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Key words: chronic renal failure; compensatory hyper- angiotensin II (ANG II ) enabled investigators to test
trophy; renin–angiotensin system; macrophages/ directly the effect of this peptide on many diverse
monocytes functions of the organism [9,10]. The discovery that a

venom of the Brazilian viper was able to inhibit ACE
and the synthesis of competitive peptide analogues of
ANG II such as saralasin in the early 1970s provided

Introduction the tools to interfere with the activation of the RAS
[11,12]. In vivo binding studies in several organs includ-

Franz Volhard (1872–1950), one of the most influential ing the kidney using saralasin provided convincing
German clinicians in the first half of this century and evidence that ANG II-receptors are heterogeneous in
probably best known for his seminal classification of expression and function with high- and low-affinity
nephritis [1], postulated as early as 1923 the existence binding characteristics [10,13]. The development of
of a renal-derived factor as the cause of vasospasm of specific competitive non-peptide ANG II-receptor ant-
the then so-called pale hypertension [2]. Hartwich, one agonists [14], whose applications confirmed the exist-
of Volhard’s disciples, demonstrated in 1930 that liga- ence of at least two types of ANG II receptors, has
tion of the renal artery in dogs caused a transient rise been pivotal in the cloning of the AT1 receptor in 1991
in blood pressure [3]. Although not widely appreciated [15,16 ]. The AT2 receptor was more recently cloned,
at that time, these studies were the precursors of and it is currently the last member of the RAS whose
Goldblatt’s authoritative experiments establishing that molecular structure has been identified [17].
renal ischaemia causes persistent hypertension [4]. The functions of ANG II to induce vasoconstriction
Until the work of Braun-Menéndez [5], and independ- and to stimulate aldosterone release from the adrenal
ently of Page [6 ], it was believed that a saline extract, gland were well established in the 1950s [18].
first prepared from rabbit kidneys by Tigerstedt and Micropuncture studies in the 1970s firmly demon-
Bergmann in 1898 and named renin [7], was sufficient strated the role of ANG II in the regulation of glomer-
to induce vasoconstriction. Page noticed that further ular haemodynamics [19,20]. In parallel, evidence
purification of a crude renal preparation abolished its accumulated that mesangial cells express ANG II
vasoconstrictive abilities whereas mixing of this puri- receptors, contract after challenge with the octapeptide,
fied renin with plasma restored the effect, suggesting and increase the uptake and processing of macro-
that renin generates a vasoactive substance from molecules in the presence of ANG II [21,22]. However,
plasma [6 ]. In parallel experiments, Braun-Menéndez it became clear that ANG II effects were not limited
and Fasciolo discovered that a vasoconstrictor of ident- to the glomerular circulation, and several investigators
ical properties, as found in the venous blood from a showed that the peptide modulates proximal tubularkidney with experimentally induced renal artery sten- sodium and water transport [24,25].osis, is produced by incubating renin with plasma [5]. Anderson and co-workers published their landmarkThese fundamental investigations, together with the study in 1985 showing that an ACE inhibitor reduceddiscovery of an enzyme in plasma capable of converting

proteinuria and limited glomerular injury in rats withvasoactive factors, later named angiotensin-converting
experimentally induced reduction of renal mass [26,27].enzyme (ACE), by Skeggs and associates [8], laid the
These beneficial effects of the ACE inhibitor were thengroundwork for the many subsequent studies on
solely attributed to the normalization of glomerularthe renin–angiotensin system (RAS). The synthesis of
hypertension [26 ]. It took almost a decade until the
validation that ACE inhibitors also provided protec-
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inhibitors may also be attributable to mechanisms in contributing to local peptide concentrations, have
added considerable complexity to the RAS [36–38].other than a reduction in blood pressure [28,29].

During recent years, a myriad of data has accumu- Finally, many of the newer functions attributed to
ANG II such as compensatory growth responses,lated from observations in the kidney as well as other

organs that ANG II exerts diverse effects such as stimulation of fibrogenesis, and initiation of monocyte/
macrophage (M/M) influx into the kidney may begrowth stimulation, induction of fibrogenesis, and

immunomodulation, which are clearly beyond the com- involved in the progressive loss of renal function in
chronic disease [30,39–41]. Furthermore, ANG II maymonly appreciated classical function of this vasoactive

peptide. A review describing these more recently recog- function as a bridge linking haemodynamic mechan-
isms which take place during the functional adaptationnized functions of ANG II has been consequently

entitled ‘Angiotensin actions in the kidney: renewed of surviving nephrons after renal injury to the associ-
ated morphological remodelling of renal architectureinsight into the old hormone’ [30]. An overview of

some, but not all, of the newer functions of ANG II [40]. The current review will first describe how ANG
II modulates renal growth and fibrogenesis and willis given in Figure 1.

