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ABSTRACT

We present a computer method utilizing published values for base pairing
energies to compute the most energetically, favorable secondary structure of
an RNA from its primary nucleotide sequence. After listing all possible
double-helical regions, every pair of mutually incompatible regions (whose
nucleotides overlap) is examined to determine whether parts of those two
regions can be combined by branch migration to form a pair of compatible
new subregions which together are more stable than either of the original
regions separately. These subregions are added to the list of base pairing
regions which will compete to form the best overall structure. Then, a
'hyperstructure matrix' is generated, containing the unique topological
relationship between every pair of regions. We have shown that the best
structure can be chosen directly from this matrix, without the necessity of
creating and examining every possible secondary structure. We have included
the results from our solution of the 5S rRNA of the cyanobacterium Anacystis
nidulans as an example of our program's capabilities.

INTRODUCTION

Several authors (3,4,6,7,8,13) have published results of experiments

designed to measure the free energy contributions of certain configurations

of polynucleotides free in defined aqueous solution at room temperature.

Although there are many features of secondary structure whose effects on

free energy have not yet been measured (e.g., the sequence and base compo-

sition of single-stranded loops; the location of a base pair near to or far

from either end of a double-helical region; the shape and size of multiply

branched internal loops), enough data have compiled to reveal strong and

consistent patterns in the relationship between a given primary nucleotide

sequence and the energetic stability of the various partially base paired

forms it can assume. It is therefore desirable to apply the rules for

secondary structure formation, which have been suggested by the data gathered

thus far, to known RNA sequences of biological interest in order to test

their ability to explain known relationships between structure and function,

and to predict other such relationships. This sort of investigation may
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lead to hypotheses concerning the utilization of various features of

secondary structure for purposes of cellular genetic control, and may also

help to explain the curious absence of silent mutations in relatively long

stretches of some mRNA's (9).

Although the current rules for determining the free energy of a given

secondary structure are straightforward and well-defined (5,6,7.8,13), it is

very tedious to carry out the computations by hand even for relatively short

sequences such as tRNA's, and it is practically impossible for mRNA's.

Therefore, the aid of the computer has been sought to increase the speed and

precision of these calculations. Previous computer programs (1 ,*•, l^JS) have

been written to apply these rules within a framework of certain assumptions

and limitations. They have been shown to be capable of selecting structures

identical with or very similar to those obtained through experimental means

such as X-ray crystallography, especially in the case of various tRNA's (1).

While we have not found that previous computer programs make any serious

errors, we have devised an algori thm which takes -into account a greater

number of possible pairing interactions and which is not constrained by as

many limiting assumptions. Also, our algorithm approaches the solution in

a completely different way, utilizing certain topological properties of all

secondary structures (explained more fully in Methods), and thus is able to

choose the best secondary structure directly without actually having to

create and examine' every possible permutation. This innovation is perhaps

not very important when only small sequences are considered, since the number

of possible structures is also small, but it is much more significant when

mRNA's or larger molecules are examined because the number of possible

structures increases as an exponential function of sequence length.

No computer method thus far, including our own, makes allowances for

tertiary or quaternary nucleotide interactions, nor for the effects of

proteins which may bind to the polynucleotide sequence as it occurs in vivo.

Also, previous computer algorithms have been designed not to select any

structures which allow bases inside a hairpin loop to pair with bases outside

that loop. No serious attempt has ever been made either to prove or to

disprove the validity of these 'knotted' and 'pseudoknotted' structures

(described more fully in Methods and in Figure 2 ) , but we too have chosen

to ignore them.

Our algorithm has improved upon previous methods by including in its

analysis the possible interaction through branch migration of pairs of

overlapping double-helical regions. Because two different regions which
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have some of their nucleotides in common cannot both be members of the same

structure, it is possible that forcing the computer to choose either one

region or the other may cause it to miss a more energetically stable 'hybrid'

structure containing a pair of nonoverlapping subregions formed from

fragments of the original two overlapping regions. Previous computer methods

have not considered these kinds of interactions. Our program examines all

pairs of overlapping regions, choosing in each case the best pair of sub-

regions if they are energetically favored.

METHODS

A. Background and Definitions

As will be described in a later section, we have found a logical system

for describing certain topological relationships among double-helical regions

of base pairing which facilitates the search for the most stable structure.

In the following paragraphs the terms needed to describe these relationships

are defined.

Members of a single-stranded polynucleotide sequence (bases) can be

totally ordered by giving each one a base number consecutively in ascending

order starting with the 5' end of the molecule. Thus for any two bases

M and N, the statement M < N means that M is closer to the 5' end of the

molecule than N.

