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ABSTRACT

Over the last decade, significant progress has been made in the
identification and validation of novel biomarkers as well as refine-
ments in the use of serum creatinine as a marker of kidney
function. These advances have taken advantage of laboratory in-
vestigations, which have identified these novel molecules that
serve important biological functions in the pathogenesis of acute
kidney injury (AKI). As we advance and validate these markers
for clinical studies in AKI, we recognize that they serve not only to
improve our understanding of AKI, but they could also serve as
potential targets for the treatment of AKI. This review will under-
score the biological basis of specific biomarkers that will contrib-
ute to the advancement in the treatment and outcomes of AKI.

Keywords: acute renal failure, cystatin-C, IL-18, KIM-1,
NGAL

INTRODUCTION

Acute kidney injury (AKI) is a complex disorder that leads to
high morbidity and mortality. The most recent epidemiological
study indicates that this clinical problem continues to grow un-
abated [1]. Treatment regimens for AKI have been unsuccessful
over the years due to the incomplete understanding of the
pathogenesis and biomarkers for early detection, in addition to
poor clinical trial design, along with the continued use of serum
creatinine as a marker of kidney function [2, 3]. To improve the
precision of serum creatinine as a marker of kidney function,
the acute quality dialysis initiative (ADQI) developed the risk,
injury, failure, loss, end-stage kidney disease (RIFLE) criteria,
the acute kidney injury network (AKIN) developed the AKIN
criteria and most recently, kidney disease improving global out-
comes (KDIGO) developed the KDIGO criteria that combines

the two [2, 4, 5]. As a result of recent standardization of diag-
nostic and staging criteria for AKI, our understanding of the
epidemiology of AKI has improved in a variety of settings in-
cluding outpatient clinics, emergency departments, in patient
wards and in intensive care units [5–7]. Despite these efforts
serum creatinine continues to suffer from a number of short-
comings including assay interference, altered metabolism of cre-
atinine in AKI, dilution during volume overload and alterations
in clearance with drugs (cimetidine, organic molecules). Add-
itional problems relate to the fact that serum creatinine is both a
late and indirect reflection of kidney damage.

Over the past decade there has been an enormous expansion
in the discovery and validation of unique biomarkers of kidney
disease. The ideal biomarker is one that can predict and diagnose
AKI, identify the location of injury, the type and etiology of
injury, predict outcomes and enable the initiation and monitor-
ing of therapeutic interventions [8]. Biomarkers report on kidney
function (glomerular filtration), tubule function (reabsorption of
filtered molecules) or damage/injury. Various molecules have
been identified that represent non-renal molecules filtered, se-
creted or reabsorbed, molecules that are constitutive or upregu-
lated or molecules released by infiltrating immune cells
(Figure 1). These biomarkers are proteins or molecules that can
be found in urinary exosomes and free filtered urine [9]. Table 1
lists both candidate and validated biomarkers of AKI [10]. Most
recently in the 10th ADQI meeting risk assessment, diagnosis
and staging, differential diagnosis, prognosis and management
and novel physiological techniques were summarized [9] to guide
clinicians in the eventual use of AKI biomarkers. A number
of hurdles still remain before biomarkers of AKI can be imple-
mented in clinical practice that focus on the effects of different
factors on biomarker interpretation including gender and age dif-
ferences, and cut-off values of each biomarker in different condi-
tions [chronic kidney disease (CKD), cardiopulmonary bypass,
sepsis etc.] [11]. Lastly, there are concerns that relate to whether
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urinary AKI biomarkers should be normalized to urine creatinine
[12] as is done in patients with CKD. However, the underlying
assumption that creatinine excretion is stable is flawed since there
are dynamic changes in urine creatinine excretion during acute
and recovery stages of glomerular filtration rate (GFR) during
AKI. Thus, the normalization of urinary biomarkers of AKI to
urine excretion of creatinine is affected by variability in urine cre-
atinine excretion, which may on the one hand lead to an en-
hancement of its utility as a diagnostic tool or on the other hand
lead to spurious and misleading values [12]. In clinical studies,
normalization of urinary biomarkers to urinary creatinine con-
centration improved the prediction of AKI, but not in the diagno-
sis of established AKI [13]. Further guidelines will need to be
developed for the clinical use of AKI biomarkers.

