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ABSTRACT

The complete nucleotide sequence has been determined for a cloned
double-stranded DNA copy of the haemagglutinin gene from the human
influenza strain A/NT/60/68/29C, a laboratory-isolated variant of
A/NT/60/68, an early strain of the Hong Kong subtype. The gene is 1765
nucleotides long and contains information sufficient to code for a
protein of 566 amino acids, which includes a hydrophobic leader peptide
(16 residues), HAl (328), HA2 (221) and an arginine residue which joins
the HA subunits. Comparison of the predicted amino acid sequence for
29C haemagglutinin with protein sequence data available for HA from
other influenza strains shows that no potential coding information is
lost by processing of the mRNA.

A comparison of the amino acid sequences predicted from the gene
sequences for 29C and fowl plague virus haemagglutinins, (1) indicates
the extent to which changes can occur in the primary sequence of different
regions of the protein, while maintaining essential structure and function.

INTRODUCTION

The genome of influenza A virus is segmented and consists of eight
single stranded RNA species of negative polarity. The fourth largest segment
codes for the viral haemagglutinin (HA) and the sixth for neuraminidase
(2-7). The virus is notable for the frequency with which alterations in
these two surface proteins are observed, changes in their structure
resulting in changes in viral antigenic character. Antigenic shift occurs
when there is a radical change in the antigenicity of the surface proteins
leading to the appearance of a new viral subtype, while antigenic drift
results from smaller, progressive changes in antigenicity within a

subtype (8).

In an attempt to relate changes in viral antigenicity to changes in the
primary structure of the major antigenic protein, haemagglutinin, peptide
maps and amino acid sequences of this protein prepared from different viral
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strains have been compared (9,10). However, the development of techniques
for cloning double-stranded (ds) DNA copies of RNA genes and for rapid
nucleotide sequenc ing has made it easier to study antigenic variation at
the level of the nucleic acid. As a prelude to comparative sequence
analysis of influenza HA genes, we synthesized a dsDNA copy of the HA gene
and cloned it by insertion into the plasmid pBR322, amplified in E. coli RRI
(7,11). Here we report the complete sequence of the HA gene from influenza
strain A/NT/60/68/29C, a laboratory-derived mutant produced from A/NT/60/68,
an early field isolate in the Hong Kong subtype (12,13).

MATERIALS AND METHODS
Growth and Purification of Virus. The virus strain A/NT/60/68/29C, supplied

by Dr. C. Hannoun was grown and purified by Drs. V. Bender and B. Moss, as
previously described (11).
Synthesis, cloning and characterisation of a dsDNA copy of the HA gene.

Procedures for the extraction of viral RNA, the synthesis of a dsDNA copy

of the HA gene, its insertion into pBR322 and amplification in E. coli RRI
have bheen described (7,11). (All recombinant DNA experiments were carried
out under CII-EKI conditions as prescribed by the Recombinant DNA Committee
of the Australian Academy of Science). The sequence inserted into pBR322 in
clone C89 was previously identified as an authentic copy of the HA gene by
comparing the nucleotide sequence of a small section (7) with the amino acid
sequence determined for the corresponding region of the HA protein of the
influenza strain A/Mem/102/72 (14).

Preparation of labelled restriction fragments. Plasmid DNA prepared from

clone C89 (7,11) was digested for two hours with restriction enzymes in 10yl
of buffer containing Tris-HCl, pH7.4 (6mM), NaCl (20mM), MgC12 (6mM) ,
2-mercaptoethanol (6mM) and 0.1 mg/ml bovine serum albumin. After digestion,
the mixture was adjusted to give a concentration of Tris-HC1l, pH 8.0 (55mM),
K1 (40mM) and three unlabelled deoxynucleoside triphosphates (each 40uM).
This solution was incubated for %5 min. at 37° with 10-20uCi of the fourth
deoxynuclecoside triphosphate, 03 P-labelled, and 1yl (approx. 8 units) of
AMV reverse transcriptase (kindly supplied by Dr. J.W. Beard, Life Sciences,
Inc., St. Petersberg, Fla.). Restriction enzymes used for digestion were
chosen such that only one end of the required DNA fragment could be labelled
under the above conditions. Alternatively, after labelling, the digestion
mixtures were heated to inactivate reverse transcriptase (700, 15 min) and an

unlabelled excess (lmM) of the radiocactive deoxynucleoside triphosphate was
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added. A second restriction enzyme digestion was then carried out. Labelled
fragments were separated by electrophoresis on a 4% polyacrylamide gel (11)
together with labelled restriction fragments of known size as markers.
Appropriate fragments were extracted from the gel and sequenced by the method
of Maxam and Gilbert (15).