This revitalized interest into the vasoactive peptide then focus on potential immunomodulatory effects of
the peptide. Mechanisms of ANG II-mediated changesemanated from different sources. First of all, the

cloning of the diverse classes of ANG II receptors and in glomerular haemodynamics and ultrafiltration,
although important in the appreciation of this peptidethe pharmacological tools to block these receptors

offer the opportunity to dissect the various signal as a pivotal factor in the progression of renal disease,
will not be covered, and have been reviewed else-transduction pathways involved subsequent to receptor

activation, and to better understand the function of where [42–45].
ANG II on a molecular level including activation or
suppression of target genes [14–16 ]. Although the

ANG-II-mediated induction of cytokines andRAS has been traditionally considered as an endocrine
growth factorssystem with only renin being synthesized by the kidney,

there is now convincing evidence that all components
of a local RAS resides within the kidney and all Many of the diverse effects of ANG II delineated in

detail below are not directly caused by the vasopeptideelements of a functional RAS may be even present in
proximal tubular cells [31–34]. ANG II is indeed itself but are rather mediated through the ANG

II-induced production of a wide array of differentsecreted in nanomolar concentrations into the tubular
fluid, and cells along the nephron come in contact with cytokines and growth factors [30,40,46,47]. In such a

scheme, ANG II may stimulate a particular factor inmuch higher concentrations of the peptide than previ-
ously thought [35]. Equally important, the local renal a distinct renal cell. This factor, most probably but

not necessarily subsequent to secretion, may then bindRAS may be independently regulated from its systemic
counterpart, and commonly used systemic concentra- and activate either nearby cells in a paracrine or the

same cells in an autocrine manner. Since the majoritytions of ACE-inhibitors may not necessarily inactivate
the renal RAS. The recent identification of new angio- of information of ANG II potential to induce other

factors is derived from culture experiments with homo-tensin peptides, such as angiotensin IV and angiotensin
(1–7) with distinct functions and probably separate logous cells, the actual in vivo situation is much more

complex and the identification of which local cytokineputative receptors, and the accompanying enzymatic
machinery to generate these peptides as well as the may be induced by ANG II is very difficult, if not

impossible. An overview of the various cytokines andpreviously underestimated role of ANG II metabolism

Fig. 1. ANG II has many recently discovered effects which may all contribute to the progression of chronic renal disease towards
irreversible scarring.
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growth factors induced in renal cells is provided in response in proximal tubular cells [59]. Proximal tubu-
lar cells undergoing ANG-II-mediated hypertrophy areTable 1.
arrested in the G1 phase of the cell cycle and express
typical G1-phase-associated genes [50,54,57]. Induction

ANG II as a renal growth factor of such G1-phase-associated early growth response
genes have been also described in vivo after infusion
of ANG II into the renal artery [61]. This G1 phaseAlthough the growth-promoting effects of ANG II on
arrest depends on the induction of the cyclin-dependentvascular smooth-muscle cells have been relatively well
kinase (CdK) inhibitor p27Kip1 [62]. p27Kip1 expressiondefined [41], it was only more recently that several
is stimulated after incubation of LLC-PK1 cells withgroups have drawn their attention to the capacity of
ANG II or TGF-b and binds to cyclin D1-CdK4ANG II to modify renal growth processes. Norman
complexes, inhibits their kinase activity, and hamperset al. were among the first to formally investigate the
G1-phase exit [62]. In addition to G1-phase arrest andpotential growth effects of ANG II on proximal tubular
stimulation of de novo protein synthesis, there is alsocells, describing that the octapeptide clearly potentiated
evidence, at least in LLC-PK1 cells, that ANG IIproliferation induced by epidermal growth factor
reduces protein degradation, suggesting that these[48,49]. Our group was the first to demonstrate that
effects are additive in the induction of tubular hyper-ANG II stimulates hypertrophy of a murine proximal
trophy [63]. An overview of the molecular mechanismstubular cell line (MCT cells), as determined by stimu-
of how ANG II induces hypertrophy of proximallating protein synthesis and increased cell size without
tubular cells is shown in Figure 2. In contrast toaccompanying DNA synthesis [50]. We have sub-
proximal tubular cells, ANG II is mitogenic for asequently shown that ANG II induces a hypertrophic
mouse cell line derived from medullary thick ascendingresponse in LLC-PK1 cells through activation of AT1 limb of Henle’s loop (mTAL) [64]. This mitogenicreceptors [51]. These findings have been confirmed in
response is associated with failure of ANG II toprimary cultures of rabbit and rat proximal tubular
stimulate TGF-b synthesis [64], a finding that maycells [52,53]. Pertussis toxin and agents increasing
explain the induction of a proliferative growth responseintracellular cAMP abolished the ANG II-induced
in these mTAL cells.protein synthesis, indicating that the AT1 receptor is

