Alkaline stability of guanosine and some of its derivatives modified by the carcinogen N -acetoxyacetylaminofluorene

M.Spodheim-Maurizot, M.Dreux, G.Saint-Ruf and M.Leng

Centre de Biophysique MolEculaire, C.N.R.S., 1A, avenue de la Recherche Scientifique, 45045 Orleans Cedex, France

Received 13 November 1979

Abstract

The alkaline treatment of Guo, dGuo, dGMP and denatured DNA modified by N -acetoxyacetylaminofluorene (N -AcD-AAF) was performed in 0.1 M NaOH at $40^{\circ} \mathrm{C}$. The kinetice of the reaction were followed by ultraviolet absorption and by chromatographic methods and were found different for the four products under study. Circular dichroism spectra show differences in the environement of acetyleminofluorene residue in these products. The alkeline treatment of Guo-AAF (and dGuo-AAF) leads to the formation of three products. These products were separated by thin layer chromatography and by HPLC and were characterized by spectroscopic methods. Dne is the elready known unstable Guo-AF (and respectively dGuo-AF)(1). The other two products are relatively stable products of the transformation of Guo-AF (or dGuo-AF). These last ones pregent almost identical ultraviolet absorption spectra, but very different circular dichroism spectra.

INTRODUCTION

It is elready established that when the carcinogens 2-acetylaminofluorene (2-AAF) and N-hydroxyacetylaminofluorene (N-OH-AAF) are injected to rate, they react with DNA. The majority of the product, about 80%, is bound to DNA in the deacatylated form ($O N A-A F$) and only about 20 in the acetylated form (DNA-AAF) (2,3). The adducts of DNA-AAF obtained in vivo and in vitro are well known : the N-(deoxyguanosin-8-yl)-AAF (1) and the 3-(deoxyguenosin-N $\left.{ }^{2}-y l\right)$ AAF (4).

In contrast, the DNA modified by the deacetylated form was less studied. However, recent studies show the importance of the in vitro mutagenicity of aminofluorene (5.6) and of the formation of aminofluorene as intermediate in the in vitro mutagenicity of AAF $(7,8)$. The adducts of ONA-AF are not yet firmly identified. The instability of DNA-AF and of Guo-AF, already reported In the literature (9-12) makes it difficult to datermine the nature of the adducts, which can be degraded in vivo or during the extraction or by enzymatic hydrolysis of DNA. The only aspect which is established is thet AF gets bound in vitro in mejority to guanine $(13,14)$ but the precise sites of binding are not determined.

Our previous results also indicated the transformetion in alkaline pH of AF residues bound to DNA. Moreover, we observed similar ultraviolet absorption spectra of alkali treated dDNA-AAF and dDNA-AF which auggest aimilar final reection products (15). These observations led us to the study of the alkaline stability of AAF and AF modified monomers.
$\mathrm{N}-\mathrm{OH}-\mathrm{AF}$ reacts with native and denatured DNA at slightly ecidic pH ; in the same experimental conditions no reaction was detected with the nucleosides or nucleotides (13,17) but the AF substituted monomers cen be obteined by alkaline hydrolysis of the tertiery N-acetyl group of N-(guanosin-B-yl)-AAF (and respectively the AAF adducts of deoxyguenosine and deoxyguenosine-5'monophosphate) (1,16).

In the present study we investigate the kinetics of the alkaline treatment of N -acetyleminofluorene adducts of guenosine, deoxyguenosine-5'-monophosphate and denatured DNA.

