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ABSTRACT

Part of the atp (or unc) operon encoding the a, B, v, § and e subunits
of Escherichia coli ATP-synthase has been cloned into the plasmid pACYC 184.
The DNA coding for the largest of these proteins, the a subunit, has been
sequenced by cloning into the bacteriophage M13 and sequencing with dideoxy
nucleotide chain terminators. It comprises 1539 nucleotides corresponding to
a protein of 513 amino acids.

INTRODUCTION

The structure of the membrane bound ATP synthase complex of Escherichia
coli closely resembles that of mitochondria and chloroplasts [1,2]. It
comprises an intrinsic membrane fraction (FO) and an extrinsic portion, F1,

which can be solubilised intact. F, contains five different polypeptides

1
designated a, B8, v, 6§ and ¢ for which a stoichiometry of 3:3:1:1:1 has been
proposed [3], although this is not universally accepted [4]. The catalytic
site of synthesis of ATP from ADP is found within F1 [1,2]. Bacterial F

contains three polypeptides [5] and forms a proton channel coupling the

0

vectorial movement of protons by energy transducing membranes to ATP
synthesis [1]. The entire bacterial complex is encoded by the atp [6] (or
unc [2]) operon located at about 83 minutes on theE. coli chromosomal map [7]
close to the origin of replication, oriC. Genetic analysis suggests that the
Fo polypeptides are clustered at the promoter proximal portion of the operon
and are followed by the genes encoding F1 subunits [2,6,8], but an
unambiguous order of genes has not yet been established [6,8,9]. UncA and
uncD genes have been assigned to the a and 8 subunits respectively [2]. In
the present work we have precisely located the uncA gene and determined its

coding sequence.
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MATERIALS AND METHODS
Cloning and preparation of DNA

ONA from bacteriophage AAsn5 containing about 26 kilobases of the
E. coli chromosome including asn, oriC, atp (or Egg), glmS and bglC,R was
prepared as described elsewhere [10]. We thank C. Lichtenstein and S. Brenner
for providing us with samples of phage DNA and E. coli KY7485 [9]. An EcoRI
digest of this DNA was ligated into the EcoRI site of plasmid pACYC184
located in the CamR gene [11] and transformed into E. coli-K12 HB101 [12].
Clones containing recombinant plasmids were identified by their antibiotic
resistance markers (Jc resistant, Cam sensitive) and then screened by the
alkaline SDS procedure [13] followed by EcoRI digestion and agarose gel
electrophoresis. Recombinant plasmids pN5R1 and pN5R2 containing R1 and R2
respectively were obtained by this procedure. Plasmid pN5R1 was then
amplified with chloroamphenicol and prepared by a scaled up version of this
procedure from a 2 g bacterial culture. Fragment R1 was excised from plasmid
and purified by preparative agarose gel electrophoresis in a 1% gel according
to Sanger et al. [14].
Ligation into M13

The whole fragment, R1, was cloned into the EcoRI site and digests with
Sall and Accl similarly cloned into their corresponding sites of M13mo7 by
published methods [14-161. Tagql and Hpall digests were cloned into the Accl
site and Sau3A digests into the Baml site of the same vector. Digests with
Alul, Haelll and Hpal were blunt-end ligated into the HinclI site of M13mp7,
pretreated with calf intestinal phosphatase (Worthington) as described else-
where (17].

Transformation and nucleoctide sequencing

Transformation of E. coli JM101[a(lacpro)supE, Thi, F'tra D36 pro AB lac
19aM15] (18] and purification of recombinant phages was carried out according
to [17]. Clones were sequenced by the dideoxy chain termination method [14,
19] using a synthetic primer 17 nucleotides in length complementary to a
region of M13mp7 immediately adjacent to the linker sequence [20]. Nucleotide
sequences were compiled and analysed with the aid of computer programs
described by Staden [21-23].

RESULTS
Cloning of genes for the F1 polypeptides

The genes for the five F1 polypeptides have been mapped previously to a
region of the E. coli chromosome shown in detail in Figure 1(a) and appear to
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Figure 1. The genetic and restriction map in the region of the atp operon.

(a) The extent of E. coli chromosomal DNA in transducing phage iAsn5 (hatched).
EcoRI restriction sites are shown by arrows, EcoRI fragment sizes are given in
kilobases [2,6]. (b) Plasmid pN5R1 containing the 2.5 kilobase EcoRI fragment,
R1 (hatched). Restriction sites are denoted by & Hpal, © Sall and O HindIII.
(c) The portion of fragment R1, with nucleotide numbers, sequenced in the
present work. The arrows indicate the 5' ends of the various clones sequenced
by the M13 shotgun-dideoxy chain termination strategy L15]; the length of
arrows shows the length of the sequence determined. * The Alul clone containing
nucleotides -73 contained both ends of fragment R1 in which the EcoRI

ends had been religated. -

be contained within two EcoRI fragments (R1 and R2) of approximately 2.5 and
4.5 kilobases respectively [8,9]. Accordingly these two fragments were cloned
into plasmid from an EcoRI digest of AAsn5 DNA (Figure 1b). Their identities
were confirmed by comparison of their mobilities on agarose gels with an

EcoRI digest of 1Asn5 and by restriction digestion analysis with the enzyme
Pstl in the case of R2 (A. Eberle, unpublished work).