Two single-stranded sequences (of the same length) which can combine to

form an uninterrupted double helix involving GC, AU, or internal GU base

pairs constitute a region. For the sake of the nomenclature, let's call a

typical region A. Every region partitions the polynucleotide sequence into

exactly five distinct subsequences consisting of two halfregions, one sequence

of included bases, and two sequences of excluded bases. The 5' halfregion

(designated A5) is base paired to a complementary and antiparallel

3' halfregion (designated A3), which together form the region A. All of

the nucleotides which lie between A5 and A3 are the included bases of A, and

would form a hairpin loop if left completely unpaired. The remaining

nucleotides in the molecule are divided into two groups: those which are

more 5' than A5 are the 5' excluded bases, and those which are more 3' than

A3 are the 3' excluded bases. The diagram in Figure 1 illustrates these

relationships.

Associated with each region A there are three independent values which

together uniquely determine that region: 1) A5' is the base number of the

5' end of A5; 2) A3' is the base number of the 3' end of A3; and 3) AL is
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Figure 1. Terminology associated with regions and loops. TOP: Diagram of a
typical region of basepai ring, with A51 = *t and A3' = 23, a length of 6 base-
pairs, and a stabilizing energy of -10-3 kcal/mole. The pair-of-pairs stacking
energies are shown between each of the basepairs. BOTTOM: Schematic diagrams
of the secondary structure of Structures 1 and 2 (Figure 6 ) , with each loop
labelled according to its type: H = hairpin loop; I = internal loop;
B = bulge loop; M = multiply branched loop. Bases in double-helical regions
are shown as solid circles, while single-stranded bases are open circles.
Base stacking is represented by a small dot between basepairs.

the length of each of the halfregions. From these numbers, several other

parameters of region A can be derived.

Another property of every region is that the sum of the base numbers

of any base pair in the region (in particular A5' + A 3 ' ) equals a unique
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value for that region, called its group number (designated AG for region A ) .

The regions are only partially ordered by their group numbers, since it is

possible for two different regions to have the same group number. These

group numbers are used in the branch migration part of the program, which is

discussed below.

For any pair of regions A and B, region A overlaps region B if and only

if there is at least one base which is a member of both regions. Otherwise

A and B are nonoverlapping regions. There are exactly three possible mutually

exclusive topological relationships between any two nonoverlapping regions

A and B (named such that A5 < B5): 1) A includes B (A5< B5 < B3< A3) when all

of the bases in each of the halfregions of B (B5 and B3) are also included

bases of A; 2) A excludes B (A5< A3 < B5 <B3) when all of the bases in B5

and 83 are also 3' excluded bases of A; 3) A knots B (A5< B5< A3 < B3) when

the bases in B5 are included bases of A, and those in 83 are 3' excluded

bases of A. Figure 2 illustrates these relationships between pairs of

regions, and distinguishes 'true knots' from 'pseudoknots'.

A structure is a set of regions such that no region overlaps any other

region in the structure. A structure containing at least one pair of regions

which knot each other is a knotted structure, while one which has no knots

is an orthodox structure. Thus, it follows from the definitions that for

every pair of regions A and B (with A5 < B5) in an orthodox structure,

either A includes B or A excludes B.

Associated with the base sequence of any single-stranded molecule is a

unique set of all possible regions of double-helical base pairing. Every

possible structure is a subset of this region set, but not every subset is

a structure. The regions in the region set can be partially ordered by

inclusion and also independently partially ordered by exclusion. Our method

of searching for the most stable structure involves performing logical

manipulations on the complete set of inclusion and exclusion relationships

between all possible pairs of regions. We call this set a hyperstructure.

Examples of hyperstructures will be given in detail below (and in Figure k) ,

where it will be demonstrated that every possible structure is identified

with a unique 'pathway' through the hyperstructure. A hyperstructure which

contains only inclusion relations between its member regions is called a

simple inclusion hyperstructure, while one which contains only exclusion

relations is a simple exclusion hyperstructure. Most hyperstructures contain

both inclusion and exclusion relations, and are called complex hyperstructures.

The problem of selecting the best structure is thus reduced to selecting

3369

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/5/9/3365/2380906 by guest on 25 April 2024



Nucleic Acids Research

Figure 2. Perspective drawings and schematic representations of sequences of
haifregions, indicating the three possible topological relationships between
any two double-helicai regions whose member nucleotides do not overlap. These
relationships are defined to be antisymmetric (e.g., A includes B implies that
B does not include A ) , and are always written so that A5 < B5 to preserve this
directionality. (a) Region A includes region B (or B is included by A) •
(b) Region A excludes region B (or B is excluded by A)"! Cc5Region A knots
region B (or B i s knotted by A) . The diagram at the left in (c) is a 'true
knot', in which the excluded bases of one region pass through the hairpin loop
of the other region to form hydrogen bonds. The diagram at the right is a
'pseudoknot', in which the hydrogen bonds of region B are formed merely by
twisting of the single strands without actually passing through the loop.
Perhaps pseudoknots should be considered tertiary interactions involving the
folding of an already formed secondary structure. True knots, however, would
present an especially difficult problem to a ribosome attempting to translate
such a knotted region!

the pathway through the hyperstructure which has the lowest energy. We have

shown that it is not necessary to actually create and examine every possible

structure in order to choose the best one. Instead, it is adequate to choose
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the best pathway locally in the neighborhood of each region in the hyper-

structure, and to use this information to set local pathway indicators

^according to rules we will describe below) which show the energy gained by

choice of each path. It is then possible to begin at the 'initial side1 of

the hyperstructure and to follow the best path immediately by inspection of

these previously set local indicators until that path ends at the 'terminal

side' of the hyperstructure. The set of regions encountered while traversing

that pathway constitutes the best predicted structure. In a similar manner,

other pathways can be followed to generate less favorable structures.

