Molecular cloning and sequence analysis of adult chicken β globin cDNA

Robert I.Richards* ${ }^{\dagger}$, John Shine ${ }^{1 \dagger}$, Axel Ullrich ${ }^{2 \dagger}$, Julian R.E.Wells* and Howard M.Goodman ${ }^{\dagger}$
*Department of Biochemistry, University of Adelaide, Box 498, G.P.O., Adelaide, South Australıa 5001 , and ${ }^{\dagger}$ The Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA

Received 4 September 1979

Abstract

The molecular cloning and nucleotide sequence analysis of adult chicken B globin mRNA is reported. DNA sequences derived from in vitro transcription of globin mRNA were purified and amplified as recombinant DNA using the plasmid pBR322. Sequence analysis of several clones coding for β globin strongly suggests that transcription errors may be generated near the 5^{\prime} end of transcripts in vitro by reverse transcription. The complete sequence of the longest β g Tobin insert containing 51 bases of the 5 ' untranslated region as well as the complete coding and 3^{\prime} untranslated regions has been determined.

INTRODUCTION

The globin gene system, in a variety of species, has become well established as a model for extensive analysis of eukaryote gene expression $(3,4)$. This has been mainly due to the accessibility of the structural sequences by mRNA isolation, and the availability of in vivo systems for study such as cultured erythroblasts (5) and Friend erythroleukaemic cells (6).

In view of the available data on the mamalian systems, similar studies of the chicken globin genes will provide information concerning the divergence of structural and putative control regions. Analysis of globin amino acid sequences suggests that the chicken genes are relatively primative and lie close on the genealogical tree to the time of separation of globin into a and B chain types (7).

MATERIALS AND METHODS

Double stranded cDNA was synthesised from chicken globin mRNA (prepared as previously described (8)), by sequential reverse transcriptase reactions (9). Following $\$_{1}$ nuclease treatment to open the hairpin loop, the ONA was made blunt-ended with E. coli DNA polymerase 1 (Klenow fragment) and ligated
to synthetic linker DNA encoding the Hindlll recognition site (9). This material was then digested with Hsul (an isoschizomer of Hindill) and electrophoresed on a 6% polyacrylamide gel. DNA from the 500-700 bp region of the gel was electroeluted and ligated to Hindlll digested, dephosphorylated pBR322 (9). The recombinant molecules were transformed into E. coli $\times 1776$ as described (10).

Cells carrying recombinant plasmids were selected on the basis of their ampicillin resistance, tetracycline sensitivity and absence of the Haelll digestion fragment of $P B R 322$ containing the Hindlll restriction site.

Plasmid DNA was prepared from those clones which gave Haelli fragment patterns corresponding to Haelll digested double-stranded globin cDNA. The inserted DNA was isolated by Hindlil cleavage and electrophoresis on polyacrylamide gels. DNA fragments isolated for sequencing were end-labelled by either incubation with $T 4$ polynucleotide kinase and $\gamma^{-32} P$-ATP or Klenow fragment catalyzed exchange of the 3^{\prime} residue (11).

Sequencing reactions and gel electrophoresis were as described by Maxam and Gilbert (12).

All manipulations involving recombinant $D N A$ were in accordance with NIH (USA) or ASCORD (Australia) guidelines.

RESULTS

Restriction endonuclease digestion of double-stranded cDNA transcribed from reticulocyte mRNA yielded information on the existence of cleavage sites in the major species present. The Haelll digest gave two bands of approximately 260 base pairs each. Miniscreening of the recombinant DNA molecules with Haelll indicated the presence of either one or the other of these two bands and suggested that these two fragments (and the clones containing them) were derived from two different major cDNA species. The cleavage patterns determined by digestion of the cDNA with Hpall, thal and Alul (Fig. I) were used in establishing the sequencing strategy shown in Fig. 2. Hpal, $X_{m a l}$ and Kpnl did not cleave the cDNA, whereas the cleavage site for Pst 1 was subsequently found to lie in the β mRNA 3^{\prime} untranslated region. SstI cleaved some of the cDNA sequences but no site has yet been determined in the β or α (13) cloned sequences.

