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ABSTRACT

In predicting the pathogenicity of a nonsynonymous
single-nucleotide variant (nsSNV), a radical change
in amino acid properties is prone to be classified as
being pathogenic. However, not all such nsSNVs are
associated with human diseases. We generated ran-
dom forest (RF) models individually for each amino
acid substitution to differentiate pathogenic nsSNVs
in the Human Gene Mutation Database and common
nsSNVs in dbSNP. We named a set of our models ‘In-
dividual Meta RF’ (InMeRF). Ten-fold cross-validation
of InMeRF showed that the areas under the curves
(AUCs) of receiver operating characteristic (ROC)
and precision–recall curves were on average 0.941
and 0.957, respectively. To compare InMeRF with
seven other tools, the eight tools were generated us-
ing the same training dataset, and were compared us-
ing the same three testing datasets. ROC-AUCs of In-
MeRF were ranked first in the eight tools. We applied
InMeRF to 155 pathogenic and 125 common nsS-
NVs in seven major genes causing congenital myas-
thenic syndromes, as well as in VANGL1 causing
spina bifida, and found that the sensitivity and speci-
ficity of InMeRF were 0.942 and 0.848, respectively.
We made the InMeRF web service, and also made
genome-wide InMeRF scores available online (https:
//www.med.nagoya-u.ac.jp/neurogenetics/InMeRF/).

INTRODUCTION

Development of the high-throughput sequencing (HTS)
technologies has enabled identification of a large num-

ber of single-nucleotide variants (SNVs) in human dis-
eases in a reasonable time at a reasonable cost. Nonsyn-
onymous SNVs (nsSNVs) constitute most of the identified
pathogenic SNVs, although the numbers of pathogenic in-
tronic splicing SNVs and pathogenic copy number varia-
tions are also increasing (1). The Human Gene Mutation
Database (HGMD) (2) and ClinVar (3) are major databases
of pathogenic SNVs. Along with advancement of the HTS
technologies, in silico tools to predict pathogenicity of an
identified nsSNV have been developed using various ma-
chine learning techniques, including (i) support vector ma-
chine (SVM) [CADD (4,5), MetaSVM (6) and MutPred
(7,8)], (ii) random forest (RF) [DEOGEN2 (9), MutPred
(7,8), REVEL (10) and VEST (11)], (iii) gradient boosting
decision tree [M-CAP (12)], (iv) logistic regression [MetaLR
(6)], (v) hidden Markov model [FATHMM (13)] and (vi)
deep learning [DANN (14), PrimateAI (15) and MVP (16)].

We previously used SVM modeling to make IntSplice for
predicting the splicing effect of SNVs at intronic positions
−50 to −3 (17). In this communication, we made RF mod-
els to differentiate pathogenic nsSNVs in HGMD and com-
mon nsSNVs in dbSNP. Compared to SVM modeling, RF
modeling is suitable for a large dataset, and requires less
computer resources and less efforts in tuning hyperparame-
ters (18,19). We named a set of our models ‘Individual Meta
RF’ (InMeRF). We called it ‘individual’, because we gener-
ated an RF model for each of 150 amino acid (AA) substi-
tutions. Among 20 × 19 = 380 possible AA substitutions,
nsSNVs are able to cause 150 AA substitutions. Individual
modeling alleviated a possible bias that makes radical AA
changes being predicted to be pathogenic. We made an In-
MeRF web service. We also analyzed all possible nsSNVs in
the human genome, and made the genome-wide InMeRF
scores available online.
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Table 1. Thirty-seven tools in dbNSFP v4.0a (21) and their percent coverage for the sum of 72 556 pathogenic nsSNVs and 162 918 common nsSNVs,
which were used to generate InMeRF models

