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Physiological abnormalities of skeletal muscle in dialysis patients
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Abstract significantly correlated to the strength (r=0.6, P=
0.02).Background. Muscle weakness is a commom but unex-

plained feature of dialysis patients. This study investi- Conclusions. The only significant predictor of loss of
muscle strength and abnormality of relaxation in thisgated the prevalence and causes of muscle weakness in

dialysis patients by examining the quadriceps muscle study was the nutritional state. A regular assessment
of the nutritional state is required to ensure adequateforce and contractile properties.

Methods. The quadriceps femoris was studied in terms nutrition to prevent the observed abnormalities of the
skeletal muscles.of force, force–frequency curve, and speed of muscle

relaxation in 49 dialysis patients and 27 healthy sub-
Key words: dialysis patients; nutrition; skeletal muscle;jects. In addition nutritional, haematological, biochem-
weaknessical, and histological assessments were performed, and

steps of force generation were analysed to reach the
possible mechanisms leading to the observed weakness.
Results. Muscle weakness, though invariable as a symp- Introduction
tom, was subtle or absent on clinical examination.
Quadriceps force measurements, however, revealed Muscle weakness, a failure to generate force [1] is a
unequivocal weakness in most of the patients (71%). well-recognized [2–9] but unexplained, feature of dia-
The quadriceps muscle was weaker (317±115 versus lysis patients. This weakness is usually attributed to
460±159 N, P<0.01) compared to healthy indi- the effects of anaemia [10], water and electrolytesviduals, but there was no evidence of impaired excita- disturbances [11,12], cardiac failure, medications, par-
tion–contraction coupling (0.79±0.05 versus 0.76± ticularly corticosteroids [13], malnutrition [14], peri-
0.07, P=0.1). Among dialysis patients the older and pheral neuropathy [15,16 ], ischaemic myopathy
the malnourished (n=23) were the weaker but there [17–19], vitamin D abnormalities [20–23], excessive
was no relationship to the type or duration of dialysis. parathormone production [24–26 ], carnitine deficiency
The serum albumin was the only biochemical para- [27,28], abnormal energy metabolism [29], and the
meter related to the muscle force (r=0.6, P=0.01). sedentary life-style of the patients [30].
The other most prominent abnormality of quadriceps Muscles generate force through a series of events
muscle function observed in this study was slowing of involving a controlling ‘chain of command’ from the
relaxation (patients versus controls; 8.7±1.8% versus brain to actomyosin cross-bridge [31]. Using well-
10.8±1.1% force loss/10 ms, P<0.0001) particularly established physiological techniques [32–35], failure of
in the malnourished group (malnourished versus well muscle contraction has been categorized as ‘central’
nourished; 8.3±2.1 versus 9.4±0.95, P=0.03). Muscle where there is volitional or non-volitional failure ofhistology was investigated (n=12) and revealed that neural drive to the muscles, or ‘peripheral’ where there
type II fibres were mildly atrophic in 40% of the is failure in force generation by mechanisms at or
biopsies in most areas, but predominantly type IIB. beyond the neuromuscular junction. Loss of force
Although type IIB fibre areas are slightly smaller in generation producing weakness is also seen when there
the dialysis patients compared to the controls, this was is loss of muscle bulk but the mechanisms by which
not statistically significant (3025±578 versus altered renal function may cause this weakness are
4406±1582, P=0.1) except in the malnourished group poorly understood. This study has examined the con-
compared to the well-nourished dialysis patients tractile properties of a large proximal muscle, quadri-
(2092±304 versus 4346±1496, P=0.04), and in the ceps femoris, used in everyday activity. Force,
malnourished dialysis patients type IIB fibre area was force–frequency curve, and speed of muscle relaxation

were measured; the findings were related to the bio-
chemical, nutritional parameters and the muscle histo-Correspondence and offprint requests to: Dr Ibrahim H Fahal MRCP,
logical abnormalities in an attempt to analyse theLink Unit 6Z, Royal Liverpool University Hospital, Prescot Street,