Whereas these issues pertain to the clinical characteristics
of AKI biomarkers, this review will focus on a basic science
view of the most promising AKI biomarkers.

CYSTATIN C

Initially named ‘γ trace’ because of its location just past the
gamma band on an immunoelectropheresis gel, this low-

molecular-weight protein was first discovered in the cerebro-
spinal fluid of healthy patients, then detected in the urine of
patients with tubular diseases, and later in the serum of dialy-
sis patients [14–16]. The protein was found to be similar to a
cysteine proteinase inhibitor in the cystatin family, and
renamed cystatin C [17]. In humans, cystatins are the most im-
portant endogenous inhibitor of cysteine proteinases, specific-
ally cathepsin H, B, L and calpains [18]. Cystatin C, a 13-kDa
protein, arises in all nucleated cells and is not bound to plasma
proteins. Therefore, it is freely filtered by the glomerulus, and
subsequently reabsorbed and degraded in the renal proximal
tubule by the endocytic receptor, megalin [19]. Unlike creatin-
ine, cystatin C is not secreted into the urine by the tubule,
hence its appearance in the urine depends on AKI, reflecting
its filtration at the glomerulus and reduced uptake by the
damaged proximal tubules [20] (Figure 2a). In addition,
because cystatin C and albumin are both reabsorbed by
megalin-facilitated endocytosis in the proximal tubule [19,
21], the presence of albuminuria may competitively inhibit
reabsorption and increase urinary excretion of cystatin C [22].
For similar reasons, albuminuria may increase the excretion of
other biomarkers including neutrophil gelatinase-associated
lipocalin (NGAL), liver fatty acid-binding protein (L-FABP),
α1-microglobulin and β2-microglobulin [22]. The blood con-
centration of cystatin C depends on the individual’s GFR, and
the correlation between cystatin C and GFR is evident even in
a range where serum creatinine cannot detect changes, GFRs
of 60–90 mL/min [23]. Both particle-enhanced nephelometric
and turbidometric immunoassays are the most accurate and
established methods to detect cystatin C concentration in
samples, but both have intra- and inter- assay variability [24].

When compared with serum cystatin C, urine cystatin C
appears as an earlier and more sensitive marker in AKI. In
animals exposed to cisplatin or gentamicin, urinary cystatin C
rose before proximal tubule damage, supporting its value as an
early biomarker [25, 26].

Although the superiority of serum cystatin C when com-
pared with serum creatinine has been established in both
animal models and clinical settings of CKD, the use of cystatin
C as a biomarker in AKI continues to evolve. Currently, it is
unclear if the value of cystatin C is generalizable to all forms of
AKI, or specific to particular populations [27–30]. It is

F IGURE 1 : Mechanisms of urinary biomarkers in kidney injury. Biomarkers are renal and non-renal derived molecules that report on the
functional status of kidney filtration and tubule injury. Markers may represent non-renal molecules filtered, secreted or reabsorbed, molecules
that are constitutive or upregulated or molecules from infiltrating immune cells.

Table 1. Biomarkers of AKI

Functional
biomarkers

Tubular enzymes Upregulated proteins

Creatinine Alanine
aminopeptidase (AAP)

KIM-1

Cystatin C Alkaline phosphatase
(AP)

Clusterin

β2-microglobulin α-glutathione-S-
transferase (α-GST)

Neutrophil gelatinase-
associated lipocalin
(NGAL)

α1-microglobulin γ-glutamyl
transpeptidase (γΓT)

IL-18

Retinol-binding-
protein (RBP)

N-acetyl-β-
glucosaminidase
(NAG)

Cysteine-rich protein
(CYR-61)

Microalbumin Osteopontin
FABP
Sodium/hydrogen
exchanger isoform
(NHE3)
Exosomal fetuin A
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important to recognize that the analysis of cystatin C is af-
fected by diabetes, large doses of corticosteroids, hyperthy-
roidism, inflammation, hyperbilirubinemia, rheumatoid factor
and hypertriglyceridemia [23, 24]. Cystatin C has not been va-
lidated for use in children <2 years old.