B. Choosing Regions of Uninterrupted Double-Helical Base Pairing

Every base in the primary sequence is compared with every other base to

determine whether they can form a valid hydrogen-bonding base pair. In

addition to the two classical Watson-Crick base pairs (All and GC), the GU pair

is allowed whenever it is not the first or last base pair in a region. Also,

regions which enclose relatively small hairpin loops (consisting of fewer

than six bases) are examined to determine whether a more energetically

favorable configuration of region + loop can be formed by opening one or more

base pairs adjacent to the hairpin loop. Usually this shorter region replaces

the original region, but in some cases it must be included in the complete

list of regions along with the first one. This process of opening hairpins

to achieve the most .energetically favorable configuration always ensures that

no region can enclose a hairpin loop of fewer than three bases, and in rare

cases results in the elimination of all base pairs in a region because the

destabilizing energy of its hairpin loop totally overwhelms the stabilizing

energy of the double-helical region.

All of these primary regions (consisting of two or more consecutive

basepairs) are printed out, and the user then has the option either to keep

all of them or to select only certain ones to participate in forming the best

overall structure. This selection process may be repeated as often as desired,

and any user-defined functions of the locations, lengths, or energies of the

regions (or any combination of these parameters) may be employed to determine

which regions are to be kept. Thus it is possible to obtain a partial solution

for a very large RNA sequence whose complete solution would require prohibitive

amounts of time or space for computation.

C. Creating Pairs of New Subregions by Branch Migration

Two regions which overlap cannot both be members of the same structure.

But often a pair of nonoverlapping subregions (each of which is a subsequence
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of one of the original pair of overlapping regions) will be more stable

together than either member of the original pair taken separately. For any

pair of overlapping regions A and B (named such that AG > BG) there are exactly

three independent elementary overlap relations: 1) 5-5 overlap, where A5

overlaps B5; 2) 3-5 overlap, where B3 overlaps AS; and 3) 3-3 overlap, where

A3 overlaps B3. One, two, or even all three of the overlap relations may be

present in some overlapping region pairs, but because they combine indepen-

dently each elementary overlap can be solved separately in the more complex

cases. Figure 3 shows an example of a pair of regions A and B which are

related by 5-5 overlap. In every elementary overlap, the two halfregions which

have nucleotides in common interact to form the common strand, while the

interfering strand is formed from the other two halfregions which are separated

by a sequence of bases called the overlap loop.

Once the general form of this configuration has been established, the

position of the overlap loop is systematically varied with respect to the

common strand. In each position, the energy of the entire configuration is

calculated, including an estimate (adjustable by the user) of the destabilizing

energy of the overlap loop. Of course, it is not possible to determine the

exact value of this destabilizing influence without knowing in advance the most

stable base pairing configuration of the nucleotide sequence of this loop.

No attempt is made to evaluate this in the branch migration portion of the

program because the purpose of branch migration is not to choose the best

ultimate structure (which is done later in the program) but is to select

subregions which may compete to form that structure.

The pair of subregions which form the best configuration are saved and

added to the complete list of base pairing regions if the energy of the entire

configuration is more stable (by a user-specified amount called the 'threshold

for branch migration1) than that of the most energetic member of the original

pair of regions. Before execution of the branch migration portion of the

program, the user is requested to set the value of this threshold, whose

purpose is to adjust the stringency of selection of new subregions. For large

sequences where only a partial solution is carried out, we have found that

it increases the efficiency of the program to set the threshold at a value

comparable to the energy of the least stable region retained from the primary

region table.

Of course, branch migration could be avoided simply by including in the

region table every possible subregion (in addition to the larger regions which

contain them). However, for every region containing N basepairs, there are
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Figure 3: Example of branch migration process for 5~5 overlap. TOP: The 51

and 31 endpoints of regions A and B, their lengths, and energies. Region A's
group number AG is 69, while BG is 46. MIDDLE: Diagram of nucleotides in
conflict, showing the A5-B5 common strand containing five overlapping bases,
and the other two halfregions A3 and B3- Some of the base numbers are shown,
and each pair-of-pairs energy is indicated. BOTTOM: The optimum configuration
with a total energy of -17-5 kcal/mole (including the +3.0 kcal/mole estimate
for the overlap bulge loop) is formed from a four basepair subregion of A and
a seven basepair subregion of B, separated by a 23 base overlap loop. Base
stacking occurs across the bulge loop, but would not occur across an internal
loop. Thus the energy estimate we have used for an internal overlap loop is
+1.0 kcal/mole. The -17-5 kcal/mole represents a 5-9 kcal/mole improvement
over the -11.6 kcal/mole for region A alone.

i(N2-N)-1 additional subregions, and most of those subregions will not

participate in the final structures because the larger regions containing them

will almost always compete better energetically. For any given nucleotide

sequence, the cost of a solution increases roughly as the square (R2) of the

number of regions (R) considered. Thus, our approach greatly reduces the
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cost of the calculation by eliminating from consideration a large number of

subregions which can be shown to have no chance of occurring in the most

stable overall structures.