Liverpool L7 8XP, UK. factors involved in the observed abnormalities.
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Table 2. Neuromuscular characteristics and other medical problemsSubjects and methods
of the dialysis patients studied. Some parameters were not tested in
all patients. In these cases results are expressed as number of
abnormal results/number of tests performedNutritional, haematological, biochemical and skeletal muscle

function assessment were performed in 49 patients with end-
stage renal disease on dialysis therapy. In addition a muscle History of:
biopsy specimen was obtained from 12 patients. A group of Fatigue 49/49
27 healthy subjects were also studied as a comparison group. Weakness 44/49

Muscle pain or cramps 26/49Patients and control groups characteristics are shown in
Muscle stiffness 2/49Table 1. A detailed history and examination was taken from
Bone pain 3/49each patient and included a careful search for musculoskeletal

symptoms (muscle weakness, fatigue, pain, cramps, and
Symptoms worse after dialysis 17/49stiffness). Standard history and clinical examination form
Symptoms worse before dialysis 1/49was used for all patients. Muscle pain was differentiated

from that arising from bone (renal osteodystrophy) or isch- Weakness
aemic pain of peripheral vascular disease, both are common Sit up in bed unaided: 49/49 (2 with difficulty)
in dialysis patients. A systematic examination for myopathy Climb stairs 46/49 (5 with difficulty)

Raise arms above head 49/49 (3 with difficulty)and neuropathy was undertaken. Patients were observed
Rise from chair 47/49 (6 with difficulty)performing everyday tasks such as rising from a low chair
Squat 41/49 (12 with difficulty)without the aid of the hands and sitting up in bed. Vibration

sense, a marker of peripheral neuropathy, was assessed by
Wastingmeans of a 256 Hz tuning fork applied to the medial aspect

Upper limb 16/49of the great toe metatarsophalageal joint and the lateral Lower limb 26/49 (thighs thinner)
malleolus on each leg. Foot pulses were assessed by palpation. Evidence on examination of:
Results of the neuromuscular examination and other related Upper limb wasting 23/49
medical findings are shown in Table 2. Lower limb wasting 21/49

Upper limb weakness 10/49 (MRC-grade 4)Patients were stabilized on renal replacement therapy for
Lower limb weakness 16/49 (MRC-grade 4)more than 6 months, the CAPD patients were using the

Baxter Disconnect system, and exchanging 8 litres of dialysis
Other medical problemssolution per day. Haemodialysis patients were dialysing for

Clinical neuropathy 3/494 h, three times weekly. None of the patients was on a
Neurophysiological neuropathy 5/30protein-restricted diet. The aetiology of chronic renal disease Myopathy (electromyography) 0/30

in the patients were as follows: glomerulonephritis (n=14), Ischaemic heart disease 4/49
hypertension (n=8), diabetes mellitus (n=7), chronic pyelo- Renal bone disease 5/49
nephritis (n=5), polycystic kidneys (n=3), unknown aeti-
ology (n=7) and other causes (n=5). All but two patients
were receiving antihypertensive therapy; drugs used most
commonly were calcium-channel antagonist, beta blockers, et al. [ 38] class A, and the malnourished group to class B
and angiotension-converting enzyme inhibitors. The majority (mild to moderate). The visceral protein, albumin, and
of patients were taking aluminium hydroxide as a phosphate transferrin were also used to measure the nutritional status,
binder and 1 alpha calcitriol. None of the patients was on serum albumin has been observed to be a marker of the
corticosteroids and only 14 were receiving human recombin- nutritional status and a predictor of survival in dialysis
ant erythropoietin subcutaneously. patients [40 ]. It is important to realize that serum transferrin

levels fluctuate with the use of erythropoietin and iron
status [41].Nutritional assessment

The nutritional status was assessed by the Subjective Global Haematological and biochemical evaluation
Assessment (SGA) method [36 ] and visceral protein status.
The SGA method involved a careful history and clinical At the time of the muscle function testing a blood sample
examination. The accuracy, reproducibility, and validity of was obtained for haemoglobin, serum or plasma creatinine,
this method have previously been shown in different groups urea, potassium, bicarbonate, albumin, transferrin, creatine
[37, 38] including dialysis patients [39]. Patients were divided kinase, parathyroid hormone, thyroid stimulating hormone,
into well-nourished (n=26) and malnourished (n=23) and thyroxine. Table 3 shows the anthropometry, and clin-
groups. The well-nourished group corresponded to Baker ical, biochemical, and nutritional parameters of the study

population.
Table 1. Clinical characteristics of dialysis patients and controls

Choice of muscle
Patient group Control group
(Mean±SD) (Mean±SD) The quadriceps femoris is a large, proximal muscle of major

functional importance; impairment of its function can have
serious practical implications for everyday activities. MostNumber 49 27

