. Finally, we calculated the percent-spliced in (PSI)
value for each exon i based on the normalised counts n for both sets.

allows us to identify novel splice junctions, we considered
the primary purpose of MeDAS to be to support existing
annotations. As such, while we only report data for known
exons at present, by virtue of inclusion in MeDAS this may
be considered independent experimental corroboration of
their boundaries (this is useful because the annotations of
lesser-studied species are more likely to be automatically as-
signed).

As an index of alternative splicing, we calculated the per-
cent spliced-in (PSI) value for each exon as well as each
‘exon part’, as described in a previous study (42) and re-
capitulated here. To calculate PSI values, we first need to
define counting bins: intervals that correspond to exons or
parts thereof (as the same exonic region can have differ-
ent boundaries in different transcripts). An exon’s PSI esti-
mate is ultimately derived from the set of all its parts. These
‘exon parts’ are derived from each species’ reference annota-
tion of coding-transcripts using the R/Bioconductor pack-
age DEXSeq (43) and represent subsets of exonic regions
according to their overlap among isoforms (Figure 1). To
calculate PSI, we counted the number of inclusion reads
(IR), those which overlap a given exon (or part) and sup-
port its inclusion in a transcript, and exclusion reads (ER),
those which derive from split alignments and so originate
from transcripts which do not contain it, by using BED-
tools v2.23 (44). We then normalized both IRs and ERs to

account for differential coverage, as longer exons (or exon
parts) would otherwise have higher read counts than shorter
ones:

IRi,n = IRi

exoni length + mean read length − 1

ERi,n = ERi

mean read length − 1

where i indicates the exon (part) number and n the normal-
ized read count.

Finally, the PSI of exon i was calculated according to the
equation:

PSIi = IRi,n

IRi,n + ERi,n
%

Using this measure, constitutive exons will (assuming no
transcriptomic noise) have 100 PSI and alternative exons
will have 0 < PSI < 100. We further classified exonic parts
into four categories according to their AS level across all
samples: ‘not expressed’ (no PSI data available), ‘low inclu-
sion’ (PSI < 5), ‘alternatively spliced’ (5 ≤ PSI ≤ 95), or
‘constitutive’ (PSI > 95).

Using SUPPA2 in ‘local AS events’ mode (45), we com-
pared the coordinates of each exon part in each protein-
coding transcript to the reference annotation, and classified
each splicing event according to one or more AS types: skip-
ping exon (SE), retained intron (RI), alternative 5’ splice site
(A5), alternative 3′ splice site (A3), mutually exclusive exons
(MX), alternative first exon (AF), in which alternative first-
exon use results in mRNA isoforms with distinct 5′ UTRs,
and alternative last exon (AL), in which alternative use of
multiple polyadenylation sites results in distinct terminal ex-
ons.

To ensure comprehensive coverage of each species’ splic-
ing landscape, MeDAS provides PSI estimates for every in-
ternal exon of each multi-exonic gene, as well as the raw data
underlying these calculations: the inclusion and exclusion
reads within each counting interval, i.e. ‘exon part’. This is
because exon parts may themselves be of interest, many rep-
resenting regions co-ordinately spliced within multiple tran-
scripts (that is, protein domains).

USAGE AND EXAMPLES

Database interface and querying

The user interface of MeDAS is shown in Figure 2. To max-
imise utility and allow the user to set their own thresholds,
we present all data in MeDAS in an unfiltered form, except
for the results of the Spearman’s correlation and Kruskal–
Wallis test for which certain criteria were required prior to
their calculation (Table 1). Consequently, we recommend
that users cross-validate results from MeDAS as exon in-
clusion ratios––which determine whether an exon is con-
sidered alternatively spliced or not––are calculated based
on pre-existing genome annotations, which may be of vari-
able quality. We also recommend that users screen records
for quality and filter on the basis of, for example, a min-
imum number of inclusion and exclusion reads per exon.
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Figure 2. MeDAS user interface. Users can search for alternatively spliced exons by gene, transcript, and exon ID or sequence after selecting a species
and tissue, producing results as detailed in Table 1 (A). These tables can be downloaded directly. The results, including the sequence, can be visualised by
selecting the exon (B). MeDAS shows a heatmap of PSI plotted across each isoform and developmental stage, as well as boxplots of gene and transcript
expression, and PSI per exon.

Bulk downloads of alternative splice events, with their asso-
ciated PSI values, gene expression, and isoform abundance,
are available in tab-separated text, with PSI values for each
tissue and stage also available in bigWig format.

Example

MeDAS has a hierarchical structure according to (i) the
species name, (ii) organ, if available, (iii) gene ID, (iv)

transcript ID, (v) exon ID and (vi) exon sequence. Once
a specific gene, transcript or exon ID is selected, results
tables are shown and the genomic structure can be vi-
sualized. The contents of MeDAS are shown in Table 1
and illustrated in Figure 3 using the example of a 12 nu-
cleotide microexon in the mouse Kdm1a gene (which in
MeDAS has the ID ‘ENSMUSG00000036940:017’). The
distribution of PSI over time shows an inclusion peak be-
tween 0 and 3 days post-birth, as shown in (19), consistent
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Figure 3. Inclusion level of a conserved 12nt microexon within the developmentally-associated gene Kdm1a. The distribution of PSI over time shows an
inclusion peak around 28 days postnatal in opossum (A), between 0 and 3 days post-birth in mouse (B) and around the ‘newborn’ in human (C), respectively.

with its previously reported role in modulating neurite out-
growth by altering the availability of a phosphorylation site
(46,47). Similar patterns were observed in orthologous ex-
ons in human (ENSG00000004487:012) and opossum (EN-
SMODG00000016138:012), both of which show an inclu-
sion peak around the ‘newborn’ and ‘28 days postnatal’ de-
velopmental stages, respectively.

CONCLUSIONS

MeDAS provides a comprehensive survey of the tempo-
ral landscape of metazoan alternative splicing events, facil-
itating the identification of their putative regulatory roles
throughout development. The pipelines used to process
the data are available at https://github.com/LuChenLab/
MeDAS and can be applied to any other RNA-seq dataset.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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