Polyoma virus. The early region and its T-antigens

E.Soeda*, J.R.Arrand⁺ and Beverly E.Griffin^{+†}

⁺Imperial Cancer Research Fund, Lincoln's Inn Fields, London, UK

Received 14 August 1979

ABSTRACT

The DNA sequence of the early coding region of polyoma virus is presented. It consists of 2739 nucleotides. The sequence predicts that more than one reading frame can be used to code for the three known polyoma virus early proteins (designated small, middle and large T-antigens). From the DNA sequence, the 'splicing' signals used in the processing of viral RNA to functional messenger RNAs can be predicted, as well as the sizes and sequences of the three proteins. Other unusual aspects of the DNA sequence are noted. Comparisons are made between the DNA sequences and the predicted amino acid sequences of the respective large T-antigens of polyoma virus and the related virus Simian Virus (SV) 40.

INTRODUCTION

The DNA tumour virus, polyoma, appears to code for at least three proteins which are synthesized early after infection, and which have been designated small, middle and large tumour (T) antigens. The best characterised of the three is large Tantigen, probably because its existence has been known for longest. Even so, it was only two years ago that large T-antigen was established as being at least in part, and probably wholly, virally coded (1). Because of its many functions, and the nature of these functions, it is a very interesting protein. It appears to be required for viral DNA replication, and for the initiation of cellular transformation. It may also stimulate replication of the host DNA and exercise control over viral transcription (for review, see ref. 2). These functions have been identified, but there may well be other, as yet unknown, functions associated with this protein. Unfortunately, it is present in lytically infected and transformed cells in such small amounts that it has not yet been isolated in sufficient quantity or with sufficient purity for further studies. In many of its functions, it is similar to the large T-antigen of the related virus, simian virus 40. The two antigens apparently differ, however, in that whereas in SV40, expression of large T- antigen is probably required for the maintenance of the transformed state of cells, a functional polyoma virus large T-antigen does not seem essential for maintenance in all cell lines (2, 3). In many of their functions, both proteins appear to resemble the somewhat smaller (60K) cistron A protein of the bacteriophage ØX 174 for which roles as varied as initiation of replication and strand separation and ligation have been identified (4).

The biological activities of the more recently isolated small and middle Tantigens of polyoma virus have not yet been identified, although middle T-antigen is known to be associated with membranes (5) and may be associated with a protein kinase activity (6). (There is no known SV40-coding equivalent of polyoma virus middle Tantigen). Studies with host-range transforming mutants (hr-t) suggest, however, that one or both of the polyoma virus proteins must play a role in transformation (7). The properties of several recently isolated early polyoma virus mutants with altered transformation characteristics support the premise that a functional middle T-antigen may be necessary for the full expression of transformation (8, 9). The small and middle T-antigens do not appear to affect viral or host DNA replication, but neither of the proteins has been studied in any detail.

We report here the sequence of the region of polyoma virus DNA which should contain the coding information for the viral early proteins. The DNA sequence allows predictions to be made about 'splicing' in the messenger species, and because such predictions can be made, about the amino acid sequence subsequently expected in each of the known T-antigens. The DNA sequence also predicts that, in addition to the three T-antigens, the genome could code for other early viral proteins. Some of these data have been presented elsewhere (10). A comparison at the molecular level can also be made between the early regions of polyoma virus and SV40 DNAs and their proteins. Although there are a great many similarities to be seen, there are also regions of nonhomology between the two viral genomes, and these differences may be of critical biological significance.

MATERIALS AND METHODS

Polyoma virus DNA (A2 large plaque strain) was grown and purified essentially as previously described (11). All DNA used for sequence determination between the <u>EcoRI</u> restriction site and the end of the early region came from a single preparation, using virus stocks made from twice plaque purified virus. Nucleotide sequence analysis was carried out essentially by the methods of Maxam and Gilbert (12) using either 5'- or 3'- labelled DNA fragments. The former were radioactively labelled using high specific activity \mathcal{D}^{-32} P-ATP (Radiochemical Centre, Amersham) and T4 induced polynucleotide kinase (P-L Biochemicals), and the latter using the appropriate high specific activity

 \varkappa^{32} P- deoxyribonucleotide triphosphates (Radiochemical Centre, Amersham) and T4 induced DNA polymerase, a gift from Dr. N. Smolar. The chemical degradation products were separated on 12% or 20% polyacrylamide gels, and subsequently visualised by exposure to Fuji medical X-ray film at - 70⁰ with Fuji Mach-2 intensifying screens.

All restriction enzymes were made by standard procedures (36). Every region of the DNA sequence was determined more than once. In addition both strands of the DNA were sequenced over most of the polyoma virus early region (see Fig.1). Data, if desired, can be provided.

RESULTS AND DISCUSSION

One of the main reasons for determining the DNA The Early coding sequence. sequence of the early region of polyoma virus was to ask whether the virus had enough information in this region to code for the large T-antigen, previously estimated to be between 80-105K in size and requiring nearly 3000 nucleotides to specify it. The answer is, it does. Another reason was to ask whether there was information available to code for any other protein(s). The answer to that is also affirmative. A third reason was to determine where on the genome the coding regions lie, and what protein sequences can be predicted from DNA sequence. This point is discussed subsequently. A fourth reason was to compare the polyoma virus sequence with the sequence of a related tumour virus, simian virus (SV) 40.

The DNA sequence for the coding part of the early region of the A2 (large

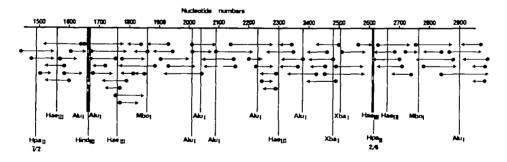


Figure 1: Sequencing the early region of polyoma virus DNA between nucleotide positions 1487 and 2919. Data for positions 1-1564 are given elsewhere (10). The arrows below the sequence numbers show the direction and extent of the sequence determination. Some of the restriction endonucleases used in sequence determination are indicated. Cleavage sites of the enzymes were all independently mapped using standard methods.

plaque) strain of polyoma virus is presented in Fig. 2. One extensive open coding frame is found in the sequence between positions 173 and 805, two open coding frames between positions 809 and 1496, and only one for the rest of the sequence given, up to position 2911. It may be relevant to point out that between positions 2583 and 2783 there is a second open reading frame. Although it is short, this frame contains an ATG as its first triplet and could potentially code for a protein which contains 67 amino acids and would be about 7.5K in size. Although the DNA sequence predicts that such a protein could exist, no such virus-coded protein has, as yet, been identified. Most studies aimed at studying polyoma virus early proteins would probably fail to reveal such a protein, however. Not only do they depend upon immuno-precipitation selection procedures (which are probably selecting proteins with sequence which corresponds to the regions around the N-termini of the T-antigens) (34) but also, for technical reasons, proteins smaller than about 12-15K are not observed (1, 13, 14). Data on coding frames is summarised in Fig. 3.