Sex M (F ) 29 (20) 16 (11) of the muscle acts across only one joint (the knee) and it is
Age (years) 42.1±14.6 36.7±12.1† easily to immobilize the hip while examining the mechanical
Weight (kg) 66.4±8 64.6±7.8† properties of the muscle. A repeat needle biopsy is feasible

and safe due to the large size and lack of major nerves and
blood vessels. There is also evidence that the quadriceps†=P>0.05.
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Table 3. Anthropometry, and clinical and nutritional parameters of the study population

CAPD HD MN WN

Number 30 19 23 26
Males/(females) 16 (14) 13 (6) 14 (9) 16 (10)
Age (years) 41.6±12.8 43±17.8† 48.6±15.9 36.8±11.3‡
Age range (years) 19–60 26–71 28–71 19–60

Height (cm) 165±7 170±7† 166±8 170±7†
Weight (kg) 66.6±8 66±8.3† 65±6.6 67.6±9†

BMI (kg/m2) 25±2.9 23.4±3.8† 23.7±2.9 25±3.2†
Mode of dialysis HD (CAPD) 19 (30) 30 (19) 9 (14) 10 (16)
Months on dialysis 25.4±19 30.9±22† 33.7±18 23±20.8‡

Range on dialysis 9–79 4–78 12–79 4–78

Nutritional status WN (MN ) 17 (13) 10 (9) 23 26
Haemoglobin (g/dl ) 9.2±1.4 9.5±2.4† 9.5±2.6 9.3±1.6†
Urea (mmol/l ) 26±9 25±7† 26±10 25±6†

Creatinine (mmol/l ) 1037±248 990±300† 1020±187 994±346†
Calcium (mmol/l ) 2.5±0.3 2.4±0.2† 2.4±0.2 2.5±0.2†
Phosphorus (mmol/l ) 1.8±0.5 1.8±0.4† 1.8±0.5 1.8±0.4†
Potassium (mmol/l ) 4.8±0.6 4.5±0.7† 4.7±0.6 4.5±0.8†
Bicarbonate (mmol/l ) 23±4.7 22±3.1† 22±4 22±3†

Albumin (g/l ) 42.5±5.9 37.6±4.1* 38.2±3.8 40±6.3†
Transferrin (g/l ) 2.4±0.5 2.3±0.3† 2.2±0.2 2.4±0.4†
PTH (pmol/l ) 28.6±19.6 26±28.1† 26±23.8 27.9±26.8†
Aluminium (mmol/l ) 1.4±0.6 1.8±0.6† 1.3±0.6 1.8±0.6†
Thyroxine ug/dl 89±17 71±40† 86±31 75±29†
Creatine kinase 98±21 55±25** 64±28 94±29*

CAPD, continuous ambulatory peritoneal dialysis group; HD, haemodialysis group; MN, malnourished group; WN, well-nourished group.
†P>0.05; ‡P<0.05; *P<0.01; **P<0.001.

muscle is selectively weakened in uraemia [2,4–5], making it Voluntary strength of the quadriceps
a suitable model for study.

Maximum voluntary contractions (MVC ) were maintained
until the examiner was satisfied (usually in 2–4 s) that the

Assessment of muscle structure force (Newton units) produced was no longer increasing.
The value of each maximal voluntary contraction was meas-

Muscle biopsy was obtained from 12 male dialysis patients ured as the greatest force held for 1 s. Three MVCs trials
and 10 male normal volunteers. Muscle biopsies were taken were made with each quadriceps. Stimulated twitches of
from the lateral portion of right quadriceps under local quadriceps (see below) were superimposed on the voluntary
anaesthetic using the conchotome biopsy technique [42] on contraction and stimulating the muscle at 1 Hz [45]. With
a non-haemodialysis day in the haemodialysis group and any this technique of interpolating twitches the force is increased
day in the CAPD group. Assessment of the morphology of by the stimulated twitches only when voluntary contractions
the muscle was performed by a pathologist with an interest are submaximal.
in muscle disease and as described previously by our group
[43].