Tool Type Pathogenic nsSNVs (%) Common nsSNVs (%) References
SIFT Prediction 97.31 89.62 (23–26)
SIFT4G Prediction 98.12 93.46 (27)
Polyphen2 HDIV Prediction 92.14 80.88 (28)
Polyphen2 HVAR Prediction 92.14 80.88 (28)
LRT Prediction 93.93 72.45 (29)
MutationTaster Prediction 99.94 95.72 (30)
MutationAssessor Prediction 89.32 76.07 (31)
FATHMM Prediction 98.27 87.35 (13)
PROVEAN Prediction 98.29 90.39 (32,33)
VEST4 Prediction 99.35 95.72 (11)
MetaSVM Prediction 99.40 94.08 (6)
MetaLR Prediction 99.40 94.08 (6)
M-CAPa Prediction 97.39 37.24 (12)
REVEL Prediction 99.40 94.08 (10)
MutPreda Prediction 81.09 6.21 (7,8)
MVP Prediction 99.12 73.85 (16)
MPC Prediction 91.76 75.79 (34)
PrimateAI Prediction 96.72 85.13 (15)
DEOGEN2 Prediction 94.52 86.73 (9)
CADD Prediction 100.00 100.00 (4,5)
DANN Prediction 100.00 100.00 (14)
fathmm-MKL Prediction 100.00 100.00 (35)
fathmm-XF Prediction 86.76 92.20 (36)
Eigen Prediction 87.62 92.02 (37)
Eigen-PC Prediction 87.62 92.02 (37)
GenoCanyon Prediction 100.00 100.00 (38)
integrated fitCons Prediction 87.68 97.44 (39–41)
LINSIGHTa Prediction 0.07 3.52 (22)
GERP++ Conservation 99.98 98.51 (42)
phyloP100way vertebrate Conservation 100.00 99.97 (43,44)
phyloP30way mammalian Conservation 100.00 99.94 (43,44)
phyloP17way primate Conservation 100.00 99.90 (43,44)
phastCons100way vertebrate Conservation 100.00 99.97 (43,44)
phastCons30way mammalian Conservation 100.00 99.94 (43,44)
phastCons17way primate Conservation 100.00 99.90 (43,44)
SiPhy Conservation 99.88 97.09 (45,46)
bStatistic Conservation 98.93 98.02 (4,5)

aExcluded from features to make our models and from comparison with InMeRF because of low nsSNV coverages.

MATERIALS AND METHODS

Generation of InMeRF models

We used the HGMD Pro release 2015.2 (2) to obtain
pathogenic nsSNVs. Among them, we filtered 72 556
pathogenic nsSNVs with both ‘CLASS = DM’, which
stands for disease-causing mutation, and ‘MUT = ALT’,
which indicates that an alternative nucleotide is a muta-
tion. Even when an nsSNV was reported in multiple pa-
tients, the nsSNV was counted as a single nsSNV in the
training dataset. We next extracted 166 161 common nsS-
NVs from dbSNP build 151 (20) included in dbNSFP
v4.0a (21), for which a minor allelic frequency (MAF)
was >0.001 in 1000Gp3 AF, UK10K AF, ExAC AF, gno-
mAD exomes AF or gnomAD genomes AF. We then fil-
tered 162 918 common nsSNVs by removing nsSNVs either
included in HGMD Pro release 2015.2 (2) or labeled as ‘clin-
var clnsig = Pathogenic or Likely pathogenic’ in dbNSFP
v4.0a.

Feature values to differentiate pathogenic and common
nsSNVs were obtained from 37 tools in dbNSFP v4.0a.
In dbNSFP v4.0a, the scores are normalized so that a
pathogenic nsSNV gives rise to a rank score of 1 and a
normal nsSNV returns a rank score of 0. We calculated
percent coverages of the 37 tools for the pathogenic
and common nsSNVs (Table 1). The coverages of M-
CAP (12), MutPred (7,8) and LINSIGHT (22) for the

common nsSNVs were as low as 37.24%, 6.21% and
3.52%, respectively (Table 1). We thus excluded these
three tools, and rank scores of the remaining 34 tools in
dbNSFP v4.0a were used as feature values [SIFT (23–26),
SIFT4G (27), Polyphen2 HDIV (28), Polyphen2 HVAR
(28), LRT (29), MutationTaster (30), MutationAssessor
(31), FATHMM (13), PROVEAN (32,33), VEST4 (11),
MetaSVM (6), MetaLR (6), REVEL (10), MVP (16),
MPC (34), PrimateAI (15), DEOGEN2 (9), CADD (4,5),
DANN (14), fathmm-MKL (35), fathmm-XF (36), Eigen
(37), Eigen-PC (37), GenoCanyon (38), integrated fitCons
(39–41), GERP++ (42), phyloP100way vertebrate (43,44),
phyloP30way mammalian (43,44), phyloP17way primate
(43,44), phastCons100way vertebrate (43,44), phast-
Cons30way mammalian (43,44), phastCons17way primate
(43,44), SiPhy (45,46), and bStatistic (4,5)]. To make RF
models, nsSNVs that lacked one or more of 34 rank scores
in dbNSFP v4.0a were also excluded.