We reported in 1992 that ANG II causes a smallcoupled to adenylate cyclase by a pertussis-toxin-
but significant proliferation of a murine mesangial cellsensitive inhibitory G-protein [54,55–57]. Subsequent
line in serum-free medium in the absence of otheractivation of cytosolic S6 kinase appears to be essential
factors [65]. Although several investigators have sub-in this process [52,56 ]. ANG II stimulates bioactivation
sequently corroborated these findings in cultured mes-and expression of transforming growth factor-b (TGF-
angial cells from different species [66–73], not all foundb) in tubular MCT cells [58]. This ANG-II-mediated
evidence of ANG II-mediated mitosis [74–76 ]. In factexpression of TGF-b is due to an increase in transcrip-
it has been proposed that ANG II induces hypertrophytional activity [59]. A neutralizing anti-TGF-b anti-
rather than proliferation of mesangial cells [74–76 ],body attenuates the ANG-II-induced increase in
and there may exist differences in the kinetic patternprotein synthesis in MCT cells, suggesting that the
of induction of mitogen-activated protein (MAP) kin-hypertrophy is mediated by synthesis and activation
ases between strong proliferative stimuli such as plate-of endogenous TGF-b [89]. Interestingly, transfection
let-derived growth factor (PDGF) and ANG II [76 ].of MCT cells with the c-mas oncogene converts the
However, the differences in the growth pattern (prolif-hypertrophic growth response of ANG II into prolif-
eration versus hypertrophy) are most probably due toeration [60]. This change is associated with decreased
variance in culture conditions, addition of supplemen-TGF-b transcription and synthesis in c-mas transfected
tary growth factors, species differences, and thecells, suggesting that ANG-II-mediated TGF-b tran-
methods used to assess proliferation. There is somescription is pivotal for the hypertrophic growth
evidence that ANG-II-induced proliferation of mes-
angial cells may be mediated by autogenous release ofTable 1. ANG-II-mediated induction of cytokines and growth fac-

tors in various renal cells other cytokines such as interleukin 6, PDGF or
endothelin-1 [66,67,73]. Nevertheless, infusion of this

Factor Cell type Reference peptide into naive rats causes a small proliferation of
mesangial cells [77,78], although it remains to be
established whether this effect is directly generated byEndothelin–1 Mesangial cell 66

Glomerular endothelial cell 82 ANG II and not by hypertension.
Interleukin 6 Mesangial cell 67 Interestingly, the in vitro proliferative effects of ANG
MCP–1 Mesangial cell 136, 137 II on mesangial cells are inhibited in the presence ofPlatelet-activating Mesangial cell 46

atrial natriuretic peptide (ANP) or supplementationfactor (PAF)
PA-1 Mesangial cell 121 of the medium with the nitric oxide precursor L-
PDGF Mesangial cell 73 arginine, suggesting that an increase in intracellular
RANTES Glomerular endothelial cell 135 cGMP inhibits mitosis [70,79]. Other effects, however,
TGF-b Proximal tubule cell 58

like ANP-mediated synthesis of TGF-b may play addi-Mesangial cell 116
tional roles in this process [80]. ANG-II-mediated
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showed in a subtotal nephrectomy model in rats that
only ACE inhibitors, but not other antihypertensive
drugs, prevented mesangial proliferation and podocyte
hypertrophy despite comparable reduction in systolic
blood pressure. Although this finding may not rule out
a potential protective effect of ACE-inhibitor-mediated
reduction in glomerular haemodynamics, these invest-
igators persuasively showed that the beneficial effects
of interference with the RAS are not caused by a
decrease in hypertension.

A strong activation of the RAS occurs in the kidney
during fetal and early postnatal life, resulting in high
levels of ANG II [88–90]. Inhibition of the RAS causes
an arrest in nephrovascular maturation and in renal
growth and development [88]. Moreover, mice defi-
cient in ACE exhibit abnormal vessels and tubules
[91,92]. Although not supported by data from some
investigators [93], these findings suggest that ANG II
may be an important factor in nephrogenesis and renal
maturation and growth.