MICROALBUMIN

Microalbuminuria is urinary albumin that is below the thresh-
old of detection by the conventional urinary dipstick (30–300
mg/L). It is widely recognized as a critical diagnostic tool in
the development and progression of renal disease, signaling
altered glomerular structure and function [31]. This paradigm
may be relevant for AKI as well. Urinary albumin levels are in-
creased in both glomerular and tubular diseases, but recently it
was found that gene expression of albumin is increased in AKI
[32] making urinary albumin a more sensitive marker than
previously thought.

The use of urinary albumin as a marker for AKI was
shown in a rat model of toxic AKI and was thought to be due
to impaired proximal tubular function, as urinary levels of

beta2-microglobulin were also high in these animals
(Figure 2a). The albuminuria preceded changes in the urin-
alysis, urinary NAG levels and serum creatinine [33]. In an
animal model of septic AKI, urine albumin to creatinine
ratios rose within the first 24 h after lipopolysaccharide
(LPS) administration; a response that was prevented by a
therapeutic intervention [34]. In patients receiving cancer
chemotherapeutic agents such as cisplatin, ifosfamide,
methotrexate [35, 36] and antibiotics such as aminoglyco-
sides, tubular dysfunction was detected by urinary albumin
excretion [37]. In both the translational research investigat-
ing biomarker end-points (TRIBE) consortium and smaller
studies, urine albumin predicted the infants and children
that would develop AKI after cardiopulmonary bypass
surgery [38, 39]. The limitations of using albuminuria as a
biomarker for AKI include the following: (i) non-specific
site of injury, (ii) ability to separate CKD from AKI and (iii)
albuminuria can be non-pathologic, occurring in the setting
of vigorous exercise, hematuria, urinary tract infections, de-
hydration, fever and poor glycemic control and (iv) albumin
can degrade with storage [40, 41]. The benefits of using albu-
minuria in the setting of AKI are: it is inexpensive, is

F IGURE 2 : Functional biomarkers and enzymatic injury biomarkers. (a) Functional biomarkers. Creatinine is freely filtered and a small
amount is secreted into the tubular lumen. During AKI the increase in serum creatinine is due to a decrease in glomerular filtration rate and
backleak through damaged proximal tubule cells. Cystatin C is freely filtered and reabsorbed by the proximal tubule. During AKI, reabsorption
by the proximal tubule may be diminished due to damage to the epithelium, which augments its appearance in the urine. The reduced filtration
rate causes the rise in cystatin C following AKI. A small amount of albumin passes through the filtration barrier and ischemic damage to glom-
eruli likely enhances albumin leak. Normally, albumin is reabsorbed by the proximal tubule; however, with damage to the proximal tubule,
reabsorptive mechanisms are diminished, increasing the appearance of albumin in the urine. (b) Enzymatic injury biomarkers. Alanine amino-
peptidase (AAP), alkaline phosphatase (AP). γ-glutamyl transpeptidase (gGT) and N-acetyl-β-glucosaminidase (NAG) are present in the epithe-
lial cells and are released into the urine following cellular injury.
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obtained in readily available body fluid and can be quanti-
fied in a high through-put manner.

N -ACETYL-β - D -GLUCOSAMINIDASE

Within the kidney, N-acetyl-β-D-glucosamininidase (NAG)
originates from the lysosomes of the proximal tubule cells and
can be measured in the urine using a colorimetric assay. In-
creased urinary concentration of NAG is a sensitive marker
for proximal tubule injury with loss of lysosomal integrity [42]
(Figure 2b). NAG’s large size (∼140 kDa) precludes renal fil-
tration and therefore high urinary levels are unlikely to origin-
ate from a non-renal source. Administration of proximal
tubule toxins such as gentamicin and mercury in rats causes a
significant increase in concentrations of urinary NAG [43, 44].
Not only does NAG appear to correlate well with histologic
evidence of proximal tubule injury, it may also reflect effective
treatment of renal tubular injury. In animal models of nephro-
toxicity, urinary NAG returned to baseline with antioxidant
therapy [44, 45].