Determination of gene sequence directly from viral RNA. The sequence at the

5' end of the HA gene, not represented in C89, was determined by the method
of Sanger et al, (16) using a denatured restriction fragment from C89 to prime
DNA synthesis, with viral genome RNA as template (17).

Compilation and analysis of sequence data. Nucleotide sequence data were

stored and analysed in a Digital PDP 11/10 computer, using programmes

devised by Staden (18,19), kindly adapted for our system by Caroline Bucholtz
and Dr. Alex Reisner. The HA proteins from fowl plague virus (FPV) and the
Hong Kong subtype were compared using the hydrophobicity values for amino
acids (20,21) as described by Bigelow (22) and computer programmes devised by
Dr. Alex Reisner.

RESULTS

Characterisation of the cloned ds DNA copy of the HA gene from influenza

strain A/NT/60/68/29C (7) included the derivation of a restriction map. This
information was used to prepare suitable restriction fragments for nucleotide
sequence analysis, resulting in the sequencing strategy shown in Fig. 1.

Since data were available on the amino acid sequence of areas of the HA protein
from another Hong Kong-type virus, A/Mem/102/72 (14), approximately 60% of the
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Figure 1. Strategy for sequencing a cloned dsDNA copy of the HA gene from
strain 29C. The arrow shows the amount and the direction of the composite
sequence information obtained from multiple experiments. ( 1&’ ) The seg-
uence of bases 300-370 was obtained using the Sanger chain termination method
(16) copying the HA gene RNA into cDNA using the Hinf I - Ava II fragment as
a primer for reverse transcriptase (17).
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Figure 2. Nucleotide sequence of the HA gene from Hong Kong influenza strain
29C and the amino acid sequence predicted from it. The RNA sequence ((-)
strand) is shown from 3' + 5' below it, the complementary (+) strand represent-
ing the mRNA sequence. Initiation and termination codons are boxed and the
arginine residue which connects HAl (Fig. 2a) and HA2 (Fig. 2b) is bracketed.
Possible glycosylation sites in the protein are underlined with dots. The end
of the clone is indicated by the vertical line to the right of the termination
codon. Restriction sites in the plasmid DNA are indicated in the equivalent
position on the mRNA sequence.

gene copy was sequenced on one DNA strand only. Adjoining sections of sequence
overlapped by a minimum of 15 nucleotides, except in the region of the Hind III
site (base 353), where the sequence was confirmed from the viral RNA itself,
using the chain termination sequencing method (16). A denatured 5l1-base DNA

fragment, obtained by digestion of C89 DNA with Hinf I and Ava II, was used as
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a primer for DNA synthesis (17). A similar technique was used in an attempt to
obtain the 5' terminal gene sequence, which was not represented in the cloned
gene (7).

Figure 2 shows the nucleotide sequence determined for the cloned dsDNA copy of
the HA gene from strain 29C and the amino acid sequence predicted for its
protein. The cloned gene copy contains 1739 nucleotides, commencing from the
3' terminal base of the gene, with the first 12 bases identical to the common
sequence found at the 3' termini of other influenza genome segments (23,24).
The cloned sequence extends nine bases beyond a termination codon in the same
phase as the only reading frame that is continuous for the length of the gene.
Part of the sequence shown for the 53' terminal region of the gene beyond the
end of the clone must be regarded as tentative. The sequence shown is iden-
tical to that obtained from a cloned copy of this section of the HA gene from
the 29C parent strain, A/NT/60/68 (25). Attempts to determine the sequence in
this region directly from the 29C viral RNA gave clear results between bases
1734-1744 and 1752-1763, the latter segment lying within a sequence common to
the 5' termini of all influenza genes so far examined (23,24). This leaves

in doubt a section of 7 nucleotides, whose sequence appeared to be the same

as that in A/NT/60/68, but for which unequivocal data could not be obtained
(data not shown).