Insert DNA isolated from several clones by Hindlll digestion was labelled with T4 polynucleotide kinase and $\gamma^{32} P-A T P$, digested with Haelll restriction endonuclease and the labelled fragments separated on 6% polyacrylamide gels and subjected to sequence analysis (12). Sequences coding for adult B globin

Figure 1. Restriction endonuclease digestion of chicken globin doublestranded cDNA. $3 \times 10^{4} \mathrm{c} . \mathrm{p} . \mathrm{m}$. (Cerenkov) of ${ }^{32} \mathrm{P}$-labelled cDNA were incubated with each enzyme for 1 hour, electrophoresed on a 6% polyacrylamide slab gel and autoradiographed. Molecular weight markers are Fd phage DNA Haelll fragments.
(14) and the partially characterized α globin (15) were found. The longest β coding insert, $p C G B-3$, was completely sequenced (Fig. 3). In this case there was complete agreement with the amino acid sequence established by Matsuda et al. (14). Where possible, both strands were sequenced and where this proved difficult one strand was sequenced several times.

In addition to $p C G B-3$, five other B coding inserts have been partially sequenced. All of these agree with corresponding sequences in pCGB-3, except for a few bases confined to the 5^{\prime} end of each insert (with respect to the mRNA sequence). This suggests that incorrect bases are inserted by reverse transcriptase during the "loop" formation or more likely arose during the repair process with E. coli DNA polymerase 1 in the blunt-ending reaction. It follows that several bases at the 5^{\prime} end of $p C G \beta-3$ may be incorrect.

Figure 2. Sequencing strategy of pCGB-3. Only those restriction sites used in the analysis are shown (A-Alul, H_{1}-Hhal, H_{2}-Hpall, H_{3}-Haelll, P-Pstl). Arrows indicate the direction and extent of sequencing.

Confirmation that these errors are due to in vitro reactions is obtained by inspection of the sequence of the B coding clone pCGB-4 (Figs. 3 and 4) which terminates within the coding sequence and has an incorrect 5'-terminal sequence (Fig. 3 and 4). A similar result has been obtained for a coding clones (13). A potential model for the generation of errors is diagramed in Figure 5.

OISCUSSION
The nucleotide sequence of chicken E -globin mRNA, as deduced from the sequence of the cloned cDNA, has a relatively high GC content ($57 \boldsymbol{q}$ compared with 41% for the genome (16)). This is particularly evident in the redundant bases within the coding region in which 49% of codons are NNC and $30 \&$ NNG (Table 1). This selection in the mRNA sequence for a high GC content (also found in growth hormone (17) and chorionic somatomamotropin (18) mRNA) may result in a more stable overall secondary structure with a high degree of nuclease resistance. In addition, the stable secondary structure may be an essential feature of processing of precursor mRNA. In one possible conformation of B mRNA, many of the G and C residues in the third position of codons are involved in hydrogen bonding (13). Despite the high GC content there is a relatively low frequency of the

PCGB-3	GCUCAGACCUCCUCCGUACCGACAGCCACACGCUACCC UCCAACCGCCGCC AUG
pCGB-2	\ldots GGGAUAACACGCUACCC UCCAACCGCCGCC AUG
pCGB-1	\ldots. UAGCACGCUACCCCUCCAACCGCCGCC AUG

10

20
val his trp thr alagiuglu lys gin lou ile thr gly lou trp gly l_{y} g val as val gUG CAC UGG acu gcu gag gag adg cag cuc auc acc ggc cuc ugg ggc ang guc anu gug pCGB-4

GUG
3040
ala glu cye gly ala glu ala leu ala arg leu leu ile val tyr pro trp thr gin arg GCC GAA UGU GGG GCC GAA GCC CUG GCC agg Cug cug auc guc uac ccc ugg acc cag agg GCU GUC GGU GGG GCC GAA GCC CUG GCC AGG

5060
phe phe ala ser phe gly asn leu ser ser pro thr ala ile leu gly asn pro mat val UUC UUU GCG UCC UUU GGG AAC CUC UCC agC CCC acU gCC aUC CUU gGC adc CCC aUg guc

70
80
arg ala his gly lys lys val leu thr ser phe gly asp ala val lyo asn leu asp asn CGC GCC CAC GGC AAG AAA GUG CUC ACC UCC UUU GGG GAU GCU GUG AAG AAC CUG GAC AAC

90
100
ito lys asn thr pheser gin lou ser giu lau his cys asp lys leu his val asp pro aUC afg adc acc uUC ucc cas cug ucc gai cug cau ugu gac aag cug cau gug gac ccc

110120
glu asn phe arg leu lou gly abp ile leu ila ila val leu ala ala hib phe ber lyb gag aac uUc agg cuc cug ggu gac auc cuc auc aud guc cug gcc gcc cac uuc agc aag

130
140
asp phe thr pro glu cye gin ala ala trp gin lyo lou val arg val val ala his ala GAC UUC ACU CCU GAA UGC CAG GCU GCC UGG CAG AAG CUG GUC CGC GUG GUG GCC CAU GCC
stop
leu ala arg lys tyr his
CUG GCU CGC AAG UAC CAC UAA GCACCAGCACCAAAGAUCACGGAGCACCUACAACCAUUGCAUGCACCU
gCagaabuccuccgagcugacagcuugugacaanuanaguucaudcagucacacuc poly(a) 3'
gCagaiaugcuccggagcugacagcuugugacanauanaguucauucagugacacuc poly (a)

Figure 3. Complete nucleotide sequence of the mRNA corresponding to pCGB-3. sequences of $P C G B-1, P C G B-2$ and $P C G B-4$ are included to show 5^{\prime} terminal heterogeneity.