Urinary NAG performs reasonably well in the clinical
setting as well. In humans, Westhyzen et al. [46] reported
urinary NAG concentrations were sufficiently sensitive to
detect AKI in critically ill adults, preceding serum creatinine
by 12 h to 4 days. Critically ill patients admitted for AKI had
urinary NAG levels that correlated with poorer outcomes [47].
There are limitations of urinary NAG as a biomarker for AKI.
Since urinary NAG is a particularly sensitive marker of tubular
injury, its ability to indicate damage in a specific tubular
segment may be overshadowed by the low threshold for the
release of tubular enzymes in response to any tubular injury
and its prognostic value needs to be assessed. Urinary NAG is
also inhibited by urea [48], industrial solvents and heavy
metals [49]. There have been reports in the literature of false-
positive values for urinary NAG including in the setting of
rheumatoid arthritis [50], impaired glucose tolerance [51] and
hyperthyroidism [52]. Particularly important for research pur-
poses, NAG tends to degrade most appreciably over time when
compared with other biomarkers even when stored at −80°C.
This degradation is not improved with alkalinization or prote-
ase inhibition [53].

KIDNEY INJURY MOLECULE-1

Studies examining repair after ischemia–reperfusion injury
(IRI) identified rat and human cDNAs for a type I membrane
glycoprotein that contains both a novel six-cysteine immuno-
globulin-like domain and a mucin domain in its extracellular
portion. This molecule was named kidney injury molecule-1
(KIM-1)/T cell immunoglobulin and mucin domain contain-
ing protein-1 (Kim-1/TIM-1) [54]. Kim-1 mRNA levels in-
creased more than any other gene after kidney injury, and the
ectodomain of Kim-1 is shed from cells in vitro, as well as in
vivo in the urine from rodents after proximal tubular injury
[55] (Figure 3). Kim-1/TIM1 is also expressed in immune cells
where it is thought to activate T-helper2 (Th2), Th1 and Th17

differentiation as well as activating receptor in B cells, dendrit-
ic cells and natural killer cells [56]. In situ hybridization and
immunohistochemistry demonstrated that Kim-1 was ex-
pressed in proliferating and regenerating proximal tubules.
After injury, Kim-1 expressed in epithelial cells was respon-
sible for phagocytosis in cultured primary rat tubule epithelial
cells by recognizing apoptotic cells, phosphatidylserine and
oxidized lipoproteins [57]. The findings of this study suggest
that Kim-1 is capable of facilitating remodeling of injured epi-
thelia.

Urinary Kim-1 protein concentration was significantly in-
creased within 12 h after an initial ischemic renal insult, when
compared with urine samples from patients with other forms
of acute and chronic renal failure [58]. Kim-1 expression was
also found in proximal tubule epithelial cells in human kidney
biopsy sections from patients with acute tubular necrosis
(ATN). There are two spliced variants, Kim-1a which is the
major form expressed in the liver and Kim-1b, which is the
predominant form in the kidneys. Both isoforms have identi-
cal extracellular domain but differ on their cytoplasmic
domains [55]. By a metalloproteinase-dependent process,
Kim-1 sheds its ectodomain appearing in the urine of patients
with ATN. In nephrotoxic models of AKI (folic acid and cis-
platin) upregulation of Kim-1 expression precedes the rise in
serum creatinine and suggests that this protein may serve as a
general biomarker for tubular injury [59]. Although initial
clinical studies suggested that the rise of urinary Kim-1 could
be delayed when compared with other novel biomarkers, more
recent studies suggest that Kim-1 elevations do occur within
hours of renal injury [10, 60, 61]. In fact, extensive analysis of
studies in patients with AKI conducted between 2002 and
2009 demonstrated that Kim-1 is an early biomarker of AKI
within 24 h after a kidney insult [62]. The development of sen-
sitive and reproducible quantitative microbead-based KIM-1

F IGURE 3 : KIM-1. It is expressed in proximal tubule cells and is
thought to promote apoptotic and necrotic cell clearance. Upon
injury, KIM-1 is upregulated and shed into the urine and extracellular
space. It is thought to activate immune cells in injury-induced
immune response.
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ELISA [63] tests should further facilitate their use in mice and
humans, which will help to demonstrate the utility of urinary
Kim-1 as a kidney biomarker of AKI. Kim-1 has been ap-
proved by the US Food and Drug Administration as an AKI
biomarker for preclinical drug development [64].