Possible deletion of a base during cloning of a gene copy

The amino acid sequence data of Ward and Dopheide (14) enabled us to determine
the correct reading frame for the nucleic acid sequence of the ds DNA copy of
29C HA. However, reading backwards in this frame towards the N-terminus of
HAl, our initial sequence for 29C contained an in-phase termination codon at
bases 95-97 (Fig. 3a) and no in-phase ATG codon. The sequence of both strands
of the cloned insert agreed in this respect (data not shown). We therefore
attempted to confirm the sequence of this region directly by using a MboIIl/
Hae III fragment (bases 45-76 of the cloned insert) as a primer for cDNA syn-
thesis, with 29C genome RNA as a template (17). The sequence of the HA gene
thus derived included an extra A residue at position 107 in the plus strand
(Fig. 3b) which provided a continuous reading frame back to the ATG codon at
bases 30-32 and yielded an amino acid sequence compatible with that determined
for the N-terminus of mature HA from A/Mem/102/72 (26). We also determined the
nucleotide sequence in this region for C55, another plasmid containing a dsDNA
copy of the HA gene from 29C, isolated with CB9 from the same E.coli RRI trans-
formation. Unlike C89, this gene insert contained the A/T base pair at pos-
ition 107 (data not shown).
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125

FPigure 3. Comparison of (+) strand DNA
sequences between bases 95-125. (a) A
Hinf I/Hae III fragment labelled at the
Hinf I site was sequenced by the Maxam
and Gilbert procedure {(15). The position
of the missing base is indicated (<).

The base marked (-) at position 120 is a
C residue and is part of an Eco RII
restriction endonuclease site which is
methylated when the hybrid plasmid is
grown in E. coli RRI. (b) 29C genome
RNA was used as a template for cDNA
synthesis by reverse transcriptase

using a MboII/Hae III primer. Sequence
data was obtained by the "dideoxy" method
(16). The apparent missing residue in
the cloned DNA copy of the HA gene (see
(a)) is indicated (®@).

(b)
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DISCUSSION

Apparent deletion of a base from the HA gene copy in plasmid C89. A comparison

of the nucleotide sequences determined for HA genes (bases 95-125) from the

(+) strand of the cloned gene copies in C89 and C55 with the sequence obtained
directly from the genome RNA indicates that at position 107, a residue present
in the gene is missing in the C89 gene copy.
be drawn in a hairpin configuration (Fig. 4) with a stability of -4 Kcal (27).

This region of the HA gene can

The presence of multiple bands on the sequencing gel (Pig. 3 b) between
positions 103 and 111 may indicate that the hairpin structure is sufficiently
stable to present reverse transcriptase with some difficulty in negotiating
the 3' proximal side of the base-paired region. We speculate, therefore,
that the presence of this hairpin may result in incorrect copying of the RNA
by reverse transcriptase. Both Porter et al. (1),in cloning the FPV HA gene
and Richards et al.(28), in studying copies of chicken f-globin mRNA found
evidence for altered and missing bases in cloned DNA. However, they attrib-
uted this to repair or incorrect copying of mismatched regions associated
with the terminal loop priming second strand DNA synthesis.

while it is possible that the HA gene copy in C89 represents a variant
gene present in the viral population, such a deletion mutant should be
extremely rare, since the deletion would result in the premature termination
of synthesis of the HA protein, and this would be lethal in the next gener-
ation. Because the reverse transcriptase lacks a 3' exonuclease which could

edit mistakes, it is possible that errors may occur with low frequency during

1w uYa
G---C
C-—--G
U —— A
G---C
Uu ——- A
G-—--C
U G
U G 120
G A
100 U C
1 U C
3 80 G c 130 5’
(-)...CCUUUACU UGUAGU .

Figure 4. Structure of a hairpin loop which could form in the region of
bases 100-120 of the gene.
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the multi-step cloning procedure. Therefore, to gquard against such errors
when studying genes for which no protein sequence data are available, it may
be necessary to derive nucleotide sequences from more than one cloned gene

copy .