Studies performed in coronary endothelial cells and
rat phaeochromocytoma cells which both express the
AT2 subtype of the ANG-II receptor suggest that
engagement of ANG II with this receptor inhibits cell
proliferation [94]. Along this line, further studies indi-
cate that activation of the AT2 receptors exerts anti-
proliferation by increasing programmed cell death
(apoptosis) through activation of a protein–tyrosine–
phosphatase [95]. This activation leads to an under-
phosphorylation and inhibition of Bcl-2 protein, a key

Fig. 2. Overview of the complex mechanisms of how ANG II may factor preventing apoptosis [95]. Despite this fascinat-
stimulate hypertrophy of cultured proximal tubular cells. After ing result and the potential therapeutic effect of over-
binding to AT1 receptors, an inhibitory G protein leads to inhibition

expressing AT2 receptors, there is currently littleof adenylate cyclase, resulting in a decrease in cAMP. This decrease,
information that similar mechanisms are operative inin addition to other putative signal transduction pathways, may

stimulate transcription and synthesis of TGF-b1. TGF-b1 expression the kidney [82,97].
itself, as well as TGF-b-independent effects of ANG II, stimulate
translation, but not transcription, of the CdK inhibitor p27Kip1. This
protein associates with CdK4-cyclin D complexes and inhibits their Profibrogenic role of ANG IIkinase activity. The result is a decrease in phosphorylation of the
protein product of the retinoblastoma gene (PRB) which retains the
transcription factor E2F. The lack of transcription of various target End-stage kidneys, independent of the primary renal
genes (which are different from immediate early genes being induced disease, are characterized by the irreversible develop-
by ANG II) facilitates cell cycle arrest in the G1 phase, with resulatnt

ment of glomerulosclerosis and tubulointerstitial fib-hypertrophy. This arrest as well as direct effects of TGF-b1 stimulate
rosis [98,99]. Net accumulation of extracellular matrixprotein synthesis including extracellular matrix proteins. Z indicates

stimulation; ) refers to inhibition; ? marks potential mechanisms proteins in the glomerular tuft and/or the tubulointer-
which have not yet been tested. stitium is the result of an increase in the synthesis of

these substances, a decrease in turnover, or a combina-
tion of both [98,99]. Although a wide variety of diverseproliferation has been also described in rat renomedul-

lary interstitial and glomerular endothelial cells [81,82]. factors including systemic and glomerular hyperten-
sion, proteinuria, metabolic factors such as acidosis,ACE inhibitors partly attenuate compensatory renal

growth in different models, independently of concomit- and influx of circulating monocytes may all contribute
to the fibrogenic process in end-stage kidneys, there isant haemodynamic changes [30,40,83–85]. For

example, a high dose of enalapril abolished compensat- increasing evidence that many of these factors induce
profibrogenic cytokines such as TGF-b, which in turnory renal hypertrophy and glomerular sclerosis better

than a low dose of this ACE inhibitor in subtotally stimulates production and inhibits turnover of extracel-
lular matrix proteins [100]. Moreover, in the dynamicnephrectomized rats, despite a similar reduction

in glomerular capillary hydraulic pressure [86 ]. mechanisms of fibrogenesis, growth processes such as
proliferation of intrinsic glomerular cells and compens-Treatment of weaning rats for 6 weeks with frusemide

activates the RAS and stimulates tubular and glomer- atory tubular hypertrophy may precede the later devel-
opment of glomerulosclerosis and tubulointerstitialular hypertrophy as measured by morphometry [87].

Treatment with enalapril preventes this compensatory fibrosis [101–104]. Consequently, potential effects of
ANG II on synthesis and turnover of extracellularrenal hypertrophy [87]. Amann and co-workers [78]
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matrix have been investigated, mainly in cultured prox- Complementary to ANG-II-stimulated increase in
extracellular matrix proteins, recent findings indicateimal tubular and mesangial cells. ANG II stimulates

transcription of collagen type IV in MCT cells [55]. that the peptide also modulates the plasmin protease
system [121–124]. Plasmin degrades extracellularThis stimulation is mediated by endogenous synthesis

and autocrine action of TGF-b because a neutralizing matrix itself and additionally activates metallo-
proteinases which further degrade collagens. Plasminanti-TGF-b antibody as well as TGF-b antisense oli-

gonucleotides attenuate ANG II-induced collagen type synthesis itself is regulated by the balance between
plasminogen activators (PA) and their inhibitorsIV transcription and synthesis [105].