NEUTROPHIL GELATINASE-ASSOCIATED
LIPOCALIN

NGAL is a novel 25-kDa protein associated with gelatinase
from human neutrophils with similar motifs to other known li-
pocalins [65]. The tertiary structure of this protein contains an
α-helix and a β-barrel surrounding a hydrophobic core
that binds small lipophilic ligands [66, 67]. NGAL exists as a
25-kDa monomer, 45-kDa homodimer and conjugated to gela-
tinase as a 135-kDa heterodimeric form [65]. The monomeric
form and to some extent the heterodimeric form are the pre-
dominant forms produced by tubular epithelial cells, whereas
the homodimeric form is specific to neutrophils [68]. NGAL
protein levels are very low in various biological fluids in the
steady-state level. The serum concentration of NGAL is ∼20 ng/
mL, which is probably derived from neutrophils and from
limited expression in the liver, spleen and kidneys [69]. Renal
clearance is a major regulator of this steady state, because circu-
lating NGAL undergoes glomerular filtration due to its low mo-
lecular weight and positive charge. Filtered NGAL is captured
by the proximal tubule, where it is degraded to a 14-kDa frag-
ment in lysosomes. Endocytosis of NGAL from the apical mem-
brane is considered the most likely pathway for NGAL traffic
because it appeared in the urine when the apical megalin recep-
tor was deleted [70] (Figure 4). Similar to serum, the normal
concentration of urinary NGAL is also ∼20 ng/mL at steady

state. The origin of this protein is not clear, but could be derived
from serum NGAL that bypasses capture in the proximal
tubule, from neutrophils or from bladder epithelia. An interest
in NGAL as a clinical biomarker came after it was found that
NGAL was markedly upregulated in the kidney tissue in the
mouse models of renal IRI and cisplatin, and these changes
were accompanied by the presence of urinary NGAL which pre-
ceded the rise in serum creatinine [71, 72]. Many clinical
studies have shown that increases in urinary and plasma NGAL
are powerful and independent predictors of AKI when com-
pared with serum creatinine [73–75]. To further investigate the
quantitative relationships between the expression of NGAL in
the kidneys and the amount of NGAL protein in the urine,
Paragas et al. [76] created a bioluminescent mouse by placing
Luciferase2-mCherry reporters in the lipocalin2 locus. Lucifer-
ase2 expression, designated as ‘kidney NGAL’, was proportional
to the dose of ischemia or the dose of LPS. In addition, kidney
luminescence paralleled the amount of NGAL protein appear-
ing in the urine in a dose-responsive fashion. The proximal
tubule, [71] thick ascending limb and collecting ducts [76]
appear to be sources of urinary NGAL. NGAL was identified in
mouse proximal tubules after kidney IRI through immunohisto-
chemistry and NGAL mRNA in human proximal tubule cells
following ATP depletion [71]. Somewhat surprising was the
identification of NGAL in macula densa, distal convoluted and
intercalated cells as well as the thick ascending limb and collect-
ing ducts following kidney ischemia in NGAL reporter mouse;
however, the protein secretion from these nephron segments
has not been well studied [76]. Differences between these
studies may relate to the different methods used and their sensi-
tivities. In addition, some of the proximal tubule NGAL identi-
fied by immunohistochemistry may be detecting filtered NGAL
reabsorbed by the proximal tubule.

Intravenous administration of purified recombinant NGAL
protected mouse kidneys from IRI [77]. Quantitative differ-
ences in the production of NGAL in different nephron seg-
ments may protect kidneys to varying degrees. When compared
with proximal tubules collecting ducts were not apoptotic [76].
The mechanism of protection by NGAL is not known. NGAL
forms a complex with iron-binding siderophores and for this
reason has also been called siderocalcin. NGAL released by
nephron segment may chelate labile Fe released from damaged
tubules and prevent the formation of hydroxyl radicals and
superoxide (Figure 4). Using a mouse model of AKI, a single
dose of NGAL dramatically protected the kidneys, and blockade
of the siderophore with gallium inhibited the rescue from ische-
mia [78]. Furthermore, the Ngal:siderophore:Fe complex upre-
gulated heme oxygenase-1, preserved N-cadherin and inhibited
cell death. NGAL is intensively upregulated in models of sepsis,
suggesting that the release of NGAL into the urinary system is a
major response of the kidney to systemic infections as well as
local urogenital infections. The available data support the
concept that the urinary pool of NGAL derives from tubular
cells of thick ascending limb of the loop of Henle (TALH) as
well as from collecting duct.