MATERIALS AND METHODS

Guenosine, deoxyguanosine and 5'-deoxyguanosine monophosphate are Sigme products. N-acetoxyecetylaminofluorene was synthesized starting from $\mathrm{N}-\mathrm{OH}-\mathrm{AF}$ (prepration previously described (15) with some minor modifications). N-AcO(${ }^{14} \mathrm{C}$)AAF was prepared from $\mathrm{N}-\mathrm{OH}-\mathrm{AF}$ and ${ }^{14} \mathrm{C}$-acetic anhydride (CEA) according to the following procedure : a mixture of $\mathrm{N}-\mathrm{OH}-\mathrm{AF}(20 \mathrm{mg})$ and ${ }^{14} \mathrm{C}$-acetic anhydride (1mCi) in 2 ml of ory athyl acetate was stirred for 10 minutes. After eveporation of the solvent, the residue was washed with pretroleum ether, dissolvad in $0.5 \mathrm{M} \mathrm{NaOH}(0.5 \mathrm{ml})$ and treated by 0.5 ml of acetic anhydride under nitrogen for 15 minutes. Extractions with ethyl ether (10 ml) of the reaction product gave upon eveporation in vacuo the labelled N-AcD-AAF. The latter was stored in ethanol under nitrogen at $-20^{\circ} \mathrm{C}$. GMP-AAF and dGMP-AAF 150 mg of nucleotide in 8 ml of buffer Na citrate $10^{-3} \mathrm{M}$, pH 7.5 were mixed with 50 mg of $N-A C O-A A F$ in 8 ml ethenol) at $40^{\circ} \mathrm{C}$ for 3 hours, and purified on a DEAE cellulose column as previously described (16).

Guo-AAF and dGuo-AAF were prepared by dephosphorylation of the above products by alkaline phosphatase treatment at $37^{\circ} \mathrm{C}, \mathrm{pH} 8.0$ (Tris-HCl 10 mM) for 1 hour and subsequent HPLC purification. We employed a Jobin-Yvon HPLC apparatus Miniprep LC, with a Lichrosort RP 18 (10μ) column fram Merck (L $=20 \mathrm{~cm}$, $\theta=2 \mathrm{~cm}$) ; the elution solvent was methenol-water $50 / 50$ (v / v). The same device end elution system were used for the separation of the products resulting from alkaline treatment of Guo-AAF and dGuo-AAF. Radioactive Guo-AAF was prepared by direct reaction of ($5{ }^{\prime}-^{3} \mathrm{H}$) guenosine (Naw England Nuclear s specific activity 31 Ci/mmol) with N-AcD-AAF as previously described (18).

Denatured DNA-AAF and DNA-(${ }^{14}$ CJAAF were prepared by direct reaction of DNA with N-ACO-AAF at $37^{\circ} \mathrm{C}$ for 3 hours at pH 7.0 (buffer $2 \times 10^{-3} \mathrm{M}$ Ne citrate, 20 \% ethanol〕. The DNAs were modified at 7 of the mucleotides for DNA-AAF and at 13 for DNA- (${ }^{14}$ C)AAF.

The ultraviolet absorption measurements were carried out with a Cary 15 spectrophotometer. The circuler dichroism measurements were performed with a Roussel-Jouan dichrograph 3. Thin layer chromatography was performed on Silicagel pletes F 254 Merck with fluorescent marker. The chromatography system solvents were : System I : n-butanol-acetic acid-water 100:22:50 ($\mathrm{V} / \mathrm{v} / \mathrm{v}$) for Guo-AAF and dGuo-AAF and System II : 1sopropanol-ammoniac 25 tweter 6:3:1 ($v / v / v$) for dGMP-AAF. The removel of ecetyl group from the AAF residues linked to CNA was followed by the measurement of the radioactivity of dialyzed samples with a Beckmen scintillation counter.

Guo-AAF, dGuo-AAF and dGMP-AAF were stored in a mixture of ethanol-2mM Ne citrate, $\mathrm{pH} 7.0,50: 50(\mathrm{v} / \mathrm{v})$ under nitrogen at $-20^{\circ} \mathrm{C}$. The alkaline treatment was cerried out in solutions of ethenol-2 mM Na citrate pH 7.0 5:100 (v / v) to which en 1 M NaOH solution was added under stirring.

RESULTS

1. Kinatics of alkaline treatment

Alkaline treatment of Guo-AAF, dGuo-AAF, dGMP-AAF end denatured DNA-AAF [dDNA-AAF] was done at $40^{\circ} \mathrm{C}$ in 0.1 M NaOH . The evolution of ultraviolet absorbence of Guo-AAF and of dDNA-AAF (in the region where DNA does not absorb) are presented in figure 1. Similar evolutions were observed for dGuo-AAF and dGMPAAF (results not shown). The variation with time of the ratio between the absorbance at 320 rom and that at one isosbestic wavelangth (303 nm for the mono-mers-AAF and 306 nm for dDNA-AAF) is presented in figure 2 . The results of thin layer chromatograms for the monomers and radioactivity measurements for dONA- (${ }^{14}$ CJAAF (radioactivity carried by the acetyl group -see Materials and Methods) performed at given time intervals during the reaction are presented in parallel on figure 2.