More indirect evidence that ANG II plays an import- (PAI-1,2). Kagami et al. [121] have recently demon-
strated in cultured rat mesangial cells that ANG IIant role in tubulointerstitial fibrosis in vivo has been

obtained from comprehensive studies in rats with uni- upregulates PAI-1 production, partly through induc-
tion of TGF-b. ANG-II-mediated expression of PAI-1lateral ureteral ligation [106–108]. Tubular TGF-b

expression precedes the development of tubulointersti- depends on activation of protein kinase C. [122]. Since
PAI-1 is an inhibitor of plasmin-mediated extracellulartial fibrosis and was partly attenuated when animals

were treated with an ACE inhibitor [106,107]. matrix degradation, ANG-II-mediated PAI-1 induc-
tion may contribute to the development of renal fibrosisEnalapril administration reduces TGF-b expression

and halts tubulointerstitial fibrosis even when the drug [124]. Surprising recent studies disclosed that renin
may also bind directly to mesangial cells and increasesis given later during the course of obstructive nephro-

pathy [108]. Another model in which a close relation- PAI-1 expression [123]. In vivo studies utilizing a model
of radiation-induced glomerulosclerosis have shown aship between activated RAS, TGF-b, and the

subsequent development of tubulointerstitial fibrosis decrease in PAI-1 expression when animals were treated
with ACE inhibitor or AT1-receptor blocker [124].has been appreciated is chronic cyclosporin nephrotox-

icity. Administration of cyclosporin to animals as well This PAI decrease was associated with accelerating
fibrinolysis, suggesting that ANG II may indeed accel-as direct treatment of cultured proximal tubular cells

stimulates expression of TGF-b and collagen synthesis erate renal fibrosis through interaction with protease
systems [124].[109–112]. Treatment of rats with enalapril or an AT1-receptor antagonist prevents cyclosporin-induced Probably the most direct evidence that the RAS is
involved in renal scarring may stem from investigationsTGF-b and a1(I )procollagen mRNA expression as

well as tubulointerstitial fibrosis, convincingly demon- designed to overexpress renin and angiotensinogen
locally in rat glomeruli by using haemagglutinatingstrating that ANG II induces TGF-b, which in turn

activates extracellular matrix synthesis [113,114]. virus of Japan [125]. Seven days after transfection,
extracellular matrix was expanded and a-smooth-Enalapril, but not a calcium antagonist, also attenuates

tubulointerstitial fibrosis in ageing mice of 2 years muscle actin was expressed in mesangial cells [125].
No significant difference in the blood pressure was[115].

In addition, ANG II stimulates fibronectin and observed between the different groups, indicating that
systemic hypertension did not contribute to the glom-collagen type I synthesis in cultured mesangial cells

[65,71,72]. It appears that some of these changes are erulosclerosis in renin–angiotensinogen overexpressing
glomeruli.also mediated by secondary effects of induced TGF-b

[116 ]. ANG II induced mesangial-cell activation of the
cyclic adenosine monophosphate response element

Immunomodulatory effects of ANG IIbinding protein (CREB) transcription factor, whose
activation seems to be a necessary prerequisite for
fibronectin transcription [117]. After subtotal nephrec- Glomerular and interstitial infiltration with M/M is a

common feature in many immune-mediated and non-tomy, rats develop glomerulosclerosis and tubulointer-
stitial fibrosis, leading to impairment of renal function immune-mediated renal diseases, and it is believed that

this infiltration is crucial in the progression of renal[118]. These changes are associated with a 2.5-fold
increase in TGF-b gene expression, localized to scler- disease [126 ]. Diamond and Anderson [127] treated

rats with experimentally induced chronic aminonucleo-otic glomeruli and areas of tubulointerstitial damage
[118]. Administration of the ACE inhibitor ramipril side nephrosis with the ACE inhibitor enalapril and

observed a decrease in tubulointerstitial cellular infilt-and the AT1-receptor blocker valsartan blunt the
increase in TGF-b mRNA and attenuate the structural rates and in the development of interstitial fibrosis

compared with untreated controls. An infiltration ofmanifestations of injury, indicating an in vivo relation-
ship between RAS, TGF-b, and subsequent develop- M/M has been reported in the unclipped kidneys of

rats with two-kidney one-clip hypertension, a classicalment of renal scarring [118]. In a separate study, even
delayed ACE treatment started 8 weeks after 5/6 model of an initially strongly activated RAS [128,129].