D. Simple Hyperstructures

Because we have chosen not to consider knotted structures, it follows

that the secondary structure of the hairpin loop included by any region can

be solved independently of the secondary structure of the 5' and 3' excluded

bases associated with that region. This is the fundamental theorem of the

logical system we have devised.

Since the inclusion and exclusion relations each partially order the

set of regions, the relations between some pairs of regions can be derived by

transitivity theorems (2) using another region which lies 'between' them in

the hyperstructure. For example, for any three regions A, 8, and C, If A

includes B and B includes C, then A must include C. The same sort of reasoning

applies to exclusion relations. Thus, the entire set of relations between all

region pairs can be derived from a smaller subset of local relations between

region pairs which are especially 'close together' in the hyperstructure.

Because simple hyperstructures are partially ordered sets, we can define

a pathway through the hyperstructure as any set of regions, totally ordered

by local relations, which begins at an initial element and ends at a terminal

element of the hyperstructure. An ini tial element is a region which has no

other regions 'before' it, and a terminal element is a region with no other

regions 'after' it. Before and after, of course, have to do with inclusion

and exclusion relations which define order and direction in the hyperstructure.

Figure *tA shows a schematic diagram of a simple exclusion hyperstructure

containing seven regions which are interconnected by eight local exclusion

relations symbolized by arrows. Every pathway through this hyperstructure is

a valid orthodox structure for the corresponding molecule (although not

necessarily the best structure). Note that by following only the pathways

designated in the hyperstructure, the computer would never postulate any

structures containing both regions B and C, because there is no unidirectional

exclusion pathway which contains them. This is a useful property of the

hyperstructures we define here, since any structure containing both of those

regions would be knotted. Thus, it can be shown to be a general property of

all simple hyperstructures that, by choosing only those pathways which conform

to the transitivity theorems, all knotted structures and all 'impossible'

structures (where some regions overlap) are automatically eliminated from

consideration.
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E-. Choosing the Energetically Most Favorable Structure

If the base pairing energy of every region in a simple hyperstructure

is known, then the best pathway through that hyperstructure can be selected

by applying mathematical induction to the relations between the member regions.

Because simple hyperstructures are partially ordered sets, there is always

at least one terminal element (2) which, by definition, does not have any

double-helical regions 'after' it. The terminal elements are thus the starting

points for the induction process, since the secondary structure 'after' them

is already known by definition. For simple inclusion hyperstructures the

portions of the molecule 'after' the terminal regions are the hairpin loops

associated with these regions, while for simple exclusion hyperstructures

they are the 3' excluded bases of these regions.

Once the secondary structure (and the associated energy) of any portion

of the molecule is known, each cycle of the induction process involves

examining all of the regions connected by local relations to those known

portions, and calculating the energy of the secondary structure formed by

adding each of the new regions to the already computed secondary structure.

Every step in this inductive process increases the length of each

subpathway (which started out simply as a terminal element) until it becomes

a complete pathway by ending at an initial element. Because the computation

proceeds backward along the local relations, much computing time is saved by

calculating the energy of each subpathway only once, and then including its

energy in the computation later on if a new (longer) subpathway contains the

old one.

Whenever there are several subpathways leading away from the same region,

the computer sets a local pathway indicator designating the subpathway with

the best energy so that this information does not have to be recomputed at

the time structures are actually built.

The energies are computed using the data in references 6-9. Our choices

of how best to apply these data have been summarized by Saiser (reference 9,

see the legend to Figure 3 of that paper). The computer program has used

these criteria for calculating energies, with one exception: because there

are no biochemical data on the appropriate energy contributions of multiply

branched loops (loops connecting three or more stems, described in Figure 1),

both our program and the Pipas and McMahon program (1) assign zero energy to

all such loops regardless of shape, size, or nucleotide composition. The

destabilizing effects of these loops are normally taken into account by hand

according to the criteria described by Salser (9) once the computer has
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Figure t̂. Three sets of schematic diagrams, each consisting of a polynucleotide

sequence with labelled halfregions, the hyperstructure corresponding to this

sequence, and a set of all the possible structures which can be derived from

the given configuration. In each polynucleotide sequence, pairs of halfregions

which hydrogen bond to form double-helical regions have been connected by lines

to give some idea of how the molecule would have to fold to form these regions.
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In the drawings of hyperstructures, the solid lines represent exclusion
relations, while the dotted lines represent inclusion relations. Molecular
structures are shown schematically with hairpins and internal loops represented
as circles, 2nd with helical regions represented as heavy lines with the name
of the region immediately adjacent.