The pathogenic and common nsSNVs were classified into
150 different nonsynonymous AA substitutions, which pos-
sibly occur by a single-nucleotide substitution. In order
to select nsSNVs with high MAFs, the common nsSNVs
were sorted in descending order of MAF of 1000Gp3 AF.
When MAF was absent in 1000Gp3 AF, MAFs of TWIN-
SUK AF, ALSPAC AF, ExAC AF, gnomAD exomes AF
and gnomAD genomes AF were used in this order. NsS-
NVs without any MAF were ranked lower than MAF-
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bearing nsSNVs. In order to make unbiased RF models,
the same numbers of pathogenic and common nsSNVs were
used for each AA substitution (Supplementary Table S1A).
We confirmed that modeling with all pathogenic nsSNVs
and all common nsSNVs made the RF models less depend-
able compared to the balanced training datasets (Supple-
mentary Table S1B). We also confirmed that modeling with
the same numbers of pathogenic nsSNVs and ‘rare’ com-
mon nsSNVs similarly made less dependable RF models
(Supplementary Table S1C). In this ‘rare’ common mod-
eling, nsSNVs were sorted in ascending order of MAF of
1000Gp3 AF to select nsSNVs with low MAFs.

The 34 rank scores in dbNSFP v4.0a were used as fea-
ture values to make RF models to differentiate pathogenic
and common nsSNVs. RF modeling was performed using
a machine learning library, scikit-learn (47), on Python ver-
sion 3.7. In this modeling, hyperparameters were set to (i)
n estimators (range(10, 110, 10)), (ii) criterion (‘gini’, ‘en-
tropy’) and (iii) max depth (i for i in range(1, 6, 1)). These
hyperparameters represent that (i) the number of trees in the
forest is selected from 10 to 100 by 10 steps, (ii) the function
to measure the quality of a split is selected as Gini impurity
or information gain and (iii) the maximum depth of the tree
is selected from 1 to 5 by one step. Optimal hyperparameters
were automatically determined by 10-fold cross-validation
grid search. RF models were generated independently for
each of 150 different AA substitutions. An overview of In-
MeRF modeling is shown in Supplementary Figure S1A.

Comparison of InMeRF with 25 other prediction tools in db-
NSFP v4.0a

To compare InMeRF with 25 other prediction tools (Table
1), we used three testing datasets of VariBenchSelected, pre-
dictSNPSelected and SwissVarSelected (48) derived from
VariBench (49,50), predictSNP (51) and SwissVar (52), re-
spectively (Supplementary Table S2). Among the 28 predic-
tion tools in dbNSFP v4.0a, M-CAP, MutPred and LIN-
SIGHT were excluded from the comparisons because of low
nsSNV coverages, as stated earlier. Some tools might have
used subsets of the three testing datasets to generate the
models, and are expected to show better predictive perfor-
mance than the others.

Comparison of InMeRF with 10 other tools in the lack of
overlapping nsSNVs between training and testing datasets

To compare InMeRF with 10 previously reported tools that
were generated by an identical CADD training dataset (48),
we generated InMeRF-CADD using the CADD training
dataset (Supplementary Figure S1B). When a rank score
was missing for a specific nsSNV in the testing datasets, an
average of all rank scores for an AA substitution of interest
was used as a rank score of the missing tool.

Application of InMeRF to nsSNVs associated with congeni-
tal myasthenic syndromes and spina bifida

We predicted the pathogenicity of 155 pathogenic nsSNVs
and 125 common nsSNVs in seven major genes (DOK7,

Figure 1. The ratio of pathogenic nsSNVs to common nsSNVs of each
AA substitution is plotted on each category of the BLOSUM62 score (55).
The BLOSUM62 score of -3 like p.R335C in VANGL1 indicates a radical
AA substitution, whereas the score of 3 indicates a slightly deleterious AA
substitution. The ratios and BLOSUM62 scores of 150 AA substitutions
are indicated in Supplementary Table S1B. P = 0.001 by the Jonckheere–
Terpstra trend test, which is for testing ordered differences in medians, on
R version 3.5.

MUSK, AGRN, LRP4, CHRNE, COLQ and GFPT1) caus-
ing congenital myasthenic syndrome (CMS) (53,54), as well
as in VANGL1 causing spina bifida.