In all ceses one observes first a time interval in which absorbance at
 creasing). This phase corresponds to the disappearance of the acetylated form In the thin-layer chranatograms and to a decrease of radioactivity in the dialyzed DNA-AAF samples. Disappearance of the acetylated form occurs slower in dDNA-AAF then in dGMP-AAF, slower in dGMP-AAF than in dGuo-AAF and alower in dGuo-AAF than in Guo-AAF. During this phase one observes for all monomers the appearance of a product (product I) with Rf superior to Rf of the acetylated

Figure 1 - Evolution of ultraviolet absorption spectra during alkaline treatment in $0.1 \mathrm{M} \mathrm{NaOH}, 40^{\circ} \mathrm{C}$ of e) Guo-AAF, b) dDNA-AAF (7 \%). Concentrations of ebout $3.5 \times 10^{-4} M$ (AAF) residues. The numbers indicated on the spectra represent the time of reaction in minutes. --- Spectra of products at neutral pH. $20^{\circ} \mathrm{C}$.
form. For dGuo-AAF a second product appears (product II) and immediately afterwards a third one (product III). For Guo-AAF, a second product is also apearing and a third one is slightly visible. One obtaing during this phase isosbestic point values of 303 end 248 mm for Guo-AAF, OGuo-AAF, dGMP-AAF and 306 mm for \quad IDNA-AAF.

This step is followed by an other ane in which A_{320} is decreasing and A_{285} is increasing ($A_{320} / A_{\lambda 1 s o s b e s t i c}$ is slightly decreasing) in the cose of the modified monomers. By visual observation of the chromatograms one observes during this phase an increase of intensity of the spots corresponding to products II and III in disfavor of product I. The values of isosbestic points observed in the first phase are very slightly shifted (1-2 m) in this last phose. The R_{f} values of all three products of the alkaline treatment of Guo-AAF, dGuo-AAF and dGMP-AAF are given in Table I.

A more quantitetive analysis of the reaction was done uaing ($\left.5^{\circ}\right)^{3} \mathrm{H}$) Guo-

Figure 2 - Variation of $A_{320} / A_{\lambda i s o s b e s t i c ~ w i t h ~ t i m e ~ c o l c u l a t e d ~ f r o m ~ t h e ~ U . V . ~}^{\text {When }}$. absorption spectre for a) Guo-AAF, b) dGuo-AAF, c) dGMP-AAF, d) DNA-AAF. Same conditions as in Fig. 1. In al, b) and c) the tops of the figures are achematic representations of thin-layer chromatograms of samples taken at given time intervals. In d) the dashed line represents the variation of radioactivity of dialized DNA-AAF gamples as a function of time. The numbering I, II and III of the products is done in order of appearence of spots in chramatograms.

AAF. The radioactivity of the spots obtained by thin layer chromatography was determined and the results are presented in Fig. 3. The appeerence of product I and its transformation in products II and III are clearly observed in this experiment. The proportions of products I. II and III after 12 hours of alkaline treatmant are of about 86 product II, 12 product III and 2 z product I.

The first appearing product (I) in the case of Guo-AAF has an U.V. absorp-

Table I - Velues of R_{f} in the thin-layer chromatogrems of the reaction products (chromatography system solvents described in Materials and Mathods).

	Guo-AAF (syst.I)	dGuo-AAF (syst.I) dGMP-AAF (syst.II)	
Initial product	0.61	0.87	0.72
Product I	0.68	0.71	0.76
Product II	0.44	0.56	0.69
Product III	0.52	0.47	0.67

Figure 3 - Relative proportions of Guo-AAF and the products of its alkaline treatment as a function of time. Same conditions as in Fig. 1. -o-initial product, $\rightarrow-$ product 1 - Δ - product IT., -X- product III.
tion spectrum identical to the one el ready published for Guo-AF (1). This prodect was isolated from the reaction mixture on a LH 20 column (elution with a linear gradient of 0.02 M amonium carbonate-athanoll and its stability was studied. In 0.1 M NaOH at $40^{\circ} \mathrm{C}$ the sare type of evolution was observed as in the second part of the alkaline treatment of Guo-AAF (Figure 1a, right). By chromatography this evolution corresponded to the appearance of the spots cheracteristic of products II and III. Producte II and III were stable when isolated and incubated further on for 1 hour in alkaline canditions.