Electrical stimulation studies
Muscle function tests

For electrical stimulation of the quadriceps two large, flexible,
saline-soaked pad electrodes (approximately 14×12 cm) wereBoth voluntary and stimulated isometric contractions of
closely applied proximally and distally to the anterolateralquadriceps femoris was assessed with the subject seated in
thigh. Stimulation was with unidirectional, square-wavean adjustable, straight-backed chair with the lower leg
pulses of 50 ms duration and up to 70 V (maintained betweendependent and the knee flexed to 90 degrees [34 ] based on
the electrodes). Tetanic electrical stimulation at 100 Hz pro-that originally described by Tornvall [44]. The pelvis was
duced contractions of up to 60% of the quadriceps MVC.secured by an adjustable belt. Force was measured with a
Physiological characterization of muscle function to electricalstrap looped around the leg just proximal to the malleoli.
stimulation was assessed by applying a train of impulsesThe amplified output from the strain gauge was recorded
from a Devices 3072 stimulator driven by a computer (Applewith a rapid response oscillograph. The subject performed a

maximal effort knee extension against the strain gauge. IIe) over a frequency range 1, 10, 20, 50, 100 Hz, each for 1
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s (except that of 10 Hz was given for 2 s to obtain a plateau
force) as described previously [34 ].

Relaxation characteristics of the muscle

The maximum relaxation rate (MRR) of the quadriceps
muscle from a 100 Hz electrically stimulated isometric con-
traction (force=20–40% of the force of a maximum volun-
tary contraction) was determined from the differential force
record. Both force and MRR were displayed on a UV
oscillograph. The maximum relaxation rate was expressed as
the percentage of the plateau force lost/10 ms.

Excitation–contraction coupling

Impaired excitation–contraction coupling leads to weakness
due to failure of activation of the contractile process despite
adequate membrane excitation. Its measure was obtained by
using the 20:50 Hz tetanic force ratio (comparing the forces
of contraction resulting from stimulation at low frequencies
of stimulation ‘20 Hz’ with those obtained at higher frequen-
cies ‘50 Hz’).

Results

Muscle strength Fig. 1. Force (N) of maximum voluntary isometric contractions of
quadriceps in all dialysis patients and controls. Shaded area repres-The contractile properties of the quadriceps muscle of
ents normal range of 84 males (age 6–63 years) and 61 females (ageall the subjects studied appears in Table 4. Our results 5–46 years) from Edwards et al. [34].

indicated that the dialysis patients were weaker com-
pared to the healthy subjects (mean±SD); 317±115
versus 460±159 N, P<0.01 (Figure 1), but there was group but was significantly reduced in the dialysis

group 8.7±1.8% force loss/10 ms, (P<0.0001).no difference between the CAPD and the haemodialysis
group (309±117 versus 330±116, P=0.4). The maln- The MRR was significantly reduced in the malnour-

ished group compared to the well-nourished dialysisourished dialysis group was weaker than the well-
nourished dialysis group; 239±56 versus 381±112 N; group; 8.3±2.1 versus 9.4±0.95, P=0.03 (Figure 3),

but there was no difference in the MRR between theP<0.001, Figure 2.
Subdividing the dialysis group by gender revealed haemodialysis and CAPD groups; 9.1±1 versus

8.9±1.9, P=0.4.similar results. Male dialysis patients were significantly
weaker than male controls; 365±115 versus 530±98
N, P<0.001 and female dialysis patients were signific- Assessment of excitation-contraction coupling
antly weaker than female controls; 238±60 versus

The force/frequency curve was similar in the dialysis360±100 N, P<0.001.
group and the controls. There was no significant
difference in the 20:50 Hz force ratio which is a measureIsometric relaxation rate (MRR) of the quadriceps of the excitation-contraction coupling between the
patient and control groups (0.79±0.05 versusThe muscle of dialysis patients is slow, the MRR was

(mean±SD) 10.8±1.1% force loss/10 ms in the control 0.76±0.07, P=0.1), the malnourished and the well