(a) Diagram of a polynucleotide sequence containing seven regions named A
through G. Because no region includes another in this sequence, their mutual
interrelationships can be represented by the simple exclusion hyperstructure
to the left, in which eight local exclusion relations (sol id arrows) partial ly
order the regions in the hyperstructure from the 51 end of the molecule to the
31 end. Thus, according to the diagram, all of the bases of region A are more
5' than those in region 8. Since B excludes E, it is also known by transitivity
that A is more 5' than E. The initial element is A, and the terminal elements
are D, G, and F. There are five possible pathways (always following local
exclusion-relations) which connect the initial elements to the terminal
elements: 1) ABD; 2) ACG; 3) ACF; k) ABEG; 5) ABEF. Each of these pathways
corresponds to one of the structures shown to the right.

(b) Diagram of a polynucleotide sequence with eight regions named Q through X.
Because there are no exclusion relations among these regions, they can be
represented by the simple inclusion hyperstructure shown to the left, in which
nine local inclusion relations (dotted arrows) partially order the regions in
the hyperstructure from the external portions of the molecule (near the 5' and
31 ends) to the internal portions. Thus, all of the bases in region T and in
the hairpin loop associated with region T are internal to (i.e., included bases
of) region R. Since T includes W, it is known by transitivity that R includes
W. The initial elements are Q and R, while the terminal elements are V, W,
and X. There are seven possible pathways (following local inclusion relations)
which connect initial elements to terminal elements: 1) RUX; 2) QSV; 3) QSTW;
*») QSTX; 5) QUX; 6) RTW; 7) RTX. Each pathway corresponds to a structure.

(c) Diagram of a polynucleotide sequence with seven regions named H through N.
Because both inclusion and exclusion relations exist among these regions, they
cannot be represented by any simple hyperstructure, but instead correspond to
the complex hyperstructure shown to the left. Seven local exclusion relations
(solid arrows) partially order the regions from the 5' end of the molecule to
the 3' end. Also, six local inclusion relations (dotted arrows) independently
partially order the regions from external portions of the molecule to internal
portions. Transitivity can be applied to complex hyperstructures in the same
manner as with simple hyperstructures. The initial exclusion elements are
regions J, I, and H, while the terminal exclusion elements are H and N. (Since
region H is not related by exclusion to any of the regions in this hyperstruc-
ture, it is both an initial and a terminal exclusion element.) The initial
inclusion elements are regions H and N, while the terminal inclusion elements
are J, K, M, and N. Six possible structures can be derived from this configu-
ration: 1) HIJK; 2) HJLM; 3) H U M ; 4) IJKN; 5) JLMN; 6) IJMN.

calculated and drawn the secondary structures.

Thus, after all of the possible pathways (and their associated energies)

in the hyperstructure have been calculated, the computer examines all of the

initial elements and selects the one whose pathway has the best energy. Then

by stepping forward along the local relations in the hyperstructure, always

choosing the subpathway leading away from each region in accordance with the
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previously set local indicators, the set of regions which form the most

energetically favorable structure is determined.

For short RNA sequences the number of pathways in the hyperstructure

would be small, and it would probably be equally efficient simply to create

and examine all of the possible secondary structures and to compare their

energies directly. But the number of possible structures increases as an

exponential function (2R) of the number of regions (R), and because the

computation required by our algorithm increases approximately as the square

(R2) of the number of regions, it is clear that for large values of R (as

would be encountered in the solution of mRNA's) the method of creating and

examining every possible permutation would require much more computer time

to achieve the same result.

Another feature of our algorithm is that it has been designed not to

generate substructures, which are almost always less stable than their

corresponding structures, and which can be derived from those structures by

opening one or more individual basepairs (or entire regions) in the structure.

For every structure containing N basepairs, there are 2N different possible

substructures that can be formed. Since these kinds of computations are

easily done by hand once the computer has calculated and drawn the best

predicted structures, we felt that it would be inefficient to have the program

also consider such a large number of substructures. This has resulted in a

substantial increase in the relative morphological diversity of the set of

predicted structures which can be generated by our program within a limited

amount of computer time.

F. Complex Hyperstructures

As discussed abov,e, the hyperstructures corresponding to most sequences

of halfregions contain both exclusion and inclusion relations among their

member regions, and thus by definition are complex. Figure kC shows a

schematic diagram of a complex hyperstructure containing seven regions named

H through M. Both of the transitivity theorems can be applied to this

complex hyperstructure: 1) J excludes K and K excludes N implies that J

excludes N; 2) H includes I and I includes K implies that H includes K.