In the cese of alkaline treatment of dDNA-AAF the second step of the kinetics in which A_{320} decreased was also observed (Figure 1b). Moreover, we recall here an earlier result which shows that dDNA-AF (obtained by direct reaction of $\mathrm{N}-\mathrm{OH}-\mathrm{AF}$ with DNA in acidic pH) seems to bahave in the same menner -decrease of $\mathrm{A}_{320^{-}}$when incubated in alkaline conditions (15).

2. Circular dichroism spectra of initial products

The circular dichroism spectra of Guo-AAF, dGuo-AAF, dGMP-AAF and dDNAAAF at neutral pH and in 0.1 M NaOH at $4^{\circ} \mathrm{C}$ (in order to avoid deacetylation), as well as the spectre of unmodified monomers and daNA, in the same conditions are presented in figure 4.
3. Ultraviolet absorption and circular dichroism spectra of the three reaction products in the case of Guo-AAF and dGuo-AAF

Separation of the three reaction products was performed by thin-layer chromatography (in system I) or by HPLC for both Guo-AAF and dGuo-AAF. The three products obtained in each case were characterized by ultraviolet absorption and circular dichroism spectra. The results are presented in figure 5. The e values were calculated from the ebsorption spectra considaring the velue of $E(G u o-A A F)$ and $\varepsilon(d G u o-A A F)$ at $302 \mathrm{~nm}, \mathrm{pH} 7.0$ and $20^{\circ} \mathrm{C}$ at $22,000 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$ (16). The presence of an isosbestic point (302 m) over the first period of the reaction which shifts only very slightly over the second phase of reaction,

Figure 4 - Circular dichroism spectra of al Guo-AAF, b) dGuo-AAF, c) dGMP-AAF, d) dDNA-AAF at $4^{\circ} \mathrm{C}$ in … neutral pH , - 0.1 M NaCH . The correaponding unmodified monomers Guo, dGuo, dGMP and dDNA in -.-.- neutral pH and - - 0.1 M NaOH .

Figure 5 - Molar extinction coefficients and molar ellipticity as a function of wavelength for the three products obtained by alkaline treatment of a) Guo-AAF, b) dGuo-AAF in 2 mM Na citrate, pH 7.0 at $20^{\circ} \mathrm{C}$.
suggested to us that the three products of the reaction have all almost the same e at 302 nm in 0.1 M NaOH and $40^{\circ} \mathrm{C}$.

We did the approximation that all these products heve the same extinction coefficient et this wavelength. Thus from the spectre of each product at neutral pH and $20^{\circ} \mathrm{C}$ and in alkaline pH and $40^{\circ} \mathrm{C}$ we calculated the e values which are presented in figure 5.

DISCUSSION

The results presented here are showing differences and similarities in the alkaline treatment of Guo-AAF, dGuo-AAF, dGMP-AAF and dDNA-AAF.

The differences are concerning the rate of deacetylation of the products.

Thus dDNA-AAF is deacetylated slower than dGMP-AAF, this last one slower than dGuo-AAF and this very last one slower then Guo-AAF. There are at least two factors which can influence the kinetics of the reaction : the conformation and the electrical charge of the products. From circular dichroism spectra one can deduce conformational aspects. The CD spectra of Guo-AAF and dGuo-AAF are very different which proves a drastic difference in their conformations. On the other hand, the CD spectra of dGuo-AAF and dGMP-AAF are similar in shepe (intensities are however different) which suggests similar conformation of the two products. Therefore one can assume that the different rates of deacetylation are due to different stabilities of acetyl group resulting from differences in the conformations and in the electricel charge of the products. The case of dDNA-AAF is much more complex since more factors are involved, e.g. conformation of the nucleoside residues, influence of the neighboring bases and polyelectrolyte effects.

The similarities concern the number and the spectral characteristics of products obtained by the alkaline treatment. In each of the three cases (GuoAAF, dGuo-AAF and dGMP-AAF) we obtained three reaction products.