ACE inhibitor or AT1 treatment also reduces renalnephrectomy reduces glomerulosclerosis compared to
untreated rats [119]. Lee et al. [120] have also provided M/M in uninephrectomized spontaneously hypertens-

ive rats (SHR) [130]. Although these effects could beclear evidence in a model of progressive glomerulo-
sclerosis that endothelial and mesangial RAS is essen- due to a reduction of proteinuria and normalization

of glomerular hyperfiltration, they may additionallytial in TGF-b induction and subsequent synthesis of
extracellular matrix proteins. indicate the tantalizing possibility that ANG II exerts
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immunomodulatory properties by promoting renal
M/M influx. Indeed studies more than a decade ago
suggest that the peptide may have chemotactic activity
for various immunocompetent cells. It has been
reported, for example, that ANG II stimulates the
chemotactic response of human mononuclear cells in
vitro [131], and activates phagocytosis of granuloma-
derived macrophages [132]. Farber et al. [133] showed
that ANG II influences neutrophil accumulation via
production of chemoattractant activity by vascular
endothelial cells. However, this neutrophil chemoat-
tractant was not further identified, but it was implied
that it is not identical with known eicosanoids [133].
More recent studies have demonstrated that ANG II
induces adhesion of M/M, but not of neutrophils, to
aortic endothelial cells without upregulation of adhe-
sion molecules [134].

We have studied in a recent series of experiments
whether ANG II may modulate M/M recruitment in
the kidney [135]. ANG II dose-dependently stimulated
mRNA and protein expression of RANTES, a member
of the C-C chemokine subfamily with chemoattractant
properties for M/M, eosinophil, and basophil granulo-
cytes as well as T cells, in cultured glomerular endothel-
ial cells of the rat (GER), but not in syngeneic
mesangial cells [135]. Chemotactic assays revealed that
the produced RANTES and not ANG II itself
was actually chemotactic for human monocytes.
Surprisingly, the ANG II-stimulated RANTES expres-
sion was transduced by AT2 and not AT1 receptors
[135]. Intraperitoneal infusion of ANG II (500 ng/h)
into normal rats for 4 days significantly stimulated
glomerular RANTES mRNA and protein expression
[135]. Immunohistochemistry revealed induction of Fig. 3 A, B. Evidence for immunoregulatory effects of ANG II in
RANTES protein mainly in glomerular endothelial vivo. A. Kidney section of a rat infused for 4 days with ANG II

showed positive staining for chemokine RANTES, mainly in glomer-cells and small capillaries (see Figure 3A,B). ANG-II-
ular endothelial cells. B. Rats infused with solvent (no ANG II)infused animals demonstrated an increase in glomer-
revealed only a slight staining of tubular cells with no detection ofular M/M staining, an effect attenuated by oral treat- RANTES protein in the glomerular tuft. Magnification×200. For

ment with an AT2-receptor blocker [135]. These studies details see reference 135.
demonstrated that ANG II may play an important
role in glomerular chemotaxis of M/M through the
local induction of the chemokine RANTES in endo-
thelial cells. The astonishing observation that the kB DNA binding [141], an ANG II-mediated reduc-

tion in NO may attenuate this negative feedbackANG-II-mediated induction of RANTES is transduced
by AT2 rather than AT1 receptors may influence the mechanism and further facilitate MCP-1 transcription.

We have addressed in a very recent study the effectdecision as to which substances should be used for the
therapeutic interference with the RAS. However, of two AT1-receptor antagonists, losartan and irbesar-

tan, on glomerular MCP-1 expression as well as influxRANTES may not be the only chemokine whose
expression is induced by ANG II in the kidney. of M/M in a model of mesangioproliferative nephritis

induced in rats by injection of an anti-thy 1 antibodyPreliminary reports from two independent groups sug-
gest that ANG II stimulates monocyte chemoattractant [142]. Both AT1-receptor antagonists caused a signi-

ficant, but not total, reduction of MCP-1 mRNA andprotein-1 (MCP-1) expression in cultured mesangial
cells [136,137]. Since reactive oxygen intermediates protein expression 24 h after injection of antithymocyte

serum. Treatment with losartan or irbesartan alsohave been recently implicated in transcription of
MCP-1 by the transcription factor family of NF-kB reduced chemotactic activity of isolated glomeruli from

nephritic animals [142]. Quantification of ED1-positive[138], and ANG II may induce and support the
generation of such reactive oxygen species [139], at cells revealed that losartan as well as irbesartan reduced

glomerular M/M infiltration in nephritic rats byleast in some tissues this pathway offers an interesting
explanation of how the peptide could stimulate MCP-1 approximately 30–50% [142]. These data indicate that

short-term antagonism of AT1 receptors abolished theexpression. Since nitric oxide (NO), whose tubular
synthesis is impaired by ANG II [140], inhibits NF- early glomerular MCP-1 expression and M/M influx
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in a model of experimentally induced glomerulo- study suggests that patients with chronic nephropathies
and a proteinuria �3 g/24 h derive the most benefitnephritis.

