
receiving home dialysis, in priority risk groups for early
vaccination against SARS-CoV-2.
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The traditional renal diet is logical, but perhaps not biological.
In this issue of Nephrology Dialysis Transplantation, Gonzalez-
Ortiz et al. present findings from cross-sectional analyses that
add to the growing body of literature [1]. The analysis fails to
support the theory that diet-related complications in hemodial-
ysis (HD) patients are caused by diet-derived nutrient imbalan-
ces [2–4]. In particular, the renal dietary pattern for HD is
designed to be low potassium, low phosphorus and high

protein, with the understanding that this would help to prevent
and treat hyperkalemia, hyperphosphatemia and protein–en-
ergy wasting (PEW), respectively [5].

The approach used to develop the renal diet was similar to
that used to prevent nutrient imbalances in the food guide [6].
First, prescriptions were established for key nutrients [7]. Then,
the balance of food groups and variety of food choices within
each food group were determined based on their nutrient
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composition [5]. The resultant HD diet restricts many high-
potassium and high-phosphorus plant foods, and promotes
animal-based protein foods. Regarding the latter, the 1993
National Renal Diet food guide produced by the American
Dietetic Association Renal Practice Group advised dialysis
patients to ‘eat all the unsalted meats, fish, and poultry, or eggs
you want’ [8]. The study by Gonzalez-Ortiz et al. found that ter-
tiles of the Healthy Plant-Based Diet Score, an index of plant in-
take, were not associated with serum potassium and phosphorus
concentrations, or malnutrition inflammation score in HD
patients.

As noted by Gonzalez-Ortiz et al., it is possible that the
nutrient-based renal diet is efficacious for managing these con-
ditions, but cannot be detected in observational studies using
standard dietary assessment methods because of measurement
error related to misreporting, and the effects of food processing
and preparation, which can concentrate, dilute, add and remove
nutrients. However, another possibility is that the assumptions
underlying the nutrient-based model are incorrect, in which
case, dietary restrictions may be an unnecessary burden in HD
patients that could contribute to poor health outcomes.

A S S U M P T I O N S O F T H E N U T R I E N T - B A S E D
M O D E L

(i) Causality: One of the core assumptions of the nutrient-
based model is that these metabolic conditions are pri-
marily caused by nutrient imbalance, and that other di-
etary factors are relatively unimportant. This
assumption appears to be mostly true for phosphorus
and hyperphosphatemia [9]. However, although adequate
protein intake is necessary to prevent PEW, and excess
potassium intake can cause hyperkalemia in people with
chronic kidney disease (CKD), other dietary factors may
be more clinically relevant determinants of these condi-
tions. For example, although protein requirements are of-
ten treated as fixed patient characteristics based on lean
body mass, protein utilization in CKD depends on the
metabolic state, which can be affected by diet (e.g. meta-
bolic acidosis, uremia, inflammation, energy balance, in-
sulin resistance) [4]. Similarly, the higher potassium load
of plant-rich diets may be offset by biological factors af-
fecting potassium metabolism (e.g. adaptation, metabolic
acidosis, glucose/insulin response, stool output) [3].

(ii) Equivalence: Another major assumption of the
nutrient-based model is equivalence, which is applied in
the translation of nutrient prescriptions into dietary rec-
ommendations. Specifically, foods in the renal diet are
classified based on their crude nutrient content.
However, the bioavailable fraction and/or utilization of
nutrients may differ by source. Studies examining dif-
ferences in urinary phosphorus output, an indicator of
excess phosphorus load, show that phosphorus from
plants and dairy products may contribute relatively less
to phosphorus load than animal-based protein foods
and food additives [10]. Of note, while inorganic phos-
phorus is often claimed to be 90–100% bioavailable, this