Structure of the HA gene from influenza of the Hong Kong subtype. Analyses

by restriction enzyme mapping (7), nucleotide sequencing of the cloned HA
gene copy and determination of the terminal sequence of the gene itself,
revealed a length of 1765 nucleotides for the HA gene from the Hong Kong
influenza strain 29C. This agrees with our previous estimate (1760 nucleo-
tides) based on electrophoretic mobility (11) and compares with a length
of 1742 nucleotides for the HA gene from the avian influenza strain FPV
(Rostock) (1).

The arrangement of the HA genes from 29C and FPV are compared in Fig. 5.
At the 3' end of the negative (genome) strand is a non coding sequence which
appears to be completely transcribed into cRNA in vitro (23) and in vivo prob-
ably forms the 5' non-translated region of the mRNA. This section of mRNA
may be subsequently modified in vivo if host-derived sequences and m7G caps
are attached (29).

Of the potential initiation codons in the (+) strand, only the one follow-
ing the first 29 bases is in the correct phase to provide a continuous reading
frame, which is also the frame prescribed by the known amino acid sequences
for HA from the Hong Kong strain A/Mem/102/72 (14,26). The next AUG in this
phase occurs 578 bases into the gene. Commencement of protein synthesis at
bases 30-32 would produce a very hydrophobic peptide of 16 amino acids preced-

vina 3 Z9bsses | 4Bbmsos | 084 beses Gbos!  6o3bmses DI OSbees s
e I B Y A v Do
itBase : 328ass Nas ! 221 sas Lo
1 Precureor . HA1 iecting | HA2 H :
protein | A i G 2 S S B S S S G S VAN S A Ay A | H
| peptide ide :
{Bass . 310ass Saas | 221 aas :
: : Y : 1
VS R N R LN A P .
FPV 2) bases ;| 54 bases 957 bases 25bases | 683 bases fyufizshmn
' ' H : IUAA;

Figure 5. Comparison of the HA gene structures for Hong Kong and Fowl Plague
viruses.
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ing the glutamine residue (bases 79-81) found to be the N-terminal amino acid
of the mature HA protein from A/Mem/102/72 (25).

The major and minor subunits (HAl and HA2 respectively) of the mature HA
protein appear to be generated by proteolytic cleavage of the primary trans-
lation product, with the loss of some amino acids connecting the two sections
(30). Aligning the amino acid sequence found at the end of the HAl and the
beginning of HA 2 for influenza A/Mem/102/72 (15) with the amino acid sequence
predicted by the HA gene from 29C, suggests that the connecting peptide con-
sists of a single arginine residue. The HA subunits of A/Vic/3/75 are also
linked by one arginine residue (31). 1In this respect, the .HA of these strains
resembles the H2-type HA from the Asian influenza strain A/Jap/305/57 (32) but
differs from the FPV protein, where the HA subunits are connected in the
immature protein by a basic pentapeptide (1).

The first in-phase termination codon (Fig. 3) is followed by only a short
non coding sequence. How much of this sequence is transcribed into mRNA is
not known, but it has been suggested that the U-rich sequence in the gene in
this region may signal the end of transcription (1), providing a site for
addition of poly A to the mRNA, Thus the 3' non-translated Eegion of the
mRNA following the termination codon could@ be as short as 14 bases in Hong
Kong HA and 6 bases in FPV HA.

The amino acid sequence predicted from nucleotide sequence data for the
HA gene of influenza A/Vic/3/75 (31) contained an additional asparagine resi-
due following HAl residue No. 8 (Fig. 2a). However, this additional residue
may be unique to the particular isolate studied, since it is absent from H3-
type HAl's in a total of six influenza strains isolated between 1968 and 1977.
(Both and Sleigh, unpublished results).

Comparison of nucleic acid sequences of Hong Kong and FPV HA genes. The genes

from the two subtypes have similar base compositions: for 29C A24s, G 20.5%,
C23.5%, U 32% and for FPV, A24x, G 1B8.4%, C 23.8%, U 33.8%. Codon utilisation
in the Hong Kong HA gene is similar to that for FPV, with some exceptions
which may reflect the availability of iscacceptor tRNAs in the host, e.g. CUG
is preferred for leu in the Hong Kong gene while FPV uses AAA for lys in pref-
erence to AAG (Table 1). The incidence of CpG dinucleotides is low for both
genes, as noted previously for FPV (1).