There are two additional theorems which apply only to complex hyperstructures:

3) J excludes L and L includes M implies that J excludes M; k) I includes K

and I excludes N implies that K excludes N.

Although complex hyperstructures are solved by an inductive method which

is analogous to the backward scanning of simple hyperstructures, the algorithm

used by the computer is of necessity somewhat more complicated and involves
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the generation of a simple exclusion sub-hyperstructure for every region in

the complex hyperstructure. These sub-hyperstructures are interrelated only

Jay inclusion, and therefore they are themselves 'elements' of a simple

inclusion hyperstructure. Thus, using the theorems described above, every

complex hyperstructure can be made equivalent to some heirarchy of simple

hyperstructures, and having done this, the solution is obtained in the same

way as with ordinary simple hyperstructures.

RESULTS

To illustrate the capabilities of our program, we have used it to study

the possible secondary structures of the 120 nucleotide sequence (10) of the

5S ribosomal RNA of the cyanobacterium Anacystis nidulans. Other sequences

have been analyzed by our program, in particular the complete messenger RNA

of rabbit alpha hemoglobin, the results of which are discussed elsewhere (11).

The data shown in Figures 5 and 6 represent a 'complete' solution for

this sequence, meaning that all 169 of the primary regions and all 25 of the

subregions generated by branch migration were saved (for a total of 194

regions consisting of two or more basepairs) and allowed to compete to form

the best structures. Because the CPU time (and therefore the cost of com-

puting) required by our algorithm increases roughly as the fifth power of

sequence length, it becomes impractical to attempt a complete solution for

sequences greater than about 250-300 nucleotides. In such cases (for example

with rabbit alpha hemoglobin messenger RNA, which produced 3686 primary base

pairing regions), many of the less energetic regions are not included in the

first cycle of structure building. Then, two or three long and strong regions

which are found to be common to many of the best structures generated from

this first cycle are used to partition the nucleotide sequence into domains

consisting of the included bases of these regions. Incorporated into our

program is a routine which chooses, according to parameters supplied by the

user, all the regions whose halfregions are contained within any of the

specified domains. A complete solution is then easily obtained for these

domains independently, and the regions participating in the best structures

generated from these subsequences can then be added to the set of regions from

the first attempt, thus generating a more refined overall structure.

This method will arrive at the most stable structure if the first cycle

is able to predict two or three strong regions which are actually present in

the best structure. However, there is always some chance that even the best

regions from a partial solution will not occur in the complete solution, so

that the correct convergence will not be obtained. To guard against this, the
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user may break the sequence into smaller domains in several alternative ways

and ascertain which gives the best structure after the next cycle of

refinement.

Our program has been designed to provide great flexibility by permitting

the user to use a variety of criteria for the selection of regions. The user

may then judge for himself whether the kinds of structures vary significantly

as a function of those criteria. Previous computer algorithms have not

provided this kind of flexibility, for example the program written by Pipas and

McMahon (1) was designed to be capable of a complete solution only for

sequences that generate 240 or fewer primary regions consisting of three or

more basepairs (no branch migration is carried out), which corresponds to a

sequence length of about 150 nucleotides. Although their program is able to

give partial solutions for larger sequences, it was written to save only the

240 longest regions in these cases, independent of their energies, and has no

provisions for user modification of these selection criteria. Our algorithm

is limited only by the size of the computer's memory and by the money which the

user is willing to spend for computing time, and thus in principle is capable

of giving a complete solution for a molecule of any size. For the rabbit

alpha hemoglobin messenger, the partial solution we obtained with the Pipas

and McMahon program yielded a best structure of -159-6 kcal/mole, while the

most energetic structure from our own partial solution had an energy of -255.6

kcal/mole, representing a 60% improvement. (Upon correction for the energy

of multi-branch loops, both values decrease by a similar amount. Our adjusted

value is -224.6 kcal/mole (11)).

Figures 5 and 6 show the final output from the complete solution for the

5S rRNA of Anacystis nidulans. Many intermediate results printed by the

computer have not been included here, consisting of the table of 169 primary

regions, the 25 regions generated by branch migration, the final set of 194

regions, and some information concerning the specific pathways the computer

followed to compute the best structures. Once the computer had carried out

the computations to assign energies to the subpathways in the hyperstructure

(by induction, travelling backward along the local relations and setting the

local pathway indicators), the energy of the best structure was then known

and printed out. However the actual structure (set of regions) corresponding

to that energy was not yet known. After receiving input from the user which

indicated how many structures should be computed (in this case 30 were

requested), the program proceeded (following the previously set local pathway

indicators) to generate the 30 best structures. When this was completed, a
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Figure 5. Output from the computer program describing the 30 best predicted
structures, with regions corresponding to the Fox and Woese structure and to
our Structure 2 emphasized by heavy arrows, and with regions important to our
Structure 1 highlighted by thin arrows. TOP: Table of the ̂ 6 double-helical
regions which actually participate in the 30 predicted structures. BOTTOM: The
30 X k6 matrix, in which the rank of each structure and the energy assigned to
it by the computer have been listed down the left side, while the region
numbers (written vertically, and corresponding to the table above) have been
listed across the top of the matrix. The asterisks indicate which regions are
members of each of the 30 predicted structures. In accordance with Saiser (9)
the free energy value for each of the structures has been adjusted by hand
to take into account the destabilizing influences of multi-branch loops (which
are described in the text), and these new energies have been listed along the
right side of the matrix with their new overall ranks among the 30 structures.
Note that Structures 17 and m (whose adjusted ranks are now second and fourth)
are noteworthy, since they are unbranched structures morphologically quite
different from those drawn in Figure 6.