Nucleotide seguence

Fragment R1 was cloned into the EcoRI site of M13mp7 and isolated in
both orientations. Then the sequence for about 200 bases was determined at
each end of the clone. This allowed the orientation of the clone to be
determined since sequence corresponding to the NHz-terminal sequence of the
a-subunit could be identified [14]. This showed that an EcoRI site was
located between nucleotides 9 and 10 of the coding sequence and hence that

all of the coding sequence for a except for the first nine nucleotides has
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been determined (see legend to Figure 2). The sequence of R1 was
extended almost to completion by random sequencing of restriction digests by
the M13 cloning chain termination procedure [19]. A search for restriction
sites in the partial sequence revealed Hpal sites at nucleotides 910 and 1102
(as numbered in the final sequence). The fragment between these two sites
was cloned from an Hpal digest and on sequence analysis gave the final over-
lap. A summary of the clones used to establish the sequence is given in
Figure 1(c). Most regions of the sequence (95%) are covered by two or more
independent clones and 51% of the sequence has been determined on both
strands. The nucleotide sequence of the coding region of the ATP-synthase

a-subunit and the deduced protein sequence are shown in Figure 2.

DISCUSSION

Comparison with the a-protein

The nucleotide sequence described here agrees exactly with the indepen-
dently determined sequence of E. coli ATP-synthetase a-subunit from amino
acid residues 4-30 and with the C-terminal residue tryptophan determined by
hydrazinolysis of the protein [24]. The molecular weight of the protein
calculated from the sequence is 55,423 daltons, compared with values of 54-60
X 103 daltons determined by polyacrylamide gel electrophoresis under
denaturing conditions [2]. The amino acid composition of the a-subunit
derived from DNA sequence is compared in Table 1 with that determined by
analysis of hydrolysates of the a-subunit [24]. The two sets of values are
in good agreement, the only major discrepancy being between the values for
the number of alanine residues.

Further support for the protein sequence described here has been
obtained by amino acid sequence analysis of peptides isolated from a cyanogen
bromide digest of the a-subunit of bovine mitochondrial ATP-synthase (N.J.G.,
M.J. Runswick, M. Saraste and J.E.W., unpublished results). These sequences
are homologous with regions of the E. coli a-subunit sequence as depicted in
Figure 2.

Codon usage

It has already been observed that codon usage in other E. coli genes is

non-random with striking preferences for certain codons [5]. The codon usage

in the sequence described here (Table 2) resembles especially the codon

usages described for prolipoprotein, the most abundant protein in the E. coli

cell [26], and certain ribosomal proteins [27.18]. In these cases codon

usage reflects tRNA abundance: codons corresponding to abundant iso-accepting
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Table 1

Amino acid composition of the a-subunit of E. coli ATP-synthase

Amino acid From DNA sequence Recalculated from [24]

Asparagine 16]

Aspartic acid 28 | 43.4
Threonine 23 22.7
Serine 32 33.6
Glutamine 29]

Glutamic acid 31) 60.7
Proline 18 19.3
Glycine 47 50.0
Alanine 54 62.1
Cysteine 3 3.6
Valine 41 44.4
Methionine 12 9.6
Isoleucine 40 37.6
Leucine 48 47.7
Tyrosine 15 14.7
Phenylalanine 14 13.7
Histidine 7 6.9
Lysine 24 23.6
Arginine 30 28.8
Tryptophan 1 1.0
TOTAL 513 -

tRNAs are preferred (for a summary of tRNA abundance in E. coli see supple-
ment to ref. 28). This may be because of the need of the cell for either
efficient or high fidelity translation of essential proteins [28]. Codon
usages in genes of abundant proteins differ strikingly from those observed in
genes expressed at low levels where rarer codons are used more frequently.
(For a quantitative assessmentof the role of codon usage in expression of
E. coli genes see ref. 25.)

An interesting feature of the atp operon is that the proteins of the
ATPase complex are not present in stoichiometric amounts with (possibly)
three copies of a and 8 to each copy of y, § and ¢ [3]. Codon usage may

provide a mechanism for modulation of expression of the different cistrons in
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Table 2

Codon usage in uncA. The numbers exclude the first three
codons which have not been unambiguously assigned.

U c A G
Uuu Phe 1 UCU Ser 11 VAU Tyr 4 UGU Cys 3
UuC Phe 13 UcC Ser 16 UAC Tyr N UGC Cys O
U UUWA leu O UCA Ser O UAA Ochre 1 UGA Opal O
UG Leu 2 UCG Ser 1 UAG Amber O UGG Trp 1
CUU Leu 3 CCU Pro 1 CAU His O CGU Arg 25
CUC Leu 4 CCC Pro O CAC His 7 CGC Arg 5
¢ CUA Leu 1 CCA Pro 3 CAA Gln 4 €GA Arg 1-
CUG Leu 38 CCG Pro 14 CAG Gln 24 €GG Arg O
AUU Ile 10 ACU Thr 4 AAU Asn 2 AGU Ser 2
AUC Ile 30 ACC Thr 17 AAC Asn 14 AGC Ser 2
A AUA Ile O ACA Thr 2 AAA Lys 19 AGA Arg O
AUG Met 11 ACG Thr O AAG Lys 5 AGG Arg O
GUU Vval 24 GCU Ala 16 GAU Asp 12 GGU Gly 28
GUC Vval 2 GCC Ala 8 GAC Asp 18 GGC Gly 16
G GUA val 9 GCA Ala 18 GAA Glu 27 GGA Gly 1
GUG val 6 GCG Ala 12 GAG Glu 4 GGG Gly 1

the atp operon. Analysis of other genes in this operon should test this

idea.
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