In addition to its appearance in the urine in its free form,
NGAL is readily excreted complexed with matrix metallopro-
teinase-9 (MMP-9) [79]. MMP-2 and 9 are endopeptidases

F IGURE 4 : NGAL. It is produced by neutrophils and is expressed
to a limited degree in the liver, spleen and kidney. Several functions
have been described including inhibiting bacterial growth, scavenging
iron and inducing epithelial cell growth. A small amount of NGAL is
filtered and taken up by the proximal tubule through megalin. Upon
injury, NGAL (a stress response protein) is upregulated and released
into the urine and plasma. Its protective effect when infused may be
related to its ability to scavenge iron as depicted or through its ability
to induce cell growth.
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that degrade extracellular matrix and are involved in ischemic
organ injuries. Both expressions of MMP-2 and MMP-9 in-
crease following kidney IRI [80]. Whereas mice deficient in
MMP-2 were protected from acute IRI, mice deficient of MMP-
9 were not [81]. However, when mice deficient in MMP-9 were
followed for 2 weeks post-IRI, they were protected from micro-
vascular loss following kidney IRI [81]. Because MMP-9-NGAL
preserves enzymatic activity of MMP-9 [79], the role of pre-
served MMP-9 activity by the complex in AKI will need to be
examined.

NGAL has been one of the most widely studied biomarkers
in AKI. A recent extensive meta-analysis of data from 19
studies including >2500 patients, serum and urine NGAL
levels were found to be not only diagnostic of AKI, but also
predicted clinical outcomes such as the need for initiation of
dialysis and mortality [75].

INTERLEUKIN-18

Interleukin 18 (IL-18), a member of the IL-1 cytokine super-
family and known as an interferon-γ (IFN-γ)-inducing factor,
regulates innate and adaptive immunity [82]. IL-18 was
derived from a liver cDNA library from animals injected with
heat killed Propionibacterium acnes and challenged with LPS
[83]. The murine IL-18 precursor is a polypeptide of 192
amino acids lacking a conventional signal peptide and is
cleaved by caspase-1 forming a mature protein of 157 amino
acids. The murine and human IL-18 are 65% homologous
[84]. The precursor IL-18 (pro-IL-18) is a 24-kD inactive mol-
ecule and is cleaved after Asp35 by caspase -1, an endoprotease
IL-1β-converting enzyme (ICE; caspase-1) to generate the
biologically active 18-kD molecule [85, 86]. IL-18 is produced
by mononuclear cells, macrophages and non-immune cells

including proximal tubule cells (Figure 5). IL-18 mRNA is ex-
pressed in human peripheral blood mononuclear cells, murine
splenic macrophages and non-immune cells [87, 88]. IL-18
binds to IL-18R complex, a heterodimer containing an α and β
chain. The α chain is the IL-1Rrp, the chain responsible for
binding of IL-18 and the β chain and AcP (accessory protein)
is the chain responsible for signal transduction [89–91]. IL-
18R is expressed on hematopoietic cells (macrophages, neutro-
phils, natural killer cells) as well as endothelial cells and
smooth muscle cells [82].

IL-18 levels in the kidneys more than doubles following
AKI and the conversion of IL-18 precursor to the mature form
requires caspase-1 as this conversion is not observed in
caspase-1-deficient mice [92]. IL-18 blocking antibodies de-
creased injury to a similar degree as seen in caspase-deficient
mice. These results demonstrate that IL-18 is an important
mediator of acute ischemic AKI. The source of IL-18 respon-
sible for kidney injury is thought to be the proximal tubule
[88] and not macrophages [93], neutrophils or CD4 T cells
[92, 94]. In an obstructive model of kidney injury, the deleteri-
ous effect of IL-18 appears to be due to its activation of epithe-
lial FasL expression, increase active caspase-8 and caspase 3
expression and effects that are blocked by IL-18 neutralization
[95].