figure appears to be based on in vitro digestibility stud-
ies that do not account for limitations in phosphorus
absorption [11–13]. Likewise, whole fruit and vegeta-
bles, and whole grains have been found in some studies
to increase stool potassium output, a finding that may
be due to reduced potassium absorption from dietary fi-
ber [14–16].
Protein equivalence in PEW risk is more complicated,
as protein requirements encompass absolute protein
needs, as well as needs for essential amino acids
(EAAs). With few exceptions (e.g. soybeans, quinoa),
proteins from plants have lower biological value (qual-
ity) than proteins from animals due to lower bioavail-
ability and limiting EAAs. However, amino acid scores
are determined based on requirements established in
healthy individuals, and fail to account for protein com-
plementation that exists in the context of a mixed diet.
Grain products provide �3 g of protein per oz equiva-
lent serving, which is incomplete because they are lim-
ited in lysine. Both plant- and animal-based protein
foods contain adequate lysine, and therefore form a
complete protein when paired with grain products.
However, plant-based protein foods are limiting in
sulfur-containing amino acids, whereas animal-based
protein foods are not. As a result, the strict focus on
animal-based protein foods in the traditional renal diet
may contribute an unnecessary excess of sulfur-
containing amino acids and corresponding dietary acid
load when metabolized.
The lack of evidence surrounding the recommendation
that HD patients consume at least half of their protein
from high biological value (HBV) sources, generally
interpreted as animal-based protein, has long been
known. In his 1996 McCollum Award Lecture paper,
Dr Kopple states, ‘we have also recommended, although
without testing this question experimentally, that
about 50% of this protein should be of high biological
value’ [17]. Unfortunately, this nuance appears to have
been lost in translation, as until recently, recommenda-
tions for 50% HBV were rarely accompanied by this
disclaimer.

(iii) Acuity: An often-overlooked assumption in translating
nutrient prescriptions into dietary recommendations is
that the acute rather than chronic nutrient load causes
nutrient imbalances, as foods are generally classified
based on their nutrient richness (milligram/serving),
not their nutrient density (milligram/kilocalorie) [5].
This approach may be suitable for potassium, as serum
potassium values increase in response to a potassium
bolus in people with CKD due to impaired dietary po-
tassium tolerance [18–20]. However, it is worth noting
that acute potassium exposure can be controlled with-
out eliminating high-potassium foods (e.g. balanced
meals, portion control), and chronic nutrient load may
better represent the biological relationships linking die-
tary and serum phosphorus, and dietary protein and
PEW in people with CKD. If the latter is true for hyper-
phosphatemia and PEW, factors other than nutrient
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richness (e.g. serving size, energy density) must also be
considered when classifying foods as low or high phos-
phorus and protein. For example, high-fat milk is lower
in phosphorus density than many lean meats [21].

(iv) Adherence and translation: Finally, as with all diet ther-
apies, the overall health impacts of dietary guidelines
depend on how they are adopted in practice, as well as
the balance of secondary benefits and consequences.
Studies in CKD populations have failed to consistently
demonstrate that knowledge of the renal diet predicts
adherence and outcomes [22]. The renal dietary pattern
is largely inconsistent with dietary guidelines for the
general population [23], as well as those with hyperten-
sion and diabetes mellitus [24, 25], the two main causes
of CKD. In addition, to navigate the substantial infor-
mation burden presented by the renal diet, some
patients may adopt monotonous, mundane eating pat-
terns that could compromise their nutrition status and
health.

I M P L I C A T I O N S

The finding from Gonzalez-Ortiz et al. reinforce the concept
that, at least within the context of normal dietary intakes,
restrictions imposed by the nutrient-based renal dietary pattern
may not significantly lower the risk of diet-related complica-
tions in people with CKD. However, the authors note ‘absence
of evidence is not evidence of absence’. Unfortunately, many
questions remain unanswered, and liberalized, plant-rich diets
are not necessarily risk-free. For example, the lack of association
between reported dietary potassium intakes, and fasting and
predialysis serum potassium levels does not preclude the possi-
bility that high-potassium meals cause unseen postprandial
hyperkalemia between dialysis sessions [26]. In additional, al-
though dietary fiber may help address the metabolic determi-
nants of PEW (e.g. gut-derived uremic toxins), excess fiber may
promote weight loss through satiation. Furthermore, plant-
based diets contain less bioavailable iron, and therefore, may
add to the problem of iron deficiency in people with CKD [27].