Comparison of amino acid sequences predicted by the two genes. The amino acid

sequence predicted from the nucleotide sequence for the 29C HA gene (Fig. 2)
is largely identical to that found for the HA protein from A/Mem/102/72
(14,26). As for HA molecules from other influenza strains, HAl has a high
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Table 1: Codon utilization in HA genes from Hong Kong and Fowl
Plague Influenza Viruses. FPV data is in brackets
below the corresponding figure for 29C.

U C A G U C A G
9 6 9 6 9 6 8 [y}
U (14) (4) (7) (7) 9) (3 (7) (1)
13 4 9 12 3 4 3 2
c (12) 4) (B8) (9) (4) (4 (4 (0

U

1 10 0 1 7 7 16 1

A (6) (13) (1) (0) (4) (6) (14) (4)
7 2 0 12 16 3 8 3

G (9) (1) (0) «(8) (8 (3) (11) (3)
14 le 22 3 11 10 13 10

U (1S5) (13) (23) (11) (9) (12) (17) (5)
18 6 21 14 4 5 20 7

C (9) (12) (14) (7) (6) (3) (9) (10)

A

14 13 19 10 9 11 16 13

A (16) (15) (24) (14) (5) (16) (28) (20)
9 4 11 11 6 2 13 14

G (11) (L) () (8) (10) (1) (10) (15)

proline content relative to HA2. Also remarkable is the similarity with other

strains in the number and distribution of cysteine residues in the 29C protein

(9 in HAl, 8 in HA2)
part in the FPV molecule.

(1,14,30).

Only one near the end of HA2 has no counter-

If the FPV and Hong Kong HA amino acid sequences

are aligned for maximum homology using the cysteine residues, seven of the

ten proline residues in the C-terminal half of the HAl are also conserved bet-

ween the subtypes. This suggests that the shape of this part of the molecule

is not permitted to vary extensively.

Potential sites for carbohydrate attachment (Fig.2), occurring (by

analogy with HA from the Asian subtype) at sequences of the type Asn-X-Thr

(30) ,are not conserved between subtypes.

With the cysteine residues aligned,

the sites at positions 22 and 38 in 29C are equivalent to those at 12 and

28 in FPV (1).

With the cysteine residues aligned, there is approximately 38% amino

In HA2 there is 65% homology,

acid conservation in HAl between FPV and 29C.

but in more than half of the 145 cases where the amino acid is conserved

a different codon is used;

69 differ by one base, 5 differ by two
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and in one case a serine uses an AGC instead of a UCA codon. Some

areas of HA2 show a particularly high degree of amino acid conservation,

e.g. the N-~terminal region. In addition, in some areas of HA2 where
the amino acid sequence is different, the character of the protein tends

to be preserved. Figure 6 shows an analysis of the degree of hydro-
phobicity of different areas of the HA protein from 29C and FPV. In
the C-terminal region of HA2, thought to be involved in anchoring

the HA to the viral lipoprotein membrane (30), both proteins are highly

hydrophobic in character, even though between residues 199 and 212, only one

out of 13 amino acids is conserved. This effect extends to other regions of the

HA as well. For example, the precursor peptides, cleaved from HA during

maturation, differ in length and sequence among FPV, 29C and viruses from the
H2 subtype (1, 32, 33); but are all hydrophobic in character. Also notable is
the area between HAl residues 85 and 240 of 29C for which the hydrophobicity

profile is broadly similar to the equivalent area in HAl of FPV, although the

amino acid sequences show only 32% homology. This type of analysis suggests

that amino acid divergence between HAs from different subtypes may be strictly

limited in some areas to those changes which do not significantly disturb the

local environment, while in other areas (e.g. residues 1-100 of HAl) little

constraint is apparent.

As sequence information on HA molecules from further

influenza subtypes becomes available, it should be possible to identify reg-

ions of the protein which are essential to maintain HA structure and function.

In addition, comparison in this way of closely related proteins from viruses

2673

20z Iudy /1 uo }senb Aq +1018€2/1952/Z 1/8/3I0IME/IBU/WOD dNO"DIISPESE//:SARY WOl POPEO|UMO



Nucleic Acids Research

of the same subtype may help to identify the amino acid changes which are
important in altering viral antigenicity.
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