After loss of functional renal tissue, surviving prox- from ACE-inhibitor treatment [158]. Other studies
found also a protective effect in patients with lesserimal tubules have to increase their acid secretion

through enhanced bicarbonate reabsorption and gen- proteinuria [28,29]. A specific high-risk group in which
ACE inhibitors may be less effective are patients witheration of ammonia to maintain acid–base homeostasis

[143]. This response is partly mediated by ANG-II- the ACE DD genotype, although the significance of
this genotype is currently the subject of intensiveinduced stimulation of ammoniagenesis [144]. Such an

increase in ammonia production may lead to the research and is heavily disputed. It may be wise to
look at the evolution of ACE-inhibitor treatment inactivation of complement C3, provoking further the

influx of M/M into the kidney [145]. diabetic patients. Initially, only diabetic patients with
hypertension and proteinuria have been treated [150].Osteopontin is an arginine–glycine–aspartate-rich

protein recently shown to induce M/M influx [146 ]. A Subsequently, a protective effect of ACE inhibitors has
been documented in normotensive diabetics with mic-marked increase in osteopontin expression was

observed in distal tubule and collecting ducts of ANG- roalbuminuria [152]. Quite recently the EUCLID study
demonstrated protective effects of ACE-inhibitor treat-II-infused rats, preceding other pathological changes

[146 ]. These observations may suggest that ANG-II- ment on the progression of renal disease in patients
with early stages of diabetes mellitus, even in theinduced osteopontin overexpression facilitates M/M

accumulation at the sites of tubulointerstitial injury. absence of microalbuminuria and hypertension,
although the greatest clinical effect was observed inProvocative recent studies demonstrated renin and

ANG II expression in M/M [147,148]. ANG II release those with microalbuminuria [153]. This change in the
treatment strategy in diabetes mellitus may serve as afrom infiltrating M/M may, on the one hand, further

stimulate chemoattraction of these cells, but may, on model of how patients with other chronic renal diseases
should be treated. Eventually all patients might bethe other, additionally influence renal haemodynamic,

growth and fibrogeneic processes through a local treated after the diagnosis of chronic renal insufficiency
is made, irrespective of concomitant hypertension orincrease in ANG II. A preliminary report suggests that

ANG II augments anti-CD3-antibody-induced prolif- proteinuria. Therefore ACE inhibitors could be ulti-
mately considered as renoprotective drugs.eration of a murine nephritogenic T cell clone [149].

This clonal expansion was transduced through AT1 The recent introduction of AT1-receptor blockers as
antihypertensive drugs has opened new avenues to howreceptors [149]. These compelling studies indicate that

ANG II may foster expansion of nephritogenic T cells. the effects of ANG II may be more specifically antagon-
ized, and the theoretical advantages of this new class
of drugs over ACE-inhibitors have been reviewed

What does this all mean for the treatment of renal [160–162]. So far, at least in animal models, AT1-patients? receptor antagonists are comparable to ACE inhibitors
in their protection of renal structure [163–166 ].
Although AT1-receptor antagonists may have fewerAfter elaborating in detail on the myriad of ANG II

effects in the kidney, one may ask how does this cause bradykinin-mediated side-effects, such as cough, than
ACE inhibitors [167], whether these substances areany paradigm change in the clinical treatment of

patients with chronic renal disease. Patients suffering superior to ACE inhibitors in the slowing of renal
function deterioration in humans, similar to findingsfrom diabetic nephropathy were among the first to be

treated with ACE inhibitors after the landmark experi- reported in the extremely controversial ELITE study
in patients with myocardial infarction, is the subjectmental studies by Anderson and co-workers showed a

protective effect of these drugs on renal function of ongoing investigations [168]. However, some experi-
mental observations suggest that unopposed binding[150,151]. Many studies have since convincingly dem-

onstrated the protective effects of ACE inhibitors in of ANG II to AT2 receptor initiate proinflammatory
responses in the kidney [135].the prevention of diabetic nephropathy [152–156 ]. In

addition, several studies are also completed indicating
that various ACE inhibitors prevent the progression