Were large T-antigen coded for by the entire polyoma virus early region, a protein with 913 amino acids (about 100K in size) could be made. This is not, however, the case. One striking bit of evidence which says that the simplistic idea of colinear coding from the entire early region, starting with a unique initiation codon and ending with a unique termination codon, is not happening comes from the appearance of a presumed termination codon (TAG) at position 806 in the first open coding frame encountered in the DNA. Further evidence comes from the fact that polyoma virus hr-t mutants, which have deletions in the early region of up to about 4% of the genome, make a full-sized large T-antigen (13, 14). The prototype of these mutants, NG-18, has a deletion of 187 base pairs which lies in the sequence given (Fig. 2) between positions 512 and 698 (15, 16). Moreover, studies on the total early mRNA population of polyoma virus show that all the messenger species are "spliced", that is, their sequences correspond to those found in non-contiguous regions of the DNA (17). Therefore the whole of the early region cannot be coding in a continuous manner for large T-antigen, neither need it be coding exclusively for large T-antigen. The DNA sequence consequently needs to be correlated with other results.

Data are available, which considered together with the DNA sequence, now allow for predictions to be made about the region of the polyoma genome which codes for large T-antigen, as well as for the two other known early viral proteins, middle and small T-antigens. Briefly, studies on the proteins themselves suggest that all three early antigens share common sequences, believed to lie at the N-terminal regions of the proteins (18, 19). Studies on early polyoma virus messenger RNAs (17), together with data evolving about sequences which surround spliced regions Figure 2

Py Py SV40 Py SV40 Py SV40 Py SV40	ATG MET MET AGA ARG ARG CTG LEU PHE	GAT ASP ASP CAA GLN SER CAC HIS HIS	AGA ARG LYS CTA LEU ALA CCA PRO PRO	GTT VAL VAL TGG TRP TRP TRP GAC ASP	CTG LEU LEU CGG GLY GLY LYS LYS	AGC SER ASN GAT ASP ASN GCT GLY GLY	AGA ARC ARC ARG TTT PHE ILE GGA GLY GLY	GCT ALA GLU GGA GLY PRO AGC SER ASP		AAA LYS SER ATG MET MET GCC ALA GLU	GAA GLU LEU CAG GLN ARG TTĂ LEU LYS	AGG ARG GLN CAG GLN LYS ATC MET MET	CTG LEU LEU CCA ALA ALA CAG GLN LYS	CTA LEU MET TAT TYR TYR GAA GLU LYS	GAA GLU ASP AAG LYS LEU TTG LEU MET	CTT LEU LEU CAG GLN LYS AAC ASN ASN	CTA LEU LEU CAG GLN LYS AGT SER THR	AAA LYS GLY TCA SER CYS CTC LEU LEU	CTT LEU LEU LEU LYS TGG TRP TYR	CCC PRO GLU CTA ²⁹² LEU GLU GLU GLY LYS
Py Py SV40	ÀCĂ THR LYS	TTT PHE MET	AÀÀ LYS GLU	ACT THR ASP	Ġ AĂ GLU GLY	GTA VAL VAL	TAC TYR LYS	AAT ASN TYR	CTG LEU ALA	AGA ARG HIS	MET	AAT ASN PRO	CTA LEU ASP	GGA GLY PHE	GGA GLY GLY		GGC GLY GLY	TTC PHE PHE		GTA ⁴¹²
Py Py SV40	AGÀ ALA	ÅGG THR	CTA GLU	CATC	ĊGGAŤ	cccic	GĂĂŤĊ	taagt	ACCAA	AĠĂCA	стіт	GGTGA	TÅGÅT	ACTAC	ĊAGCG	сттст	GCÅGA	ATGCC	TCTTA	ССТGС ⁵⁰⁵
Ρv	-									••••			±			:		• • • • •		604
Py																				ŤAĠŤA ⁶⁰⁴ TGCĊŤ ⁷⁰³
Py Py	CTTG ATAG	GAĠĂA ACTGG	İĞTİT CTGGA	TİĞTC .CCTCG	ŤTĠĂA AŢĢŢG	ŤĊTŤA CACAG	CATGC	A AŤĠĠ	iii cċ	Å ACAC	CAACC	CGAGĂ	TĊTGC	TGAAC	ĊŤGTA	TGCAG	ACTTO	ÅŤ TGC	AAĠCA	TGCCT 703
Py	CTTG ATAG	GAĜĂA ACTGG TCT	İĞTİT CTGGA CCC	TİĞTC .CCTCG	ŤTĊĂA ATÇTC I AGA	ŤĊTŤA CACAG	CATGC	A AŤĠĠ	iii cċ	Å ACAC	CAACC	CGAGĂ	TĊTGC	TGAAC	ĊŤGTA	TGCAG	ACTTO	ÅŤ TGC	AAĠCA	.TGCCT ⁷⁰¹
Py Py Py Py	CTTG ATAG GGC	GAĜĂA ACTGG TCT	İĞTİT CTGGA CCC	тіётс .сстсс ьсст	ŤTĊĂA ATÇTC I AGA	ŤĊTŤA CACAG	CATGC	A AŤĠĠ	iii cċ	Å ACAC	CAACC	CGAGĂ	TĊTGC	TGAAC	CTGTA	TGCAG	ACTTO	ÅŤ TGC	AAĠCA	TGCCT 703
Py Py Py Py Py Py	CTTG ATAG GGC GLY ACG	GAĠĂA ACTGG TCT SER GCG	İĞTİT CTGGA CCC PRO GAG	TIGTC CCTCG CCT PRO CGA	TTGAA ATGTG AGA ARG GGA	ŤĠŦŤA CACAG 09 ACT	cătgc c <u>ctct</u> 2 J gag	aa'tġğ ataat gag	ĊĊĊĂĂĢ ĊĊĊĂĂĢ ĂĠĊ	ÅACAC TAAGT GGC	CAACO ATCAA CAC	ccaca Gaggg Agt	DOTÖT. TEDODO G	TGAAC GGGTA GGGTA CTA	ĊŦĠŦĂ TTTĂĊ CĂĊ	TGCAG GGCCT GAT	ACTTO ATATT GAC	ĂŤTGO CTŢ <u>A</u> Ç B TAC	aaċca ag.]79 tgg	TGCĊŤ ⁷⁰³ 4 TCA ⁸⁰⁸
Py Py Py Py Py Py Py	CTTG ATAG GCC GLY ACG THR TTC	GAĠĂA ACTGG TCT SER GCG ALA AGC	İĞTİT CTCGA CCC PRO GAG GLU TAT	TIGTC CCTCG CCT PRO CCA ARC CCA	TTCĂA ATCTC ACA ACA ACA ACA GCA GCA GLY ACC	TGTTA CACAG 09 ACT THR AAG	CÁTGC CCTGT 2 3 GAG GLU TAC	AAŤĠĠ ATAAT GAG GLU TTC	ĊĊĊĂĂĢ ĊĊĊĂĂĢ ĂĠĊ SER ĂĊĂ	ÅACAC TAAGT GGC GLY AGG	CAACC ATCAA CAC HIS GAA	CCACA GAGGG AGT SER TGG	TĊTGC CGCGT 6 CCA PRO AAT	TGAAC GGGTA CTA LEU GAT	ĊŤGTA TTTAC CAC HIS TTC	TGCAG GGCCT GAT ASP TTC	ACTTC ATATT GAC ASP AGA	ÁTTGO CT <u>TAC</u> TAC TYR AAG	AAĠCA AG TGC TRP TGG	TGCĊŤ ⁷⁰³ 4 TCA ⁸⁸⁸ SER GAC ⁹²⁸
Py Py Py Py Py Py Py Py Py	CTTG ATAG GCC GLY ACG THR TTC PHE CCC	GAĞĂA ACTCG TCT SER GCG ALA AGC SER AGC	İĞTİT CTGGA CCC PRO GAG GLU TAT TYR TAC	TİĞTC CCTGG DPRO CGA ARG GLY CAG	TTCAA ATCTC ACA ACA ACA CCA GCA GLY ACC SER TCC	TGTTA CACAG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CÁTGC CCTCT 2 3 GAG GLU TAC TYR CCT	AAŤĠĠ ATAAT GAG GLU TTC PHE AAG	ĊĊĊĂĂĢ ĊĊĊĂĂĢ ĂĠĊ SER ĂĊĂ THR ĂĊT	ÅACAC TAAGT GGC GLY AGG ARG GCC	CAACC ATCAA CAC HIS GAA GLU GAG	CGAGA GAGGG AGT SER TGG TRP TCT	CCA PRO AAT ASN TCT	TGAAC GGGTA CTA LEU GAT ASP GAG	ĊŤGTA TTTAC CAC HIS TTC PHE CAA	GGCCT GGCCT GAT ASP TTC PHE CCC	ACTTC ATATT GAC ASP AGA ARG GAC	ATTGC CTTAC TAC TYR AAG LYS CTA	TGC TCC TRP TGC TRP TCC	TCA ⁸⁰⁸ SER GAC ⁹²⁸ ASP TGT ⁹⁸⁸