Table 4. Contractile properties of the quadriceps muscle in the study population

CAPD HD MN WN All patients Controls

Force (N) 309±117 330±116† 239±56 381±112** 317±115 460±159*
Force N/kg 4.6±1.5 4.95±1.5 3.6±0.8 5.6±1.3 4.7±1.5 7.2±2.6
MRR 8.85±1.9 9.1±1† 8.3±2.1 9.4±0.95‡ 8.7±1.8 10.8±1.1**
20550 ratio 0.81±0.1 0.78±0.1† 0.8±0.05 0.8±0.07† 0.79±0.05 0.76±0.07†

CAPD, continuous ambulatory peritoneal dialysis group; HD, haemodialysis group; MN, malnourished group; WN, well-nourished group;
Force (N), absolute force in Newtons; Force (N/kg), specific force in Newtons per kilogram body weight; MRR, maximum relaxation rate
expressed as % force loss/10 ms; 20550 ratio, force at 20 Hz/force at 50 Hz, a measure of excitation contraction failure.
†P>0.05; ‡P<0.05; *P<0.01; **P<0.001.
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nourished dialysis groups (0.8±0.05 versus 0.8±0.07,
P=0.4), and the haemodialysis and CAPD groups
(0.78±0.1 versus 0.81±0.1, P=0.2).

Correlation with clinical and biochemical parameters

In the dialysis patients there was a significant negative
correlation between the MVC and age, r=–0.5, P=
0.01, and a positive and significant correlation with
serum albumin r=0.6, P=0.01 and weight, r=0.5,
P<0.01, but no correlation with the haematological
or biochemical parameters (haemoglobin, creatinine,
urea, potassium, bicarbonate, transferrin, CK, PTH,
and aluminium).

There was no significant correlation between the
MRR or the 20:50 Hz ratio in the dialysis patients and
the age, weight, or the haematological or biochemical
parameters.

Morphological abnormalities of the muscle in dialysis
patients

Several mild, non-specific abnormalities were present
in 78% of dialysis patients biopsies. five (45%) biopsies
showed a low prevalence of type I fibres and one (10%)
showed a high prevalence of type I fibres for the
quadriceps muscle. However, there was no statistically
significant difference in the prevalence of type I fibres
(mean % type I±SD) between the dialysis patients and Fig. 2. Force (N) of maximum voluntary isometric contractions of

quadriceps in malnourished and well-nourished dialysis patients.controls (31±10 % versus 41±8%; P=0.1). One (10%)
Shaded area represents normal range of 84 males (age 6–63 years)biopsy showed a high prevalence of type II fibres for
and 61 females (age 5–46 years) from Edwards et al. [34].the quadriceps muscle but there was no statistically

significant difference between dialysis patients and con-
trols (type IIA, (mean % type IIA±SD; 39±3.5% patients. The patients are weaker and their muscle is
versus 35±9%; P= 0.5), and type IIB, (mean % type slow to relax compared with the controls (Table 6).
IIB±SD; 30±14% versus 24±8%; P=0.5) (Table 5). The muscle of the malnourished dialysis patients were
Type II fibre areas were mildly atrophic in four biopsies weaker and slower than the well-nourished dialysis
(40%) in most areas but predominantly type IIB. group. There was no correlation between MVC, MRR
Although dialysis patients’ type I and II fibre areas or 20:50 ratio and the mean type I, IIA, or IIB fibre
were slightly smaller than those of the controls, this areas, but in the malnourished dialysis patients type
was not statistically significant (Table 5). Type IIB IIB mean fibre area was significantly correlated to the
fibre area was significantly smaller in the malnourished strength, r=0.6, P=0.02 (Table 6).
group compared to the well nourished (Table 6).

Morphological abnormalities in relation to the Discussion
physiological function of muscle

Apart from the weakness, the most prominent abnor-Physiological contractile properties of quadriceps and
mality of quadriceps muscle function observed in thismuscle histology were obtained from 12 dialysis
study was slowing of relaxation. These abnormalities

Table 5. Fibre type area and prevalence in dialysis patients and
controls

Table 6. Physiological contractile properties and fibre area of quadri-
ceps in malnourished and well-nourished dialysis patients

Patient Control P value

Malnourished Well-nourished P value
Fibre prevalence (%)
Type I 31±10 41±8 0.1
Type IIA 39±3.5 35±9 0.5 Number 5 7