In a cross-sectional study urine IL-18 levels increased in pa-
tients with ATN compared with other kidney diseases (prere-
nal azotemia, urinary tract infection, CKD and nephrotic
syndrome) and had a sensitivity and specificity of >90% for
the diagnosis of AKI [96]. In the intensive care unit in patients
with acute respiratory distress syndrome, urine IL-18 levels of
>100 pg/mL were associated with an increased odds of AKI of
6.5 (95% confidence interval: 2.1–20.4) and increased pre-
dicted mortality [97]. In a recent meta-analysis of 23 studies
and 4512 patients, urinary IL-18 was found to be a predictive

F IGURE 5 : IL-18. It is produced by immune cells and by active epithelial cells. Following activation of toll like receptor 4 (TLR4), activation of
inflammasome leads to cleavage of pro-caspase 1 to caspase-1. This in turn cleaves pro-IL-18 into the active IL-18 molecule. IL-18 has proin-
flammatory properties or may have homeostatic properties.
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biomarker of AKI in various settings including cardiac surgery
patients, intensive care unit or coronary care units as well as in
children, adolescents and adults [98].

LIVER FATTY ACID-BINDING PROTEIN

L-FABP is a 15-kDa protein that belongs to the family of the
fatty acid-binding proteins (FABP). To date, nine FABP
protein-coding genes have been identified in the human
genome. L-FABP is not only expressed in the liver, but also in
the intestine, pancreas, kidneys, lungs and stomach. This 15-
kDa protein also belongs to the family of lipocalins, and com-
priseds an anti-parallel β-barrel containing a ligand-binding
pocket, and a helical N terminus that is involved in the regula-
tion of fatty acid (FA) transfer from membranes via electro-
static interactions [99]. The gene promoter of L-FABP also
contains several response elements including the presence of a
peroxisome proliferator response element that is important for
the regulation of FABP1. Treatment with hypercholesterol-
emia and hyperlipidemic drugs (statins and fibrates) up-regu-
lates FABP1 expression in the liver and kidney tissue [100].

Although the kidney in rodents does not synthesize a sig-
nificant amount of L-FABP, recent work suggests that L-FABP
under normal conditions resides in the lysosomal compart-
ment of the proximal tubule, and can also be reabsorbed from
the glomerular filtrate via megalin, a multi-ligand proximal
tubule endocytic receptor. On the other hand, the amount of
L-FABP present in the human kidney is considerably much
higher than the amount of L-FABP present in mouse kidney,
and its expression is restricted to the proximal convoluted and
straight tubules [77]. In more recent studies, the creation of a
human L-FABP chromosomal transgenic mouse, as well as the

development of an ELISA method to measure urinary human
L-FABP, were developed to identify the localization and the
role of the human protein in various models of AKI [100,
101]. Human kidney L-FABP is expressed in the proximal
tubule. L-FABP was found to traffic from the cytoplasm of
proximal tubule to the tubular lumen in human L-FABP
transgenic mice subjected to IRI, a result that suggested that
increased urinary L-FABP after IRI could be a useful biomark-
er of acute ischemic injury [102] (Figure 6). In a cisplatin
model of AKI, there was an increase in urinary excretion of
human L-FABP detected within the first 24 h of cisplatin in-
jection. In addition, the authors demonstrated that fibrate pre-
treatment prevented cisplatin-mediated shedding of urinary L-
FABP. The increased shedding of urinary L-FABP before a rise
in serum creatinine suggested that human L-FABP could be
considered as an early biomarker of cisplatin-mediated AKI
[103].

In clinical studies, urine L-FABP was assessed in 40 pediat-
ric patients prior to and following cardiopulmonary bypass
surgery. Elevated urinary L-FABP levels 4 h after surgery were
an independent risk indicator of AKI post-cardiac surgery,
and appears to be a sensitive and predictive early biomarker of
AKI after cardiac surgery [103]. Subsequent studies have con-
firmed this initial observation in adult patients having cardiac
surgery as well as patients admitted to the ICU with sepsis
[104, 105]. L-FABP has been approved as a diagnostic test for
human AKI in Japan.

A recent study conducted by the TRIBE in Acute Kidney
Injury consortium in adult and children patients undergoing
cardiac surgery validated the use of several of the biomarkers
and identified a strong signal for risk of AKI when five AKI
biomarkers (NGAL in urine and serum, and urine IL-18,
KIM-1 and L-FABP) were considered in aggregate [106].