Nucleic Acids Research

ቘ

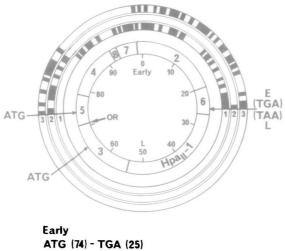
Į	1221		34	100	1461	528	282	1	1702
CCA ¹¹⁴⁴ CLY	ACC 1223 THR	ĠĂT ASP GLU	GAG ¹³⁴⁸ GLU PRO	AGC 1406 ARC ARC		CLN CLN CLN	GÁG ¹³⁰⁵ GLU TYR	ÅÅT ÅSN ÅSN	ATC MET TYR
GGA GLY	AGT SER	TCT SER ASP	ÅAT ÅSN MET	GCT ALA LYS	:5 4 4	AAA LYS ALA	TAT TYR SER	AAC LYS ASN	CCT PRO GLU
CCA GLY	ACA	GGC CLY THR	CLU GLU GLU	AAG LYS LYS	CAT HIS HIS	TCC CYS ALA	CAT HIS ASN	GŤŤ VAL ILE	AAG LYS LYS
CCA CLY	CCA CLY	ĠĠĂ GLY CLY	TCA SER GLU	AAG LYS LYS	TCT. SER SER	AAA LYS LYS	CTC VAL HIS	Y Y Sic	ACC THR ASN
ACT THR	GGG GLY	ATG MET TYR	GAG GLU SER	PRO CC:	TTG LEU	c.vc c.vc	CTG LEU ARG	TCA SER SER	VAL VAL
GCC	ACC	TCC SER THR	:22 CX S	PRO CCA	TAT PHE	irs Lys Lys	TGC CYS SER	ĠŤŤ VAL	dir ALA CLY
GGA GLY	CCT PRO	GAG GLU PRO	AGA ARG PHE	:S 분 분	GGC GLY SER	THE THE	AAA LYS ILE	AGG ARG ARG	AAG LYS LYS
ALA ALA	CAT	TCT SER ILE	ĊĊT PRO LEU	GĊA ALA SER	ACT THR LEU	TĊĊ SER THR	Tirc PHE PHE	CAC HIS HIS	CYS CYS
PRO PRO	GCA GLY	000 01Y	CAT ASP ASN	AÁT ASN HIS	E E	TYR TYR	₹ GEC S	ÀĂĠ LYS ARC	
AGA ARG	TTT PHE	CGC CLY	TCC SER GLU	TTC PHE CLN	AGC SER GLU	cià VI LE LA L	CCC PRO VAL	ACT THR HIS	
CCA PRO	CTA VAL	CAC	CCA ARC CLU	SER SER	SER SER	ALA ALA	AGC ARG SER	ATC MET PRO	:LI 표 표
CGA ARG	TCT SER	TCC SER	TTT PHE ASN	AGĊ SER ASP	E BE	E H H	THC THE	:5 a a a a a a a a a a a a a a a a a a a	AGC SER SER
AAG LYS	CCA CLY	CAT HIS	TCA SER PHE	CAG CLN CLN	:EZZ	SAS SAS	:¥¥S	E E C:	I I E
AGA ARG	CCA CLY	TAT TYR	ccc cLY ALA	TCT SER THR	ASP ASP	ALA CCC	CLU		CGC. THR
TCC SER	AAT ASN	PRO	CAC CLU ASN	TGC CYS ALA	AGT SER LYS	E H I	OCC.		
GTA VAL	OCC ALA	PRO	ALA CC	AGC SER GLU		:S 똢	i E E E		-E B B
PRO PRO	CAT HIS	CCC PRO	TTT PHE TRP	CAC CLN ASP	ALA ASP ALA	ANA LYS ARG	ÁCC LYS	Arc Met Ile	TYS LYS
ACT	CTA VAL	CAT	CLY CLY CLN	TCA SER ASP	PRO CCT CLU	ASN ASN ASN	GÅT ASP LYS	GGĊ GLY ASN	SER
AGA ARG	CCA CLY	ALA ALA	TCG SER GLU	TAC TYR SER	GAC ASP VAL	SER SEC.	THR TYR	666 811 115	ALA ALA
CCC PRO	GCA GLY	PRO	TCT SER TRP	ACC SER SER	CAC GLU LYS	TAT TYR PHE	ren T i	CÁC GLU ASN	TXR
Py Py	Py Py	Py Py SV40	Py Py SV40	Py Py SV40	Py Py SV40	Ру Ру SV40	Py Py SV40	Py Py SV40	Py Py SV40