MVC (N) 239±56 381±112 0.001Type IIB 30±14 24±8 0.5
Fibre area (mm2) Type IIB fibre 2092±304 4346±1496 0.04

area (mm2)Type I 4011±458 4627±1112 0.3
Type IIA 3883±557 5213±1288 0.06 Type IIB area r=0.6,P=0.02 NS

versus MVCType IIB 3025±578 4406±1582 0.1
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Fig. 3. Speed of muscle relaxation in the malnourished and well-nourished dialysis patients compared to controls.

are analysed and related to the biochemical and nutri- like failure of neuromuscular transmission might be
the cause of the weakness of dialysis patients. Evidencetional parameters to reach their possible mechanisms.
for excitation–contraction coupling failure was sought
by comparing the forces of contraction resulting fromMuscle strength
stimulation at low frequencies of stimulation (20 Hz)

The possible causes of muscular weakness are consid- with those obtained at higher frequencies (50 Hz). This
ered in three broad categories—defective electromech- gave no indication of the selective, low-frequency force
anical activation (impaired neuromuscular loss associated with ‘uncoupling’ of excitation and
transmission or impaired excitation-contraction coup- contraction, ruling out an impaired excitation–contrac-
ling), impaired short-term energy supply (reduced tion coupling as a cause of the observed weakness in
short-term energy stores or impaired energy exchange), dialysis patients.
or inadequate contractile machinery (smaller muscle In contrast to our findings, Brautbar [29] in his
cells or fewer muscle cells) [46]. review suggested excitation–contraction coupling

abnormalities in dialysis patients. He based his sugges-
tion on the work of Heimberg et al. [47] and RitzDefective electromechanical activation (impaired
et al. [22] who found a marked reduction in allneuromuscular transmission or impaired excitation-
parameters of calcium ion transport by the sarco-contraction coupling)
plasmic reticulum reversed upon the administration of

A normal electromyogram was obtained for each of 1,25 (OH)2D3. These findings led Brautbar to conclude
the 30 patients on whom it was done. This is in that excitation–contraction coupling is abnormal in
contrast to Floyd et al. [5] who studied 11 patients in dialysis patients because calcium release from the sar-
end-stage renal failure who developed proximal muscle coplasmic reticulum is of critical importance in the
weakness. The muscle weakness in all patients was sequence of events leading from excitation to contrac-
shown to be myopathic in nature by electromyography, tion. We have demonstrated a normal excitation–con-
while Isaacs [3] found that three of 15 patients in traction coupling in dialysis patients by transcutaneous
chronic renal failure and severe muscular weakness stimulation of the quadriceps method based on our
had electromyography evidence of myopathy while the group and other investigators previous work [34,48],
others suffered from neuropathy. and measuring the 20:50 Hz tetanic force ratio.

From the above discussion, myopathic and/or neuro- In addition central causes for the weakness, e.g. lack
pathic electromyograms have been reported previously of central drive or motivation, have been eliminated
in uraemia. Our results indicated a normal records. by the twitch interpolation technique [30,49].
Perhaps other factors contribute to the myopathic
muscles, and with the improvement in dialysis tech-
niques offering adequate dialysis, a better management, Impaired short-term energy supply (reduced short-termor prevention of osteomalacia and hyperparathyroid- energy stores or impaired energy exchange)ism, a myopathic process in the muscles can be pre-
vented, as shown by our normal records. Although we were unable to investigate the energy