Conclusionof chronic renal failure in patients with different prim-
ary renal diseases [28,29,157,158]. Patients suffering
from autosomal dominant cystic kidney disease may ANG II has emerged as a multifunctional factor exhib-

iting such diverse actions as influencing renal haemo-be the exception [29]. Almost all studies indicate that
this beneficial effect of ACE inhibitors is independent dynamics and tubular transport, acting as a growth

factor and a profibrogenic cytokine, and even havingof a reduction in blood pressure [28,29,150–158].
Although some critical voices have been raised sug- inflammatory properties. Cell-culture studies have pro-

vided clear evidence that many of these functions aregesting that bias may prevent the publication of nega-
tive studies [159], which exist, I nevertheless believe independent of haemodynamic changes and may be

pivotally involved in the progression of chronic renalthat there is no doubt that ACE inhibitors effectively
attenuate the loss of function in chronic renal disease. disease. Naturally the contribution of such non-

haemodynamic effects in vivo is much more complic-However, which patients should be treated? A recent
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Fig. 4. Integrative concept of how haemodynamic as well as non-haemodynamic effects of ANG II may jointly contribute to the development
of glomerulosclerosis and tubulointerstitial fibrosis. After loss of functioning renal tissue, a local and/or systemic activation of the RAS
occurs, resulting in an increase in ANG II levels. On the one hand, ANG II modulates the adaptive haemodynamic changes such as
increasing glomerular hydraulic pressure and tubular reabsorption to maintain fluid and electrolyte homeostasis; on the other, ANG II
stimulates compensatory glomerular and tubular growth processes. The octapeptide also stimulates fibrogenesis by increasing extracellular
matrix synthesis and reduction in turnover of these proteins. Part of this profibrogenic effect of ANG II may be mediated by the induction
of TGF-b. Finally, ANG II may facilitate recruitment of monocytes into the kidney through complement activation and induction of
chemoattractants such as MCP-1, RANTES, and osteopontin. These diverse actions of ANG II are closely interrelated: mechanical stretch
caused by glomerular hyperfiltration or a stimulated proximal tubular reabsorption of solutes may initiate or enhance compensatory growth
processes. Infiltrating monocytes release various cytokines, growth factors and toxic oxygen products which may all further promote
fibrogenesis. All these diverse actions of ANG II may eventually give rise to the irreversible structural changes of glomerulosclerosis and
tubulointerstitial fibrosis, which are the common endpoints of all chronic renal diseases. Taking into account the pivotal role of ANG II
in these processes, it is obvious that therapeutic interventions to antagonize ANG II may slow the development of end-stage renal disease.

various projects over recent years. I also thank Eric G. Neilson MD,ated to assess, and it may ultimately be impossible to
University of Pennsylvania, Philadelphia, USA, in whose laboratorydissect haemodynamic from other effects of ANG II
I had the chance as a postdoctoral fellow to develop the concept of

in the whole organism. However, haemodynamic ANG II as a growth and profibrogenic factor. I am very much
effects, for example glomerular stretch, may further indebted to RoIf A. K. Stahl MD, University of Hamburg, for his

continuous interest and support of my work and a critical readingaugment non-haemodynamic actions of ANG II such
of the present manuscript. I thank John Tomaszewski MD,as renal growth or fibrogenesis [169]. The connection
University of Pennsylvania, Philadelphia, USA, for help with thebetween haemodynamic and non-haemodynamic immunohistochemical studies provided in Figure 3. Original work

actions of ANG II jointly contributing to the develop- in the author’s laboratory was supported by grants of the Deutsche
Forschungsgemeinschaft and the Werner Otto-Stiftung, Hamburg.ment of renal scarring are schematized in Figure 4.
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72. Gómez-Garre D, Ruiz-Ortega M, Ortego M et al. Effects and the postnatal rat. Exp Nephrol 1997; 5: 201–209
94. Stoll M, Steckelings M, Paul M, Bottari SP, Metzger R, Ungerinteractions of endothelin-1 and angiotensin II on matrix

protein expression and synthesis and mesangial cell growth. T. The angiotensin AT2-receptor mediates inhibition of cell
proliferation in coronary endothelial cells. J Clin Invest 1995;Hypertension 1996; 27: 885–892

73. Higueruelo S, Romero S. Angiotensin II requires PDGF-BB 95: 651–657
95. Yamada T, Horiuchi M, Dzau VJ. Angiotensin II type 2to induce DNA synthesis in rat mesangial cells cultured in an

exogenous insulin-free medium. Nephrol Dial Transplant 1997; receptor mediates programmed cell death. Proc Natl Acad Sci
USA 1996; 93: 156–16012: 694–700

74. Anderson PW, Do YS, Hsueh WA. Angiotensin II causes 96. Horiuchi M, Hayashida W, Kambe T, Yamada T, Dzau
VJ. Angiotensin type 2 receptor dephosphorylates Bcl–2 bymesangial cell hypertrophy. Hypertension 1993; 21: 29–35
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