2	16	96	1	=	5	2	19	12	182	³
	TRI TRI	600 617 617	ACC ¹⁹¹⁴ THR GLN	CTC ¹⁹¹⁶ LEU ALA	AGG 2053 ARC LYS	TCT 2113 SER LEU	CTA ²¹⁶¹ LEU MET	ATC 2221 MET PHE	CTT 2281 VAL ILE	
PRO PRO	GAĊ ASP SER	ATG MET LEU		:CER 뮘	TCC SER LYS	CÁG GLN ASP	TAC TYR TRP	AAG LYS ASP	PRO PRO	TĊT SER ALA
AAG LEV LEV	VAL VAL		ciác cru Lys	EEG.	:523	CAA GLN ASN	CTC CTC CTC	THT HHT RYT	CLY GLY GLY	LYS
AAT	SA SC.		AAA LYS LYS	ĠĂĊ ASP ALA	CTC.	TTG LEU PHE	CTA. LEU GLU	CTC LEU VAL	AGA ARG LYS	GGC GLY CLY
	TTS TT		ile SER ILE	:इन्हि	TVA	ARC ARC	GCT ALA ILE	ACC VAL	EEEE	CLY CLY CLY
ACA GLU GLU	THR CAC		CYS CYS	ASN ASN	AGT SER THR	các glu asn	CAT ASP ASP	CAA. GLN SER	:EBBB	
ATA ILE		CAT ASP ASP	AAG LYS LYS	ALA GLU G.	GCC ASP	AAG LYS THR	VIA	CCT PRO ASP	ATA ILE TRP	LEU UT
		GAT ASP ASP	ATA LEU LEU	A A S C	VAL VELO	LEU LEU	*** *** SER	·F H H	ASN ASN TYR	AGC SER GLU
CAG SER	ALA CC:	Ster.	CYS CYS CYS	CAT HIS HIS	:5 4 4	Gi∱ Hei LECi	415 611	GAC ASP LYS	ARG SO	ATT ILEU LEU
:E 題 題		AAC ASN LYS	TCA MET MET	AAG LYS LYS			*** THR	GAC GLU PRO	cci ARG LYS	·Elan
PRO CC.	cite ASP GLU	ASN	PRO CCT	ACA ARG	CIN CONC	AGC	SER SER		LYS LYS	ALA RES:
ت کېلا کې	ACA THR PRO		CTT VAL	EXISTING CAT	TGT CYS CYS	ARC ACC.	TCC SER GLY	·EBB	PRO CC.	VIA ALS:
ALA ARG	*** ***	⊒E3.	GAG GLU SER	ASN ASN TYRN	ATC ILE	THR THR	PHE PHE	CYS CYS	CTC VAL TLE	VI VICE
·Se E	E HE HE	:5222	AAA LYS TYR	TTYS LTYS	·Set H	LEG 23	ĒĒJ	CAG CLN GLN HIS	ASN	
E AL	cite cite deru AsP	EEE	CLIN CCC	12 22 22.	AAG LYS LYS	cic GLU GLN	GAN.	TAC TYR LEU	GLU GLU TYR	THR [
E NA	TTC PHE HIS	GAC ASP GLU	EEE	HIS HIS		GŤA VAL LEU	AÅÅ LYS ASP	:55 5 5	ACA VAL	:\$ ₩ ₩
CAA SER		:S 7 篇	CAT ASP CLU	ATA SER SER	VIN CC	TTA LEU SER	VET CT.	:5 Y Y	MET CTA	AAG LYS LYS
:1 E E	CAC HIS LYS		·Eas	CAA GLN	TTS LTS	AÀA LYS ASP	ARG ARG	:2373	CTC LEU CYS	51 Y Sol
AET [E E VI.	: I E E		TGT CYS SER	CTC LEU VAL	CTC ASP	CLY CLY CLY	LYS LYS	TCA SER SER
		ÁTT 11.E LYS	Ϋ́Ε̈́Ε̈́ΈΈΈΈΈΈΈΈΈΈΈΈΈΈΈΕ	PBC PBC	AÅT ASN ASP	ARC AC		FFS:	·EBBB	AŠT ASN ASP
Py Py SV40	Py Py SV40	Py Py SV40	Py Py SV40	Py Py SV40	Py Py SV40	Py Py SV40	Py Py SV40	Py Py SV40	Py Py SV40	Py Py SV40

.