C - G doublet, normally characteristic of eukaryotic DNA (19) (19 C - G compared with 43 G-C).

Kafatos et al. (20) have carried out an extensive analysis of the

Figure 4. Autoradiograph of sequencing gel showing the 5 ' terminal sequence of $p C G B-4$. The relevant sequence of $P C G B-3$ is included to show heterogeneity. The bracket shows the base sequence from the synthetic Hindlll linker DNA. The arrows mark sites where C residues are absent from the sequence due to methylation of EcoRII sites by E. coli.
mRNA
single-stranded cDNA
double-stranded
"hairpin" cDNA
limited $s 1$
polymerase 1 repair
deduced mRNA sequence
correct mRNA sequence

5' CECGAFE AGGTGGG—___ 3^{\prime}
3' GGGCTAG…......TCGACCC ${ }^{\prime}$

Figure 5. Potential mechanism for generation of "errors" at the 5'-end of cDNA. Limited Sl cleavage of the hairpin-loop generated during synthesis of $d S$ cDNA results in a duplex molecule terminating in two non-paired strands. The unpaired 3^{\prime}-end of the strand complementary to the 5^{\prime}-terminus of mRNA is then removed by the $3^{\prime-5}$ ' exonuclease activity of DNA polymerase 1 and then resynthesised using the other unpaired strand as template. This results in the incorporation of "incorrect" sequences since this portion of the cDNA is derived from sequences further towards the 5^{\prime} end of the mRNA.
homology between rabbit and human B globin. Comparison of the chicken sequence with those derived from rabbit $(21,22,23)$ and human $(22,24,25)$ reveals some interesting features. In $\mathrm{PCGB}-3$, of the 51 bases in the 5^{\prime} untranslated region (AUG not included) there are at most 25 bases homologous with rabbit and 30 bases homologous with human (Fig. 6). No more than four contiguous bases are found to be homologous in any part of this region suggesting that if a ribosome binding site exists, analogous to that in prokaryotes, then there is little selective pressure to maintain the specificity of this sequence. A similar conclusion has been previously arrived at by a comparison of 5'- untranslated regions from a variety of eukaryote mRNAs (26). In the case of both human and rabbit $B \mathrm{mRNA}$ there are six more bases (not shown in Fig. 6) before the 7 meG cap which suggests that $\mathrm{PCGB}-3$ does not contain the complete 5^{\prime}-untranslated region of chicken β globin.

Comparison of respective 3^{\prime}-untranslated regions shows a similar degree of homology as described for the 5^{\prime} ends (Fig. 7). Of the 108 bases in the chicken sequence, 57 are homologous with rabbit and 52 with human. For rabbit and human β globin mRNAs there is a region immediately after

Table l. Codon utilization of chicken B globin mRNA. The Table shows the preference for codons ending in G or C, and the discrimination against those containing $\mathrm{C}-\mathrm{G}$.

$$
\begin{aligned}
& -50 \quad-40 \quad-30
\end{aligned}
$$

$$
\begin{aligned}
& \text { Human } \quad G C U U C U G A C A C A A C U G U G U U C-\cdots-\cdots
\end{aligned}
$$

$$
\begin{aligned}
& -20 \quad-10
\end{aligned}
$$

$$
\begin{aligned}
& \text { - - - ACUUAGCAA- C C C UC-A A ACAGACACCAUG }
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } 30 \\
& \text {-20 } \\
& -10
\end{aligned}
$$

Figure 6. Comparison of the 5^{\prime} untranslated regions of chicken, human (19, 20) and rabbit (21) B globin mRNA. Boxes show base changes between the three sequences. Sequences have been aligned to show maximum homology.
the termination codon of complete divergence and the same is true for the chicken sequence. This is followed by a region of homology, which contains 24 deletions (or insertions) and 10 base changes (chicken compared to rabbit), up to the highly conserved AAUAAA sequence. From this sequence to the poly (A) tract there is only one deletion but 8 base changes (both in rabbit and human) suggesting that the length is more critical than the sequence.