RESULTS

A reason why we developed InMeRF

We identified p.R335C in VANGL1 in a patient with
spina bifida. An arginine-to-cysteine (R-to-C) substitu-
tion causes a radical change in AA properties based on
the BLOSUM62 score (55). Indeed, more pathogenic nsS-
NVs have been reported in radical AA substitutions com-
pared to common nsSNVs (Figure 1). We thus pursued
the pathogenicity of p.R335C, but found that p.R335C had
no effect on subcellular localization of Vangl1, interaction
of Vangl1 with SCRIB and embryonic development of ze-
brafish (see the Supplementary Information). This failure
prompted us to make a prediction model for each AA sub-
stitution. Among 20 × 19 = 380 possible AA substitutions,
150 AA substitutions can occur by an SNV, whereas the
other 230 AA substitutions require two or three nucleotide
changes.

Generation of InMeRF models

To circumvent a possible bias that makes radical AA
changes being predicted to be pathogenic, we made an
RF model to discriminate pathogenic and common nsS-
NVs for each of the 150 AA substitutions. InMeRF is
thus comprised of 150 RF models representing all possi-
ble AA substitutions caused by an SNV. We used 72 556
pathogenic nsSNVs and 162 918 common nsSNVs in db-
NSFP v4.0a to make our training dataset. To unbiasedly
predict pathogenic and common nsSNVs, we used the same
numbers of pathogenic and common nsSNVs for each RF
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A

B

Figure 2. Scatter plots of the AUC of an ROC curve (A) and a PR curve
(B) against the number of nsSNVs in the training dataset. Values of 150
RF models are individually plotted.

modeling. The number of pathogenic or common nsSNVs
used to make each RF model was on average 256.8 ranging
from 12 to 1494 (Supplementary Table S1A). Feature val-
ues to differentiate pathogenic and common nsSNVs were
obtained from rank scores of 34 tools in dbNSFP v4.0a.
Each rank score represents a normalized score of a previ-
ously reported prediction tool with a rank score of 1 be-
ing pathogenic and a rank score of 0 being normal. In our
RF models, pathogenic nsSNVs were predicted to be 1, and
normal nsSNVs were predicted to be 0. A threshold to dif-
ferentiate pathogenic and normal nsSNVs was set to 0.5.

Ten-fold cross-validation of InMeRF models generated by
our training dataset

We evaluated the performance of our RF models by mak-
ing receiver operating characteristic (ROC) and precision–
recall (PR) curves by 10-fold cross-validation. We plotted an
area under the curve (AUC) of an ROC curve of each AA
substitution against the number of nsSNVs used to make
each RF model (Figure 2A and Supplementary Table S1A).
We similarly plotted an AUC of a PR curve of each AA
substitution (Figure 2B and Supplementary Table S1A). We
observed that ROC-AUCs and PR-AUCs were mostly inde-
pendent of the number of nsSNVs in the training dataset,
and even <500 nsSNVs mostly gave rise to ROC-AUCs and
PR-AUCs of >0.9.

We next calculated seven statistical measures [ac-
curacy, precision/positive prediction value (PPV),
recall/sensitivity, specificity, F1 score, negative predic-
tive value (NPV) and Matthews correlation coefficient
(MCC)] according to the Human Mutation guidelines
(48,56–57) using 10-fold cross-validation. Statistical mea-
sures of 150 RF models are indicated in Supplementary
Table S1A, and their means and standard deviations
(SDs) are indicated in Table 2. Among the seven statistical
measures, MCC had the lowest mean statistical measure of
0.882, whereas specificity had the highest mean statistical
measure of 0.949 (Table 2).

Comparison of InMeRF models with 25 other prediction tools
in dbNSFP v4.0a

We compared InMeRF with 25 prediction tools includ-
ing 4 recently reported tools (MVP, MPC, PrimateAI and
DEOGEN2), which were newly added in dbNSFP v4.0a,
using three testing datasets (VariBenchSelected, predict-
SNPSelected and SwissVarSelected) (Supplementary Table
S2) (48). Compared to the four recently reported predic-
tion tools, ROC-AUCs of InMeRF were ranked first in
all three testing datasets (Figure 3). Similarly, compared
to the 25 prediction tools, ROC-AUCs of InMeRF were
ranked fourth in VariBenchSelected and first in predict-
SNPSelected and SwissVarSelected (Supplementary Figure
S2 and Supplementary Table S3). On average, both ROC-
AUC and PR-AUC of InMeRF were ranked first compared
to the 25 prediction tools (Supplementary Table S3D). This
analysis, however, can be possibly affected by type 1 circu-
larity, which represents that the same nsSNVs are included
in both training and testing datasets (48). Scores given by
InMeRF and by the 25 prediction tools for each nsSNV
in the three testing datasets are indicated in Supplementary
Table S4.