§				ī	10/	192		2081				IX
ET H	cic ¹ cir	ASN ASN ASN	AET 2591	ACC ²⁶⁴ 1 THR ARC	ATT 2701 ILE ILE	ітт 276 РНЕ РНЕ	SER SER	GAC ASP TRP	ASP	CLAN	HIS	Ш. Ж
	CĊA PRO SER	:514 X	: <mark>V</mark> ĔĔ	:EE 뷥	ARG ARG	ĠTA VAL GLU	TGC CYS	AÁG LYS ASP	GLU	SER	TYR	CLU
CAC ASP ASP	ĊAC GLN PRO	AAG LYS LYS	TGT CYS VAL	CAT ASP ASP	cin GLU LYS	CAT ASP ALA	CIU CIU CIU	İİC LEU LEU	NSN	CLLN	PR0	PRO
CAG	LEU LEU CIC	VII VII:	CTC VAL ILE	LEU	AGG ARG GLU	TCA SER VAL	AGT SER LYS	PRO VAL	LYS	SER	CLLN	CLU
YFY SCA	CAA GLN ASP	AGT SER SER	TCT CYS GLY	CTG VAL CLIC	CLN CLN	ACT THR PRO	GCT ASP	ĠAC ASP GLY	ASP	ASP	ASN	PRO
VAL VAL	AAA LYS ARG	CLY CLY CLY	PRO PRO FRO	ATG MET LYS		PHE ARC	PHE	GAC ASP ILE	VIV	ILE	HIS	PRO
GCT GLY GLY	AAĊ ASN SER	AAT ASN ASP	PRO PRO	CAC HIS VAL	:EB됨	AAT ASN TYR	CAG GLN ARG	61.Y 61.Y 61.Y	• ASN	CLΥ	ASP	PRO
	TTC: LEU CLU	TGC TRP LEU	E H H	:E E E E E E E E E E E E	CLU C:	:55 5 52	các ASP GLU	CAA CLU MET	(ATAAA) ²⁹¹⁹ GLN GLU <i>i</i>	THR	HIS	THR
CLU CLU CLU	écc ALA GLY	ACC THR TYR	CTC TLEU CTC	ARG CCC	TĠŦ CYS SER	:¥B B	CGT ARG LYS	CAA GLN ALA	(ATA GLN	CLU	TVA	PRO
E H H	ATA ILE GLY	ACT.		S A A	AAG LYS ARG	-ge g	ALL VAL	čřč VAL	SER SER	HIS	SER	PRO
ASN ASN	AL CAN	ARC ARC	SER SER	TGC TRP GLN	CLU GLU	TT. LEU MET	:SUJ U	ASN ASN	TAT TYR TYR ASP	GLY	CLLN	LYS
:E99	ccr cly cly	LEU CIC	ARG ARG	cria VAL LEU	:Elan		AAG LYS VAL	rcr CYS PHE	ĠTT VAL GLU	SER	SER	LYS
AAA LYS ARG	irs LYS LYS	ASN ASN	AAA LYS LYS	:S S E E E E E	TCT SER CYS	GCC ALA LEU	CTC VAL	CTT LEU	ACA THR ASP	ASP	SER	ЭНС
CAT ASP ASP	VII VII	ĊĂT ASP ASP	ASN ASN	CĂĂ GLN LYS	ĊĂA GLN HIS	·EBB	CTT LEU ARG	Ă:Ă METEM	TÁC TYR ASP	CLU	CLN	CYS
ALA LEU	ĊĂŢ ASP ASP	LEU LEU	AGC SER LEU	i S B B B B B C S S S B B B B B B B B B B	GCC ALA LYS	ACC ALA	CCT CLY SER	GÅT ASP LYS	GAA CLU ASP	NET	PRO	THR
PRO CT		ASN ASN ASN	CAC HIS	CTA VAL	-Elai	GAT ASP TLE	:Ser N	TCT CYS GLN	ĠĊŦ ALA ASP	NSN	VIV	PHE
	it H H	GCT ALA ASN	LYS LYS LYS	CTC LEU SER	CÁT HIS TYR	: <mark>₹</mark> ∑;	:588	iti BHC	ÁTA ILE SER	LYS	CLA	CLY
ASN ASN ASN	TGT CYS VAL	cric VAL VAL	LYS LYS	τ <mark>₹</mark> Σ	CCC PRO ASP	SER SER	GAT ASP SER	TTĠ LEU VAL	CÁT ASP ASN	CLU	PHE	ARG
ATA ILE VAL	i; K X	:¥ Sig Sig Sig Sig Sig Sig Sig Sig Sig Sig	: ₹ ₽ ₽	: ₹ ₽	XI LYS LYS	S B S	CCT PRO GLN	ACT SER SER	TĊT CYS ARC	CLY	SER	CYS
ASN ASN ASN	CTC VAL C	ATC MET GLN	LE BE	XX ASN ASN	TGĊ CYS PRO	:511	CAT ASP ALA	TYR LEU	ATĂ ILE LEU	CLY	CLY	ILE
Py Py SV40	Py Py SV40	Py Py SV40	Py Py SV40	Py Py SV40	Py Py SV40	Py Py SV40	Py Py SV40	Py Py SV40	Py Py SV40	SV40	07AS	SV40

Figure 2: The early region of the polyoma virus genome (A2 strain) and a comparison with SV40. Line 1 of each horizontal column represents the nucleotide sequence of polyoma virus (Py) early DNA and has been divided into the triplets that would appear in the coding frame for large T-antigen (Fig. 3). The sequence given has the same polarity as early mRNAs (31). Line 2 is the predicted amino acid sequence of polyoma virus large T-antigen. Line 3 (where appropriate) is the SV40 large T-antigen sequence, data taken from Fiers et al. (30) and Reddy et al. (32). Gaps in sequence (indicated by *) are used in order to maximise homology. The DNA sequence which corresponds to that shown here between positions 399 and 833 has been reported for a different strain of polyoma virus, made by marker rescue of the hr-t mutant, NG-18 (16). That sequence we earlier reported (10). A resequencing of this area indicated that the G was present.


The numbering of nucleotides in the DNA sequence is that previously adopted (10). The reason for suggesting that the ATG at position 173 is the initiation codon for polyoma virus T-antigens has been put forward in the text. Within the coding sequence (line 1), two presumed termination codons (underlined) appear, TAG at position 806 and TGA at position 2912. These are discussed in the text. Sequences underlined (dashed lines) between positions 725 and 809 are discussed in the text and in Fig. 5. A predicted splice in the mRNA coding for polyoma virus large T-antigen is put within brackets. The intervening sequence lies between positions 410-794 and includes about 7.5% of the genome (from about 78.5 to 85.8 units on the physical map (11) of polyoma virus DNA) (see Fig. 3).

Homologies between the early regions of polyoma virus and SV40 are indicated in two ways. Dots placed above a nucleotide in Line 1 of each horizontal column indicate DNA sequence homology. Sequence homology between the amino acids of the large T-antigens coded for by the two viruses is indicated by boxes. The major differences in the early regions of the two viruses appear in the polyoma virus DNA sequence between positions 724-1264 (about 10% of the polyoma virus genome), for which there is no analogy in SV40, and at the end of the SV40 early region (last three lines in this figure), for which there is no analogy in polyoma virus.

in other mRNAs (20, 21) allow for the following predictions (which are discussed subsequently):

- DNA sequence between nucleotide position 173 and 409, and between positions 795 and 2911 probably codes for polyoma virus large T-antigen. The actual codons used by this gene, as predicted from the sequence, are given in Fig. 4. From

Polyoma virus DNA - 5292 b.p.

2741 b.p.

Figure 3: The early region of polyoma virus has been divided into its coding frames and related to the standard Hpa II physical map (11) of the viral genome. The initiation codon (ATG) for the early proteins is presumed to lie at nucleotide 173 (see Fig. 2, and 10, 34). Beginning at this site, the DNA sequence has been divided into three potential coding frames, frame 1 beginning at position 173, frame 2 at 174 and frame 3 at 175. Wherever a termination codon appears within twenty-seven nucleotides (equivalent to nine amino acids) within the sequence (Fig. 2), a solid bar is drawn to indicate this. Thus, the coding potential of the early region is apparent. 'Splicing' events would theoretically allow any two (or more) open areas on any frame to be joined together to produce a mRNA and subsequently a protein. The sequences (Fig. 3) thought to correspond to the three known polyoma virus T-antigens are discussed in the text. The N-terminus of all three proteins is thought to lie at the methionine triplet (ATG) at 74 map units; the presumptive TGA termination codon for large T-antigen is shown at 25.5 map units.

the DNA sequence (see Fig. 2) large T-antigen can be predicted to be a protein containing 785 amino acids, with a calculated molecular weight of 88,000 daltons, which is somewhat smaller than the size (about 100K) previously estimated from SDS-polyacrylamide gels (8, 14).