Comparison of the chicken and rabbit β chain coding regions shows 120 base changes. Of these, 66 are involved in an amino acid change at that position, while the remaining 54 conserve the protein sequence. The 72% nucleotide sequence homology between the chicken and rabbit coding regions is significantly higher than the homology between the non-coding regions ($49 \% 5^{\prime}$ end; $54 \% 3^{\prime}$ end) ; a result consistent with selection at the amino acid level being a significant factor in the maintenance of nucleotide sequence.

C U A A U A A A G G A A A U U U U A U U U U C A U U G C poly (A)

Figure 7. Homology in the 3^{\prime} untranslated regions of chicken, human (19, 20) and rabbit (21) B globin mRNA. Boxes show base changes between the three sequences. Sequences have been aligned to show maximum homology.

ACKNOWLEDGEMENTS

We thank the Office of Program Resources and Logistics Viral Cancer Program, Viral Oncology, Division of Cancer Cause and Prevention, National Cancer Institute, Bethesda, Maryland for Reverse Transcriptase. R.I.R. is the recipient of a Commonwealth Postgraduate Research Award and a grant from the University of Adelaide Research and Publications Committee. R.I.R. is grateful to Professor W.J. Rutter for encouragement and permission to work in his department. This work was supported in part by grants from A.R.G.C. (D2-76/16788) to J.R.E.W. and NIH (CA14026) to H.M.G.

REFERENCES

1. Present address: Molecular Biology Unit, Research School of Biological sciences, Australian National University, Canberra, Australia.
2. Present address: Genentech, Inc., 460 Point San Bruno Blvd., So. San Francisco, California 94080, USA.
3. Weatherall, D.J. and Clegg, J.B. (1979) Cell, 16, 467-479.
4. Van den Berg, J., Van Doyen, A., Mantei, N., Schambock, A., Grosveld, G., Flavell, R.A. and Weissmann, C. (1978) Nature, 276, 37-44.
5. Crawford, R.J. and Wells, J.R.E. (1978) Biochemistry, 17, 1591-1596.
6. Lo, S.-C., Aft, R., Ross, J. and Mueller, G.C. (1978) Cell, 15, 447-453.
7. Goodman, M., Moore, G.W. and Matsuda, G. (1975) Nature, 253, 603-608.
8. Crawford, R.J., Scott, A.C. and Wells, J.R.E. (1977) Eur. J. Biochem., 72, 291-299.
9. Seeburg, P.H., Shine, J., Martial, J.A., Baxter, J.D. and Goodman, H.M. (1977) Nature, 270, 486-494.
10. Goodman, H.M. and MacDonald, R.J. (1979) Methods in Enzymology, in press.
11. Donelson, J.E. and Wu, R. (1972) J.Biol.Chem., 247, 4654-4660.
12. Maxam, A. and Gilbert, W. (1977) Proc. Natl. Acad. Sci. USA, 74, 560-564.
13. Richards, R.I., manuscript in preparation.
14. Matsuda, G., Maita, T., Mizuno, K. and Ota, H. (1973) Nature New Biol., 244, 244.
15. Cummings, I.W., Liu, A.Y. and Salser, W.A. (1978) Nature, 276, 418-419.
16. Sinclair, J.H. and Brown, D.D. (1971) Biochemistry, 10, 2761-2769.
17. Martial, J.A., Hallewell, R.A., Baxter, J.D. and Goodman, H.M. (1979) Science, 205, 602-606
18. Shine, J., Seeburg, P.H., Martial, J.A., Baxter, J.D. and Goodman, H.M. Nature, 270, 494-499.
19. Russell, G.J., Walker, P.M.B., Elton, R.A. and Subak-Sharpe, J.H. (1976) J.Mol.Biol., 108, 1-15.
20. Kafatos, F., Efstratiadis, A., Forget, B.G. and Weissman, S.M. (1977) Proc. Natl. Acad. Sci. USA, 74, 5618-5622.
21. Baralle, F. (1977) Cell, 10, 549-558.
22. Proudfoot, N.J. (1977) Cell, 10, 559-570.
23. Efstratiadis, A., Kafatos, F.C. and Maniatis, T. (1977) Cell, 10, 571-585.
24. Baralle, F. (1977) Cell, 12, 1085-1095.
25. Marotta, C.A., Wilson, J.T., Forget, B.G. and Weissman, S.M. (1977)
J. Biol.Chem., 252, 5040-5053.
26. Baralle, F. and Brownlee, G.G. (1978) Nature, 274, 84-87.