Comparison of InMeRF models generated by the CADD
training dataset with seven other tools generated by the
CADD training dataset

Grimm et al. (48) generated 10 tools using an identical
training dataset derived from CADD (4). They also made
three independent testing datasets (VariBenchSelected, pre-
dictSNPSelected and SwissVarSelected) that had no shared
nsSNVs with each other or with the CADD training
dataset (complete lack of type 1 circularity). One of the
10 tools, MutationTaster (30), however, had the type 1 cir-
cularity stated earlier. Another tool, FATHMM’s weighted
(FATHMM-W) (13,48), had type 2 circularity, which repre-
sents that the model is tuned to differentiate genes carrying
only common nsSNVs and genes carrying only pathogenic
nsSNVs, but not to differentiate nsSNVs within a single
gene (48). Excluding these two tools, we compared In-
MeRF with the eight remaining tools. To this end, we gen-
erated InMeRF-CADD using the CADD training dataset
(Supplementary Figure S1B). Scores and labels given by
InMeRF-CADD and by the eight tools for each nsSNV
in the three testing datasets are indicated in Supplementary
Table S5. Statistical measures of InMeRF-CADD and the
eight tools are shown in Supplementary Table S6. The mean
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A B

C D

E F

Figure 3. ROC and PR curves of InMeRF and four newly added prediction tools in dbNSFP v4.0a using testing datasets of VariBenchSelected (A, B),
predictSNPSelected (C, D) and SwissVarSelected (E, F). ROC and PR curves of InMeRF and 25 other tools including the 4 tools in this figure are indicated
in Supplementary Figure S2.
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Table 2. Seven parameters of InMeRF comprised of 150 RF models by 10-fold cross-validation to evaluate prediction performance indicated in the
Human Mutation guidelines (48,56–57)

Parameters Accuracy 

(ACC) 

Precision/Positive 

Prediction value 

(PPV) 

Recall/ 

Sensitivity 

Specificity F1 score Negative predictive  

value (NPV) 

Matthews correlation  

coefficient (MCC) 

Mean ± SD 0.941 ± 0.032 0.948 ± 0.034 0.933 ± 0.040 0.949 ± 0.034 0.940 ± 0.033 0.935 ± 0.038 0.882 ± 0.065 

 

Accuracy =
TP + TN

TP + FP + TN + FN
 

Rate to predict true positives and true negatives in the whole dataset 

Precision/Positive Prediciton Value (PPV) =
TP

TP + FP
  

Rate of true positives in predicted positives 

Recall/Sensitivity =
TP

TP + FN
 

Rate of true positives in actual positives 

Speci�icity =
TN

FP + TN
 

Rate of true negatives in actual negatives 

F1 score = 2
Precision ×  Recall

Precision + Recall
 

Harmonic mean of precision and recall. Higher precision and higher recall increase F1 score, but discrepancy between precision and recall 

lowers F1 score. 

Negative Predictive Value (NPV) =
TN

TN + FN
 

Rate of true negatives in predicted negatives 

Matthews Correlation Coef�icient (MCC) =
TP × TN– FP × FN

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
 

A correlation coefficient between the actual and predicted binary conditions while the numbers of each condition are balanced. Unlike the other 

parameters, MCC balances the ratio between actual positives and actual negatives. 

 
Confusion matrix 

Actual condition 

Actual positive Actual negative 

Predicted 

condition 

Predicted positive True positive (TP) False positive (FP) 

Predicted negative False negative (FN) True negative (TN) 

 

ROC-AUCs were ranked in the order of InMeRF-CADD,
PolyPhen2, MutationAssessor, SIFT, CADD, FATHMM-
U, LRT, PhyloP and GERP++. The ROC and PR curves
of the four top-ranked tools (InMeRF-CADD, PolyPhen2,
MutationAssessor and SIFT) are shown in Figure 4. Sim-
ilarly, the ROC and PR curves of InMeRF-CADD and
the eight tools are shown in Supplementary Figure S3.
Although the ROC-AUC of InMeRF-CADD was ranked
first for each of the three datasets, PR-AUC of InMeRF-
CADD was ranked second, third and first for VariBenchS-
elected, predictSNPSelected and SwissVarSelected, respec-
tively (Supplementary Table S7).