		U		с		A		C	
	Phe	22 + 2 = 24		15 + 0 x 15	T	3 + 1 = 14	<u> </u>	15 + 0 = 15	U
U		15 + 1 = 16	Ser	11 + 0 = 11	Тут	9 + 1 = 10	Су∎	11 + 0 - 11	с
U	Leu	B+1≖ 9	Joer	10 + 1 = 11	Term	0 + 0 = 0	Term	1+0 • 1	A
		7 + 1 = B		2 + 0 = 2	lenn	0 + 0 = 0	Тпр	9 + 2 = 11	G
		15 + 2 = 17		15 + 0 = 15	Hus	11 + 1 = 12		1+0= 1	U
	Leu	12 + 1 = 13	Pro	16 + 1 = 17		6 + 1 = 7	Arg	4+0=4	С
с		17 + 5 = 22		15 + 1 = 16	Gin	15 + 1 = 16		5 + 0 = 5	A
		11 + 5 = 16		4+0= 4	Gin	17 + 6 = 23		1 + 0 = 1	G
		7 + 0 = 7		10 + 1 = 11	Ann	20 + 2 = 22	Ser	9 + 1 = 10	υ
	I1 0	1+0 = 1	T .	12 + 1 = 13		8 + 1 = 9	361	15 + 2 = 17	с
А	ł	12 + 0 = 12	Thr	12 + 1 = 13		18 + 4 = 22	Arg	13 + 5 = 18	A
	Met	11 + 4 = 15		3 + 0 x 3	Lys	27 + 1 = 28		9 + 1 = 10	G
		8 + 1 = 9		15 + 1 = 16	Aso	21 + 2 = 23		4 + 1 = 5	U
	Vel	5 + 0 = 5	Ala	9 + 1 = 10	~	17 + 2 = 19	Gly	10 + 1 = 11	c
G	1	12 + 1 = 13		19 + 1 = 20	0	18 + 4 = 22	city.	21 + 5 - 26	A
		8+0=8		3+0 = 3	Glu	28 + 0 = 28		9 + 1 = 10	C

CODON USAGE FOR LARGE T-ANTIGEN

Figure 4: Codons predicted to be used by polyoma virus in coding for large Tantigen. The first number in each vertical column gives codon usage after the splice in the mRNA and the second number that before the splice (see Fig. 2). The total is also given. The rare use of codons <u>CGN</u> or <u>NCG</u> is apparent. The infrequent use of AUC (Ile) is surprising. This codon is not used at all in the coding sequence of SV40 (30,32).

- DNA sequence between nucleotide positions 173 and 746, and between 809 and 1496 may code for middle T antigen using a different coding frame from that used for large T-antigen. Middle T-antigen could then be predicted to contain 429 amino acids and to have a molecular weight of 49,500 daltons. This is somewhat smaller than the size (55K) estimated by other assays (13, 18). The predicted protein sequence has been discussed elsewhere (10).

- DNA sequence between nucleotide positions 173 and 746, and between 795 and 805 (for alternatives, see below) may code for small T-antigen. Thus, small T-antigen could be predicted to contain 195 amino acids (see Fig. 5) and to have a molecular weight of 22,000 daltons. This is consistent with the size reported for this protein (13, 18).

Some of the data given above for the proteins were derived from "splicing rules". These say that in the messenger RNAs (a) repeated sequences (although

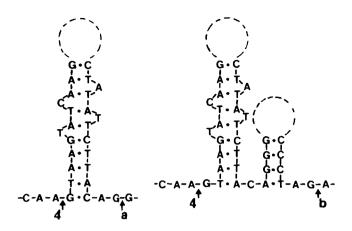


Figure 5: Secondary structure which could exist in DNA corresponding to intervening sequences in unprocessed polyoma virus mRNAs. The location of 4, a and b on polyoma virus early DNA is given in Fig. 2. Sequence 'spliced out' between positions 4 and a could give rise to a messenger RNA coding for small T-antigen using only one reading frame of the DNA (frame 1). Sequence 'spliced out' between positions 4 and b could produce a messenger RNA coding for middle T-antigen using frame 1 sequence on its 5'-side and frame 3 sequence on its 3'-side (see Fig. 3). Alternative splicing sites for both proteins are discussed in the text. Although splices suggested in this figure are in agreement with current splicing 'rules', final assignments of splicing junctions must ultimately rest on sequencing of either the relevant mRNAs or the viral proteins.

often short) are found at the junctions between coding and intervening sequences, (b) the sequence GT appears at the 5'-side of the intervening sequence and AG at the 3'-side, the 'GT-AG' rule (22), (c) no other AG dinucleotide occurs within 13 nucleotides prior to the terminal AG of the intervening sequence (21), and (d) pyrimidinerich sequences frequently are found at the 3'-side of the intervening sequence (23). Gannon et al (20) suggest that as a general pattern, the sequence TCAG<u>GTA</u> appears around the 3'-junction of intervening sequences and TNC<u>AGG</u> around the 5'-junction. (An 'intervening sequence' is defined as that sequence present in the DNA, but missing in the corresponding mRNA, and presumably 'spliced out' during messenger processing). Other data were taken from studies on the polyoma virus messenger RNAs which appear to have spliced junctions at points which correspond to the DNA sequence at about positions 410, 750, 790 and 810 (R. Kamen, manuscript in preparation).

From these considerations, the intervening sequence for large T-antigen

is predicted to have at its 5'-side the sequence CCAGGTA (which lies between nucleotides 406-412) and at its 3'-side the sequence TACAGG (from position 790-795), the underlined portions of these sequences being absent in the mRNA. This splice results in a frame-shift which removes the TAG termination codon found in the sequence between positions 806-808 and moves the body of large T-antigen to a different coding frame, designated frame 2 in Fig. 3. It is noteworthy that the corresponding splicing sequences in SV40 have been found to be TGAGGTA and TTTAGA, respectively (23). If the other predictions are correct, there is an interesting aspect of the sequence in the mature mRNA species. It is apparent from the DNA sequence that a heptanucleotide with sequence GAGGAAC would appear within the coding sequence ten base pairs before the 5'-spliced junction and ten base pairs after the 3'-junction (between positions 393-399 and 820-826, respectively). This may be fortuitous, but because of the length of this oligonucleotide and its position it may also play some role in splicing, such as, for example, preventing any secondary structure being formed between these two particular parts of the RNA during the process leading to maturation.