table of the ̂ 6 regions which actually participate In the 30 best structures

was printed, and a 30 X ^6 matrix showing which of the Ud regions are members

of each of the 30 predicted structures was also printed (Figure 5). At this

3381

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/5/9/3365/2380906 by guest on 25 April 2024



Nucleic Acids Research

IIOBIUM u m « « u m

II
11
77
M
17
t»
$•

1> • It. (
• 0
100
70
IK
t>
t«

n n tnni *ii.i

•» i' i* u no

HI.
m .

c»
ca

«c
• J
ca

» • • »
4» « 41
rj ca sc
<c «c ca
ac i » c

c 4 c »
ac c ca
cc > ca
oi ca sc

4 a 49 ac
i f ac a a
a c t «<
a v v
< c ac
4 4 Hi
« I I

4 i
4 C
4

M 117 17«

» 1» 171

IW

i ii tittoi "u.«

•• >' u in

•-
71.
1*.
It.
11.
10.
it.

II M
77 100
11 It
11 *•
TO 10T
IT II

% n.i

c-r

178

Figure 6. Output from the structure drawing routines of our computer program,

and schematic diagrams of the canonical form of each structure. LEFT:

Structure 1 exactly as drawn by the computer. CENTER: Structure 2, in which

the unpaired bases that were not drawn by the program have been added by hand,

along with region numbers (from table above) in bold print. RIGHT: An extra

copy of Structure 2 with information added describing a possible mechanism for

morphological interconversion between structures similar to 1 and 2. Note

that when the destabilizing effects of multi-branched loops were taken into

account by hand (according to Salser (9)), Structure 2 in fact became the best

overall with an energy of -kZ.Z kcal/mole, while Structure 1 received -^7-7

kcal/mole. Refer to the text for a more complete description of this figure.

3382

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/5/9/3365/2380906 by guest on 25 April 2024



Nucleic Acids Research

point, the computer asked for a list of the structures to be drawn. Because

many computed structures are often similar to each other except perhaps for

one or two different regions, the user need not wait to see all of them drawn

(especially if several hundred structures were requested), but may inspect

the displayed matrix to select the ones which are most diverse in morphology.

Although in this case all of the 30 structures were drawn by the computer,

only Structures 1 and 2 have been included in Figure 6 because of space

Iimi tations.

The energy of each structure and its rank among all possible structures

(not including substructures) are shown in Figure 6, and a region table for

each structure is given. Every region in the region table has five parameters:

1) a region number 'REG' assigned in ascending order of the A51 base numbers;

2) the base number (A5' in Figure 1) of the most 51 nucleotide in the region;

3) the base number of the most 3' base (A31 in Figure 1); k) the length 'LN'

of the region in basepairs; and 5) the stabilizing energy 'ENG' in kcal/mole.

Below each region table the computer has drawn schematic representations

of the physical morphology of the folded RNA molecule. The program also has

the capability of drawing much larger structures, such as those generated from

mRNA sequences. Because it is difficult to represent these structures on

paper in a reasonably compact form, some artistic license was taken in our

design of the routines used by the computer in drawing structures. All double-

helical regions are oriented vertically with the external ends toward the top

of the page and the internal ends toward the bottom. Hairpin loops of any

size are drawn in their entirety, but internal loops whose unpaired bases are

not distributed equally on each side had to be drawn with gaps left on the

short side. Three of these gaps have been filled in by hand with dotted lines

in Structure 2 (Figure 6). Also, the single stranded sequences at the extreme

5' and 3' ends of the molecule are not drawn by the computer, but can easily

be supplied by hand.

Below each drawing is a matrix of numbers and asterisks, which is called

the canonical form of the structure. (For every set of regions which comprise

an orthodox structure, there is a unique canonical form which is topologically

equivalent to the molecular structure itself, and which permits display of

these structures in a graphically consistent manner.) The numbers are region

numbers from the table above, and make it easy to associate the double-helical

regions in the drawing with their parameters in the region table. The

asterisks, both in the drawings and in the canonical forms, indicate the

presence of a multiply branched loop whose single stranded bases may not have
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been drawn due to artistic license. By mapping the region numbers from the

canonical form onto the drawn structure, the base numbers of the ends of the

regions bordering on the multi-branch loop can be determined and the missing

bases can easily be supplied by hand. All six of the missing bases in

Structure 2 have been added by hand in larger print and joined to the rest of

the structure by dotted lines. Also, the region numbers have been added in

bold print. Below the canonical forms, schematic diagrams of the topological

shape of the predicted structure, similar to the ones in Figure 4 (except

upside down, to agree with the orientation of the drawings), have also been

added.