The first one (product I) can be identified to Guo-AF (or dGuo-AF or dGMPAF from the ultraviolet absorption spectra similar to the one already published (1). At alkaline pH this product is instable and gets transformed in two other products (II and III). In spite of the almost identical ultravialet absorption spectra of products II and III they can be easily differentiated by their circuler dichroism spectre. Because of the similar ultraviolet absorption and circular dichroism spectra of the two products I (deoxy and ribo), of the two products II (deaxy and ribo) and of the two producte III (deoxy and ribo) we can conclude that the ame transformation occura at alkaline pH for both Guo-AAF and dGuo-AAF. It is striking that for all the AFreaction products, the circular dichroism spectra are no more sensitive to the neture of the suger. It mainly reflacts the interaction between the base and the fluorene residue. This might suggest thet in the case of AAF-conjugates, the acetyl group-sugar interactions play an important role in the confomation of the products.

In the case of dDNA-AF obtained by direct reaction of $\mathrm{N}-\mathrm{OH}-\mathrm{AF}$ and dDNA the spectrum on the fluorene region corresponds well to the one of product I.

When incubated in alkeline conditions it shows an evolution similar to the one observed for the transformation of product I in products II and III (ses Figure 9 of (15)). The evolution of dDNA-AAF in alkaline conditions tends toward the game limit. Due to all these similarities we euggest that the alka-

Nucleic Acids Research

line treatment of Guo-AAF, dGuo-AAF, dGMP-AAF, dDNA-AAF and dDNA-AF will conduct at the limit to a mixture of the two AF-modified products II and III. We notice that this was already shown for dGuo-AAF by a different technique (19). A chemical structure for these two products implying opening of the imidezole ring of guanosine was very recently proposed (20).

In conclusion, it is tempting to speculate that such a transformation of dGuo-AF can occur in vivo due to a local alkaline pH. It is obvious that this will perturb seriously the properties of DNA containing these residues. This is an attractive explanation of the mutagenicity of aminofluorene residues.

Acknowledgements

This work was partially supported by the Dálegation Génerale à la Recherche Scientifique et Technique, Contract $n^{\circ} 77.7 .1349$.

REFERENCES

1. Kriek, E., Miller, J.A., Juhl, U., Miller, E.C. (1967) Biochemistry 6, 177-182.
2. Irving, C.C., Veazey, R.A. (1969) Cancer Res. 29, 1799-1804.
3. Kriek, E. (1972) Cancer Res. 32, 2042-2048.
4. Westra, J.G., Kriek, A., Hittenhausen, H. (1976) Chem. Biol. Interact. 15. 149-164.
5. Ames, B.N., Gurney, E.G., Miller, J.A., Bartsch, H. (1972) P.N.A.S. 69. 3128-3132.
6. Stout, D.L., Becker, F.F. (1979) Cancer Res. 39, 1168-1173.
7. Sakai, S., Reinhold, C.E., Wirth, P.J., Thorgeirsson, S.S. (1978) Cancer Res. 38, 2058-2067.
8. Schut, H.A.J., Thorgeirsson, S.S. (1978) Cancer Res. 38, 2501-2507.
9. Irving, C. (1966) Cencer Res. 26, 1390-1396.
10. Kriek, E. (1969/1970) Chem. Biol. Inter. 1, 3-17.
11. King, C.M., Phillips, B. (1969) J. Biol. Chem. 244, 6209-6216.
12. King, C.M., Phillips, B. (1970) Chem. Biol. Inter. 2, 267-271.
13. Kriek, E. (1965) Blochem. Blophys. Res. Comm. 20, 793-799.
14. Miller, E.C. (1978) Cancer Res. 38, 1479-1496.
15. Spodheim-Maurizot, M., Saint-Ruf, G., Leng, M. (1979) Nucl. Acids Res. 6, 1683-1694.
16. Kapular, A.M., Michelson, A.M. (1971) Biochim. Biophys. Acte 232, 436-450.
17. Kriek, E. (1974) Biochim. Biophys. Acta 355, 177-203.
18. Guigues, M., Leng, M. (1979) Nucl. Acids Res. 6, 733-744.
19. Fuchs, R.P.P. (1978) Analytical Blochem. 91, 663-673.
20. Kriak, E., in Environmentel Cercinogenesis : Occurrence, riak evaluation and mechanisms, p. 143-164, Eds Emmelot and Kriek, Publ. Elsevier/North Holland, 1979.