Prediction of the splicing junctions for small and middle T-antigens is difficult. It can be seen (Fig. 2) that between positions 720 and 773 there are seven potential heptanucleotides that could serve for the 5'-junction of intervening sequences, although not all of them may be equally valid. The 'GT' part of each of the sequences is underlined and given numbers 1 through 7 in Fig. 2. Sequences which obey the 'rules' for the 3'-junction lie between positions 789-794 (TACAGG, labelled a in Fig. 2) and 804-809 (CCTAGA, labelled b in Fig. 2). Splices which occur between the two junctions at 4 and a (designated 4a, see Fig. 5) would give rise to a messenger that could code for a protein the (approximate) size of small T-antigen. Splices between 1,2, or 7 and b would also lead to a protein which is compatible with the size of small T-antigen. In 4a, the small T-antigen would terminate in frame 1, using the termination codon TAG which lies between positions 806-808, which gives rise to a protein with 195 amino acids (see above). The SV40 DNA sequences which correspond to sequences around the splice regions for small T-antigen have been found to be TAAGGTA and TTTAGA (23). Proposed sequences (CCAAGTA and CCTAGA) for polyoma virus are shown in Fig. 5. Similar processing events could conceivably occur in the mRNA for middle T-antigen. Thus, splicing between positions 4 and b (see Fig. 5) or between positions 3, 5, or 6 and a could give rise to messengers which would involve sequences from two different reading frames and would code for middle T-antigens which differ only by a few internal amino acids. Sequences around the potential splicing junctions between 4 and a and b are shown (Fig. 5) because they fit the existing data regarding splicing in polyoma virus mRNAs and allow for the formation of intervening sequences with fairly stable secondary structures between the 5'- and 3'-ends. Although much has already been written about splicing (20-23), the exact sequence or structural requirements are still largely a matter of conjecture and comparison between mRNA species. Secondary structures may be important, for example, in substrate recognition by splicing enzymes, but so may be a number of other factors. As more data become available from different systems, they may help in elucidating the requirements for splicing.

It can readily be seen from this discussion that a judicious choice of splicing sites, or even mistakes in splicing, could lead to a number of proteins which have only slightly different primary structures. A small virus, like polyoma virus, may acquire additional coding potential and functional flexibility by using different splicing signals to modify parts of its proteins. There is to date no evidence to suggest that the virus does, or does not, avail itself of this flexibility.

Another interesting aspect of the DNA sequence is the presence of the sequence AATAAA twice within the early region. The sequence AAUAAA has been found near the 3'-end of a large number of eukaryotic mRNAs and is thought to be involved in the processing of messengers, either in cleaving a primary transcript to a functional messenger or adding a poly-A tail to its 3'-end (24). The corresponding sequence AATAAA appears twice in the early region of polyoma virus DNA, between nucleotide positions 1475-1480 and 2914-2919 (or at about 98.4 and 25.6 units on the physical map (11) of polyoma virus) (see Fig. 3). Polyoma early mRNAs with sedimentation coefficients about 20S have been previously described (25). These would correspond to species transcribed from practically the whole of the early region and would be expected to use the AATAAA signal at 25.6 map units. Polyadenylated messenger species about half this size which appear to use the signal at 98.4 map units have recently been identified but not yet correlated with any known protein (R. Kamen, personal communication). Both of the AATAAA sequences found in polyoma virus DNA appear as part of larger symmetrical sequences (Fig. 6a, b), capable of forming either hairpin loops or four-stranded species such as those previously described as possibly existing around the viral origin of replication (10). The symmetrical sequence shown in Fig. 6b contains in its top strand the termination codon TGA that is presumably used for large T-antigen. The most interesting aspect of these sequences is that, in addition to their symmetry, they contain both the AATAAA signal and termination codons on both strands of the DNA.

Comparison with SV40

It can be seen from a comparison of the DNA sequences and the predicted amino acid sequences (Fig. 2) that polyoma virus and SV40 have regions in which considerable homology is observed and other regions which appear unique to each

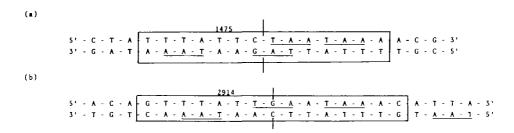


Figure 6: Symmetry in the regions of the DNA which contain the sequence corresponding to the AAUAAA postulated to be a processing signal in eukaryotic mRNAs (19). Top lines,

- a) The AATAAA sequence which occurs about half-way through the early region DNA.
- b) The AATAAA sequence which is found at the end of the early region. The TGA is thought to be the termination codon for large T-antigen; the TAA on the opposite strand outside the symmetrical sequence is the postulated termination codon for the capsid protein VP1 (E. Soeda, J.R. Arrand and B.E. Griffin, manuscript submitted).

It can be seen in the bottom line (a and b) that anti-early (or late) sequences also contain AATAAA and termination codons. If the hydrogen bonds forming the double-stranded structures are broken, each strand of the DNA can be folded into a hairpin loop. Alternatively, if a double-stranded DNA is bent about the two-fold axis of symmetry, a four-stranded helix can be formed. The possible significance of the latter type structures for interacting with proteins has been discussed elsewhere (7).

virus. A large amount of homology is seen in the DNAs in the regions which code for the N-terminal portions of the proteins. This point has already been discussed (10). In the early coding region of polyoma virus, between nucleotide numbers 809 to 1264 (or about 9% of the polyoma genome), there appears to be no counterpart in the SV40 sequence. The "extra" sequences in polyoma virus can account for much of the apparent size difference between the polyoma virus and SV40 large T-antigens (polyoma virus T-antigen being larger than its SV40 counterpart). There is limited homology between the two viral genomes in what could be considered the "internal part" of the polyoma virus DNA sequence (position 1265 to about 2221), and more extensive homology towards the end (positions 2222 to 2776). The maximum homology is seen in a region which spans the DNA from nucleotide positions 2222 to 2740 and includes about 10% of the genome (from 12 to 22 map units) (see Fig. 3). Throughout this region there is nearly 60% homology between the two DNAs and over 60% homology between predicted amino acid sequences. In a portion of this region, between positions 2504-2566, there is about 75% DNA homology and 19 out of 21 predicted amino acids are the same. These sequence data are in agreement with recent nucleic acid hybridisation studies, carried out on polyoma virus and SV40 DNAs under relatively non-stringent conditions, which show that DNA from 12 to 59 map units on the polyoma virus physical map can hybridise to SV40 DNA (26). It is tempting to speculate that a domain of large T-antigen encoded between 12 and 22 map units plays some role in DNA replication. Two pieces of data allow for this speculation:

- It has been found that the T-antigen isolated from adenovirus-2/SV40 (Ad2/SV40) hybrids binds to polyoma virus DNA and protects specifically a region around the origin of replication (R. Tjian and B.E. Griffin, unpublished).

- The region between 12 and 22 map units, although not unusually rich in basic amino acids, nonetheless contains many more basic than acidic amino acids. It is interesting to note that all of the polyoma virus (<u>tsa</u>) mutants which are temperature sensitive for replication could have lesions confined within this region (27,28), but more precise mutant mapping is needed to confirm that this is indeed the case.