Application of InMeRF to congenital myasthenic syndromes
and spina bifida

DOK7, MUSK, AGRN, LRP4, CHRNE, COLQ and
GFPT1 are frequently mutated genes in CMS (53,54). In ad-
dition, our motivation to develop InMeRF arose from our
failure in proving the pathogenicity of p.R335C in VANGL1
in spina bifida. We thus applied InMeRF to 155 pathogenic

nsSNVs and 125 common nsSNVs in these eight genes. In-
MeRF predicted that 146 out of 155 truly pathogenic nsS-
NVs are pathogenic (sensitivity = 0.942) and that 106 of
125 truly common nsSNVs are normal (specificity = 0.848)
(Supplementary Table S8). The sensitivity of 0.942 with
these eight genes was comparable to the sensitivity (0.930
± 0.040, mean and SD of 150 RF models) obtained by 10-
fold cross-validation of the training dataset (Table 2). In
contrast, the specificity of 0.848 was slightly inferior to the
specificity (0.949 ± 0.034, mean and SD of 150 RF mod-
els) obtained by 10-fold cross-validation (Table 2). Predic-
tions of pathogenic and common nsSNVs in MUSK and
VANGL1 are schematically shown in Figure 5.

Web service of InMeRF

We made a web service for InMeRF at https://www.med.
nagoya-u.ac.jp/neurogenetics/InMeRF/. The InMeRF web
service accepts (i) a genomic coordinate according to
GRCh37/hg19, (ii) a genomic coordinate according to
GRCh38/hg38, (iii) HUGO Gene Nomenclature Com-
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Figure 4. ROC and PR curves of InMeRF-CADD and three top-ranked tools using testing datasets of VariBenchSelected (A, B), predictSNPSelected (C,
D) and SwissVarSelected (E, F). InMeRF-CADD and the three tools (48) were generated by an identical CADD training dataset. ROC and PR curves of
InMeRF-CADD and eight other tools including the three tools in this figure are indicated in Supplementary Figure S3.
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A

B

Figure 5. Examples of application of InMeRF to nsSNVs in MUSK (A) and VANGL1 (B). Domains and the positions of nsSNVs are drawn to scale.
Pathogenic nsSNVs and common nsSNVs with MAF >0.001 are indicated in red and blue letters, respectively. The number of nsSNVs in each category
is indicated in parentheses. Pathogenic and common nsSNVs that were correctly predicted by InMeRF are indicated by open circles, whereas erroneously
predicted SNVs are indicated by closed circles. (A) Ig, immunoglobulin domains; CRD FZ, frizzled-like cysteine-rich domain; TMD, transmembrane
domain; and Pkinase Tyr, protein tyrosine kinase. (B) TMD, transmembrane domain. Arrow indicates the position of p.R335C (see the Supplementary
Information).

mittee gene symbol or (iv) Ensembl Transcript ID. An
nsSNV is predicted to be pathogenic when the probability
of pathogenicity is ≥0.5, and the predicted result is returned
to the same web page. When a genomic coordinate is en-
tered, prediction scores of all possible nsSNVs for all tran-
scripts annotated in Ensembl Release 94 are returned. Fig-
ure 6 shows the prediction result of chr11:46897102 associ-
ated with CMS (58). We also analyzed all nsSNVs registered
in dbNSFP v4.0a according to the Ensembl Release 94 an-
notations on GRCh37/hg19 and GRCh38/hg38. dbNSFP
includes all possible nsSNVs in the human genome by in sil-
ico saturation mutagenesis, and we followed the strategy of
dbNSFP. We made the genome-wide pre-analyzed InMeRF
scores available under the download tab of the InMeRF web
service.