DISCUSSION

Fox and Woese (12) performed a comparative analysis on ten complete 5S

rRNA sequences from various species of procaryotes and eucaryotes. Their

results showed that four strong double-helical regions were common to all

procaryotic sequences studied, and that three of these four were also common

to eucaryotic sequences. These regions are all present in Structure 2, and

have been emphasized by vertical bars (Figure 6 ) . According to the Fox and

Woese nomenclature, our region number 6 is the molecular stalk, 61 is the

tuned hel ix. 91 is the common arm base, and 17*t is the procaryotic loop.

Our program was not constrained in any way that might artificially favor the

prediction of such a structure, and the fact that many of our top 30 structures

are similar to the Fox and Woese structure is quite remarkable. In fact,

analysis of Structure 1 shows that it contains a large multiply branched loop

of 17 bases, while the corresponding loop in Structure 2 contains only 7 bases.

Because there are no biochemical data on the energy contributions of multiply

branched loops, both the Pipas and McMahon program (1) and our own program

have assigned zero energy to all such loops regardless of their shape, size, or

nucleotide composition. However, like ordinary internal loops, these single

stranded portions of the molecule are expected to contribute a destabilizing

energy whose magnitude increases with the length of the loop. Thus, when these

contributions were taken into account by hand in accordance with Salser (9),

Structure 2 became the best overall, with an energy of -48.8 kcal/mole, which

is 1.1 kcal/mole more stable than the -hj.1 kcal/mole for Structure 1. The

extreme right hand column of Figure 5 shows these adjusted energies and ranks

for the 30 computed structures. It should be emphasized that we do not regard

the top position in this energy list as enormously significant, because such

a molecule will not adopt a 'single most stable' configuration, but instead

will show a distribution among a number of different conformations of very
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similar stabilities, some of which may be freely interchanging in a rapid

equilibrium, while others may not. Thus many of these 30 predicted structures

are likely to have important biological significance.

In accordance with this, Fox and Woese discuss the biochemical characteri-

zation of two forms of the E• co1i 5S rRNA: the native form, which is active

in reconstitut ion of 50S ribosome subunits, and the B form which is inactive.

(There is also an intermediate A form.) These studies suggest that the tuned

helix becomes uncoiled during the transition from the native form to the B

form. In Structure 1, the tuned helix and the common arm base are not coiled,

and the single long arm (from Structure 2) consisting of regions 51, 61, 86,

and 91 has been replaced by two shorter arms containing regions 40, 62, 117,

126, and 142. In the diagram to the right in Figure 6, a possible mechanism

for this conformational change is shown. Since regions 174 and 178 (including

the procaryotic loop) are common to both structures, they have been removed

from this extra copy of Structure 2 to allow space for the arrows which

indicate the single-stranded sequences that can pair to form the regions in

Structure 1. By undergoing a 180 degree rotation about the axis shown, the

lower half of the long arm (regions 86 and 91) comes into register with the

multi-branch loop near the molecular stalk. In addition, all of the halfregion

pairs corresponding to Structure 1 1ine up and the internal loop between

regions 61 and 86 (the axis of rotation) can transform into the two hairpin

loops of regions 62 and 142. This configuration is a very frequent alternative

in the 30 X 46 matrix (Figure 5) to shapes like Structure 2. In fact, all

of the predicted structures which contain region 62 also contain 40, and many

of them also contain 117, 126, and 142.

In support of this hypothetical mechanism for conformational change is

the fact that all six of the procaryotic species discussed by Fox and Woese

(E. coli, A. nidulans, Photo. 8265, P. fluorescens, B. (negaterium, and

B. stearothermophilus) contain a region equivalent to 86 in Structure 2

whose sequence is conserved as CAC paired to GUG (except for a G to II

transversion in B. megateriurn) and that even the lengths and part of the

sequence of the single-stranded loops adjacent to region 86 are conserved

among these six species (except for P. fluorescens, which suffered a deletion

of the base corresponding to 26 in Structure 2.

Our computer program was written in the APL Language, and two versions

exist, one which has been implemented on the APL*PLUS system running on an

IBM 360/91 at UCLA, and another which was implemented on the VS-APL system

running on an IBM 370/158 computer at UCSF. The program was debugged and
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its accuracy was verified by obtaining complete solutions for relatively short

(70-100 nucleotide) RNA sequences both from our program and from the Pipas

and McMahon program (1), and comparing the predicted structures. We are

indebted to Pipas and McMahon for the use of their program and for advice

concerning its use, without which the debugging of our own program would

have been exceedingly more difficult. Copies of our program will be made

available by the first author upon written request.
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