This is not to suggest that the findings should be ignored
either, as they have important clinical implications. Indeed, if
fasting and predialysis serum potassium concentrations are not
valid biomarkers of dietary potassium intake in HD patients, they
should not be used as a measure of adherence to the low-
potassium diet. In fact, serum potassium appears to be a stronger
indicator of protein intake than potassium intake in CKD patients
[28, 29]. In a single-group pilot feeding study of CKD patients
provided a DASH (Dietary Approaches to Stop Hypertension)
diet, changes in 24-h urinary potassium output were not corre-
lated with changes in serum potassium concentration (r¼ 0.39,
P¼ 0.30), but changes in urine urea nitrogen output were
(r¼ 0.67, P¼ 0.046) [29]. However, at the same time, hyperkale-
mia was a well-established consequence of the very low-protein
Giordano–Giovanetti diets used to manage uremia, which were
also low in potassium [30, 31]. Clearly, the dietary pattern impacts
these relationships in complex ways.

A recent survey of renal dietitians in the US indicates a ma-
jor schism in clinical practice, with many dietitians adhering to

the traditional nutrient-based renal diet, and nearly an equal
proportion recommending a more liberalized, plant-rich diet
[32]. Standardized care is a major goal of evidence-based die-
tetic practice, and lack of thereof may generate confusion and
expose patients to unknown risks. Randomized clinical trials of
dietary patterns in people with CKD are needed to inform these
fundamental questions to clinical practice. Until such time that
these studies are conducted, caution on both sides of this debate
is warranted.
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T H E I M P O R T A N C E O F D I A L Y S A T E S O D I U M
P R E S C R I P T I O N

Dialysate composition is one of the most fascinating topics in
nephrology. Learning about the art and science of haemodialy-
sates (regarding sodium, potassium, calcium, magnesium and
bicarbonates) is one of the best ways to further our understand-
ing of the pathophysiologic processes underlying the myriad of
acid–base, fluid, electrolyte and blood pressure abnormalities in
end-stage kidney disease [1].

NDT is publishing in this issue a systematic review and
meta-analysis aimed at assessing the agreement between pre-
scribed and delivered dialysate sodium (DNa) and whether the
relationship varies according to the prescribed DNa levels [2].
The study indicated the lack of an average difference between

measured and prescribed DNa values. Individual dialysate sam-
ple analysis showed an �1:1 monotonic relationship between
the two variables. However, among individually reported sam-
ples measured DNa was lower by almost 2 mmol/L and the 95%
limits of agreement ranged from ~�4 to ~þ8 mmol/L, depend-
ing on the type of dialysis machine, type of dialysate prepara-
tion, type of concentrate etc. The authors concluded that
informed DNa prescription requires more precision in the ac-
tual delivery of DNa [2]. The significant differences between
prescribed and measured DNa concentrations may have benefi-
cial or deleterious effects on clinical outcomes [3].

Sodium is the main extracellular ion and defines osmolality
and the size of the extracellular volume; increased plasma so-
dium concentration results in an increase in osmolality, thirst

VC The Author(s) 2021. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved. 577

E
D

IT
O

R
IA

L
D

ow
nloaded from

 https://academ
ic.oup.com

/ndt/article/36/4/574/6017166 by guest on 25 April 2024

http://www.health.gov/dietaryguidelines/2015/guidelines/
http://www.heart.org/en/healthy-living/healthy-eating/eat-smart/nutrition-basics/aha-diet-and-lifestyle-recommendations
http://www.heart.org/en/healthy-living/healthy-eating/eat-smart/nutrition-basics/aha-diet-and-lifestyle-recommendations
http://www.heart.org/en/healthy-living/healthy-eating/eat-smart/nutrition-basics/aha-diet-and-lifestyle-recommendations