DISCUSSION

Failure to identify pathogenicity of p.R335C in VANGL1
prompted us to develop InMeRF to predict the pathogenic-
ity of genome-wide nsSNVs. We hypothesized that most of
the currently available tools tend to predict that minor AA
changes are benign, whereas major AA changes are damag-
ing. We thus made individual RF models for 150 AA sub-
stitutions. One possible disadvantage of our approach was
that the numbers of nsSNVs used to generate an RF model
became low. However, we were able to make RF models
with ROC-AUC ≥ 0.845 and PR-AUC ≥ 0.882 even with
small numbers of training variants (Figure 2 and Supple-
mentary Table S1A). As is commonly recognized in ma-
chine learning, we observed that RF models generated with

equal numbers of pathogenic and common nsSNVs made
more dependable models (Supplementary Table S1A) than
RF models generated with all pathogenic and common nsS-
NVs (Supplementary Table S1B). We suppose that indi-
vidual RF modeling for 150 AA substitutions enhanced
the advantage of balancing pathogenic and common nsS-
NVs. InMeRF was superior to or at least not inferior to the
other tools by comparing InMeRF with 25 other prediction
tools in dbNSFP v4.0a (Figure 3, Supplementary Figure S2
and Supplementary Table S3) and by comparing InMeRF-
CADD with 8 other tools (Figure 4, Supplementary Figure
S3 and Supplementary Table S7) that were generated by the
CADD training dataset.

Type 1 circularity indicates that the same variants are
included in both training and testing datasets (48). With
type 1 circularity, a tool can efficiently predict pathogenic-
ity of nsSNVs in the training dataset, but the efficiency
is reduced for novel nsSNVs. Prediction tools of nsSNVs
are easily subject to type 1 circularity, which spuriously in-
crease prediction accuracies (48). Although the comparison
of InMeRF with 25 other tools could be affected by type
1 circularity, the comparison of InMeRF-CADD with the
8 CADD-based tools should be free from type 1 circularity.

Type 2 circularity indicates that a model differentiates
genes exclusively with common nsSNVs and genes exclu-
sively with pathogenic nsSNVs, but not both in a single gene
(48). The SwissVarSelected testing dataset contains many
genes carrying both pathogenic and common nsSNVs in a
single gene (48). We found that both ROC-AUC and PR-
AUC of InMeRF-CADD were ranked first with the Swiss-
VarSelected testing dataset (Supplementary Table S7). Lack

D
ow

nloaded from
 https://academ

ic.oup.com
/nargab/article/2/2/lqaa038/5844086 by guest on 20 M

arch 2024



NAR Genomics and Bioinformatics, 2020, Vol. 2, No. 2 9

Figure 6. A screenshot of InMeRF web service. We previously reported that a heteroallelic C→T substitution in LRP4 at position 46 897 102
(GRCh37/hg19) on chromosome 11 predicting p.R1277H (red circle) in a patient with CMS compromises binding of LRP4 to MuSK and agrin, and
reduces clustering of acetylcholine receptor (58). When the genomic coordinate ‘chr11:46897102’ is entered in the InMeRF web service, the result shows
up on the same window.

of type 2 circularity in InMeRF is also suggested by rep-
resentative analysis of pathogenic and common nsSNVs in
seven frequently mutated genes (DOK7, MUSK, AGRN,
LRP4, CHRNE, COLQ and GFPT1) causing CMS, and
the VANGL1 gene causing spina bifida (Figure 5 and Sup-
plementary Table S8).

In RF modeling of InMeRF, we used rank scores of 34
previously reported tools as feature values (Supplementary
Figure S1). Analysis of feature importance of each tool for
150 RF models disclosed that REVEL (10), MetaLR (6),
VEST4 (11), MVP (16), DEOGEN2 (9) and MetaSVM (6)
provided the best six feature values in InMeRF (Supple-
mentary Table S9). These six tools have been reported in
or after year 2016. Comparison of ROC-AUC of InMeRF
with those of 25 other tools indeed showed that REVEL
(10), MetaLR (6), VEST4 (11), MVP (16), DEOGEN2 (9)
and MetaSVM (6) were on average ranked second to sev-
enth after InMeRF (Supplementary Table S3D). We also
reduced the number of feature values one by one in descend-
ing order of the feature importance (Supplementary Table
S9), and generated 150 RF models. ROC-AUC remained
high even when we eliminated less dependable feature val-
ues (Supplementary Figure S4). InMeRF is thus largely
dependent on the performance of these recently reported
tools. Superiority of InMeRF over these recently reported
tools may lie in the ensemble of AA substitution-specific RF
models.

Development of InMeRF disclosed that the degree of a
change in AA properties is likely to have a substantial ef-
fect on the prediction of pathogenicity. Lastly, our first mo-
tivation to develop InMeRF was satisfied by finding that
p.R335C in VANGL1 was predicted to be benign with an
InMeRF score of 0.342.
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