The C-terminal end of the SV40 large T-antigen sequence extends well beyond the end of the homology region. This C-terminal sequence, which apparently codes for the SV40 helper function (29), ends in a very proline-rich (six out of eleven) stretch of amino acids (30). Polyoma virus also has two stretches of sequence which would code for relatively proline rich areas in a protein. These lie, however, within the region which appears to have no homology with SV40. In the DNA between positions 1099 and 1144, six out of fifteen amino acids encoded are proline residues and between 1208 and 1246, five out of twelve amino acids are prolines. Whether this represents some rearrangement of sequence between the viruses, or is entirely fortuitous, is not known.

At the moment the major conclusions that appear to be allowed by our sequence studies are:

- Polyoma virus contains enough information for a protein the size of large T-antigen to be encoded entirely within the viral genome. Excluding amino acid modifying groups, a protein about 88K in size is predicted to be made.

- Polyoma virus can also code for the two other known early proteins, middle and small T-antigens, using more than one coding frame over a part of the genome.

- The potential exists for coding for additional early viral proteins, not yet identified.

- The spliced junctions in the mRNAs coding for the early proteins may be predicted and the tentative sequences of large, middle and small T-antigens obtained.

- Polyoma virus and SV40 DNAs have both notable sequence similarities and differences within their early regions.

ACKNOWLEDGEMENTS

We thank Dr. R. Kamen for many helpful discussions. We also acknowledge the skilled technical help of Christine Maddock, Jane Walsh and Steve Barrett, and are grateful to Dr. Nina Smolar for preparation of T4-induced DNA polymerase.

Footnote: After this work was completed and the manuscript written, a paper concerning a similar part of polyoms virus appeared in press (35). Our sequence is very similar to that reported, but not identical. However, it should be noted that we use a different strain of polyoma virus (A2 strain) and strain variation in terms of sequence has already been commented upon (10).

*On leave from: The National Institute of Genetics, Misima 411, Japan.

[†]To whom reprint requests should be sent.

REFERENCES

- Ito, Y., Spurr, N. and Dulbecco (1977) Proc. Natl. Acad. Sci. USA, 74, 1259-1263.
- 2. Weil, R. (1978) Biochem. et Biophys. Acta 516, 301-388.
- 3. Seif, R. and Cuzin, F. (1977) J. Virol. 24, 721-728.
- Eissenberg, S., Griffith, J. and Kornberg, A. (1977) Proc. Natl. Acad. Sci. USA, 74, 3198-3203.
- Ito, Y., Brocklehurst, J.R. and Dulbecco, R. (1977) Proc. Natl. Acad. Sci. USA, 74, 4666-4670.
- 6. Smith, A.E., Smith, R., Griffin, B.E. and Fried, M. Submitted for publication.
- 7. Lania, L., Griffiths, M., Cooke, B., Ito, Y. and Fried, M. Cell, submitted for publication.
- 8. Ito, Y., Spurr, N. and Griffin, B.E. Submitted for publication.
- 9. Griffin, B.E. and Maddock, C. (1979) J. Virol., in press.

10.	Soeda, E., Arrand, J.R., Smolar, N. and Griffin, B.E. (1979) Cell, 17, 357- 370.
11.	Griffin, B.E., Fried, M. and Cowie (1974) Proc. Natl. Acad. Sci. USA, 71, 2077-2081.
12.	Maxam, A.M., and Gilbert, W. (1977), Proc. Natl. Acad. Sci. USA, 74, 560-564.
13.	Ito, Y., Brocklehurst, J.R., Spurr, N., Griffiths, M., Hurst, J. and Fried, M. (1977) in INSERM colloquium, ed. May, P., Monier, R. and Weil, R., 69, 145-152.
14.	Schaffhausen, B.S., Silver, J.E. and Benjamin, T.L. (1978) Proc. Natl. Acad. Sci. USA, 75, 79-83.
15.	Soeda, E. and Griffin, B.E. (1978) Nature, 276, 294-298.
16.	Hattori, J., Carmichael, G.G. and Benjamin, T.L. (1979) Cell, 16, 505-513.
17.	Kamen, R., Favaloro, J., Parker, J., Treisman, R., Flavell, A.J., Cowie, A. and Legon, S. (1979) Differentiation, in press.
18.	Hutchinson, M.A., Hunter, T. and Eckhart, W. (1978) Cell, 15, 65-77.
19.	Smart, J.E., and Ito, Y. (1978) Cell, 15, 1427-1437.
20.	Gannon, F., O'Hare, K., Perrin, F., LePennec, J.P., Benoist, C., Cochet,
	M., Breathnach, R., Royal, A., Garapin, A., Cami, B. and Chambon, P.
	(1979) Nature, 278, 428-434.
21.	Seif, I., Khoury, G. and Dhar, R. (1979) Nucl. Acids Res. <u>6</u> , 3387-3398.
22.	Breathnach, R., Benoist, C., O'Hare, K., Gannon, F. and Chambon, P. (1978) Proc. Natl. Acad. Sci. USA, 75, 4853-4857.
23.	Ghosh, P.K., Reddy, V.B., Swinscoe, J., Lebowitz, P. and Weissman (1978) J. Mol. Biol. 126, 813-846.
24.	Proudfoot, N.J. and Brownlee, G.G. (1976) Nature, 263, 211-214.
25.	Kamen, R., and Shure, H. (1976) Cell, 7, 361-371.
26.	Howley, P.M., Israel, M.A., Law, M-F. and Martin, M.A. (1979) J. Biol. Chem., in press.
27.	Miller, L.K. and Fried, M. (1976) J. Virol., 18, 824-832.
28.	Feunteun, J., Sompayrac, L., Fluck, M. and Benjamin, T. (1976) Proc. Natl. Acad. Sci. USA, 73, 4169-4173.
29.	Lebowitz, P., Kelly, T.J., Nathans, D., Lee, T.N. and Lewis, A.M. (1974) Proc. Natl. Acad. Sci. USA, 71, 441-445.
30.	Fiers, W., Contreras, R., Haegeman, G., Rogiers, R., Van de Voorde, A., Van Heuverswyn, H., Van Herreweghe, J., Volckaert, G. and Ysebaert, M., Nature 273, 113-120.
31.	Kamen, R., Sedat, J. and Ziff, E. (1976) J. Virol., 17, 212-218.
- <u></u>	

- - -

- Reddy, V.B., Thimmappaya, B., Dhar, R., Subramanian, K.N., Zain, B.S., Pan, J., Ghosh, P.K., Celma, M.L. and Weissman, S.M. (1978) Science 200, 494-502.
- 33. Van Heuverswyn, H. and Fiers, W. Submitted for publication.
- 34. Smart, J. and Ito, Y. (1978) Cell 15, 1427-1437.
- 35. Friedmann, T., Esty, A., LaPorte, P. and Deininger, P. (1979) Cell 17, 715-724.
- 36. Roberts, R.J. (1976) C.R.C. Crit. Rev. Biochem. 4, 123-164.