F IGURE 6 : L-FABP. They are bound to serum albumin and are reabsorbed into the proximal tubule bound to serum albumin. Filtered L-FABP
is taken up by the proximal tubule and acts as a carrier protein and transports free fatty acids to mitochondria and peroxisomes for metabolism.
Upon stress and ischemia–reperfusion there is an upregulation of L-FABP, which binds lipid hydro-peroxides and other reactive oxygen—which
together are released into the urine.
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Other biomarkers

Netrins belong to the laminin-related family, initially de-
scribed as axon guidance molecules [107] later noted for their
role in the development of many organs [108]. In mammals,
there are three secreted netrins (netrin-1, -3 and -4) [107].
Within the kidneys, netrins are normally located in the peri-
tubular capillaries of the kidneys, but during IRI netrin-1 is
highly induced within the tubular epithelial cells [109].
Netrins mediate their effects through two known receptors,
deleted in colon cancer and UNC5H [110]. Netrin-1 inhibits
leukocyte migration during sepsis, mitogenesis and chemoat-
traction of endothelial cells, with a role in angiogenesis, cell
migration, tissue morphogenesis, tumor progression and
growth and regulation of inflammation. Netrin regulates in-
flammation and inflammatory cell migration during AKI
through the suppression of COX-2 induction of PGE2 and
thromboxane A2 production [111]. Netrin-1 provides some
protection from IRI, potentially by the suppression of oxida-
tion and inhibition of neuropeptide Y expression [112].
Netrin-1 has been evaluated as a urinary biomarker in mul-
tiple animal models of AKI, including IR, cisplatin, LPS and
folic acid administration. In IRI, netrin-1 increased gradually
in the urine over the hours subsequent to the injury, peaked at
6 h and by 24 h had returned to baseline. This pattern was
consistent in the group receiving cisplatin and LPS, but in the
folic acid group the urinary levels of netrin-1 peaked at 3 h
and did not return to baseline. This increased urinary excre-
tion of netrin-1 always preceded increases of serum creatinine
or urea BUN [113]. Although a relatively new biomarker in
both basic and clinical research, urinary netrin-1 seems to
perform well in the detection of AKI. Netrin-1 identifies AKI
early and found to return to baseline within 24 h [113].
Netrin-1 performs well as a biomarker for AKI across many
types of injury and can be measured in urine by western blots
and commercially available ELISA. MicroRNAs are endogen-
ous single-stranded molecules of ∼22 non-coding nucleotides
that induced gain or loss of function and contribute to specific
diseases have been identified in the urine of patients with AKI
[114]. Recent studies have identified urine insulin-like growth
factor-binding protein 7 (IGFBP7) and tissue inhibitor of me-
talloproteinases-2 (TIMP-2), both inducers of G1 cell cycle
arrest as important new biomarkers [115]. These proteins are
expressed in epithelial cells and act in an autocrine and para-
crine manner to arrest cell cycle in AKI. Further testing will be
necessary to determine their significance as a biomarker of
AKI.

CONCLUSIONS

There have been major advances in the discovery and valid-
ation of biomarkers of AKI in a variety of clinical settings and
it is likely that these findings will provide information on diag-
nosis, etiology and prognosis of AKI. Further advances have
been made to identify new biomarkers in the future as well as
using newer discovery tools. Isolation of urinary exosomes that
contain epithelial membranes and intracellular fluids released

into the urine may be recovered and analyzed [116]. Through
proteomic analysis of urinary exosomes including two-dimen-
sional electrophoresis, liquid chromatography and capillary
electrophoresis all of them coupled to mass spectrometry,
novel proteins may be identified. Metabolomics refers to the
study of the metabolite pool that exists within a cell, tissue or
biofluid under a particular set of conditions [117], whereas
metabonomics has been defined as the quantitative measure-
ment of the dynamic metabolic response of living systems to
pathophysiological stimuli or genetic modification [118].
Studying the metabolome will allow understanding of changes
in phenotype and function [119–121]. The use of current bio-
markers or newer biomarkers in the future will be combined
with the use of creatinine as a functional biomarker, which to-
gether will enhance the ability of the RIFLE, AKIN or KDIGO
criteria to define AKI (Figure 7).
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