metabolism in our patients, reviewing the literatureHowever, neither the literature nor the results of the
present study give any indication that a myasthenia- disclosed that both aerobic [50–52] and anaerobic
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[53–55] energy metabolism is abnormal in uraemic The relaxation rate of the quadriceps muscle
muscles. The muscle was slow in all dialysis patients and wasThe cause of these abnormalities is unknown; how- further slowed in the malnourished group. In contrastever, one possibility is that the exchange of metabolites to our findings, Berkelhammer et al. [61] indicatedbetween blood and muscle is limited. This is in agree- that MRR is affected by malnutrition but not byment with the findings of impaired skeletal muscle azotaemia, as there was difference between the maln-blood flow during exercise [56] and an improved ourished and the healthy control groups but no differ-peripheral oxygen extraction after exercise training in ence between the well-nourished and the healthyend-stage renal disease patients [51]. In a more recent control groups. The cause of this slow muscle relaxa-work Kemp et al. [57], using a theoretical analysis tion in dialysis patients is unclear but two possibleapplied to 31P magnetic resonance spectroscopic studies mechanisms could be argued. Type II fibre atrophyof dialysed uraemic patients, found that the substantial has been reported in uraemic patients [62], and sinceexercise abnormalities seen by 31P MRS are due mainly type II fibres have fast-twitch contractile characteristicsto a decrease in effective muscle mass (muscle mass [63] and a high rate of energy utilization [64] comparedand metabolic efficiency), which outweighs the oxidat- with type I, their decrease could result both in slowedive defect implied by the abnormal PCr recovery relaxation and a reduction in energy liberation. Thiskinetics. On the other hand, Barany et al. [58] have prompts the question as to whether changes in relaxa-shown that there is an enhanced capacity for ATP tion rate might be related to the altered proportionsproduction (relative to mitochondrial mass) in anaemic of the type I (slow-twitch) and type II (fast-twitch)haemodialysis patients; this suggests that mitochon- fibres. The other possible mechanism is related to thedrial respiratory capacity does not limit maximal per- fact that the resting concentration of ATP in theformance in uraemia; on the contrary there is a quadriceps of dialysis is low, and the relaxation speedmetabolic adaptation to the decreased delivery of of the isolated rat soleus muscle is proportional to itsoxygen. content of ATP [65].Reports of ATP production in uraemia have been Slow relaxation of intact human muscle is not con-inconsistent; while some have reported impaired oxid- fined to dialysis patients but has been reported inative energy metabolism [51, 52] and low cellular levels various conditions. Studied in vivo, relaxation of theof both ATP and phosphocreatine [59], others have human quadriceps from a brief stimulated tetanus isreported enhanced production of ATP [58]. Never- slow in osteomalacia. This is consistent with thetheless it would appear that quadriceps weakness in demonstration by Rodney and Baker [66 ] that thedialysis patients may be associated with impaired oxid- soleus muscle of vitamin-D-depleted rats relaxes slowlyative energy metabolism, but the severity of the weak- when studied in vitro. The very slow relaxation of theness may, however, bear no relationship to the muscle’s quadriceps in hypothyroidism has also been reportedconcentration of high-energy phosphate as shown by [67], and a lesser degree of slowing has also beenYoung et al., [60]. Further studies of energy metabol- reported in Duchenne muscular dystrophy [67,68].ism in dialysis patients relating the abnormalities to Lastly, malnutrition from whatever cause leads to slowthe muscle strength would contribute to our under- muscle relaxation. All these would argue againststanding of the pathophysiology of weakness in these uraemia as a sole cause of the abnormality. In thispatients. study, the muscle was slow in all patients and was

further slowed in the malnourished group, perhaps
suggesting that the nutritional status plays a majorInadequate contractile machinery (smaller or fewer

muscle cells) role in the pathogenesis.

The force produced depends on the cross-sectional
area of the muscle; thus it would be expected that any

Conclusionsdegree of muscle wasting will lead to loss of force.
Twenty-six patients reported thigh muscle wasting and
in 21 of them significant quadriceps muscle wasting Proximal muscle weakness, though invariable as a

symptom, was subtle or absent on clinical examination.was observed. In dialysis patients numerous factors
may lead to malnutrition and muscle wasting, among Quadriceps force measurements, however revealed

unequivocal weakness in most of the patients, particu-which are dietary restriction, inadequate dialysis, inter-
current infection, anorexia and vomiting, protein loss larly those with malnutrition. There was no evidence

of defective electromechanical activation both in termsin the peritoneal fluid, and drugs, particularly steroids.
In the present study plasma values for creatine of impaired neuromuscular transmission or impaired

excitation–contraction coupling. Impaired short-termkinase activity were normal, in keeping with the
absence of any biopsy evidence of destruction of muscle energy supply may explain this weakness and requires

further investigations. Inadequate contractile machin-cells. A tendency to a smaller fibre area in the quadri-
ceps muscle, more pronounced in the malnourished ery (smaller muscle cells) is very likely to contribute to

the observed weakness.group, was demonstrated. A significantly reduced type
IIB mean fibre area correlated to the strength was The other most prominent abnormality of quadri-

ceps muscle function observed in this study was slowingdemonstrated in this group.
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