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ABSTRACT

The term uraemic myopathy has been used loosely to describe
the skeletal muscle abnormalities in uraemic patients.
However, it does not fully explain the observed abnormalities
as recent research has documented a normal skeletal muscle
physiology in the presence of reduced muscle force, selective
structural changes and significant muscle wasting. Ageing is
associated with sarcopenia (muscle wasting) and an increase in
the prevalence of chronic kidney disease (CKD), which accel-
erates the normal physiological muscle wasting. Similar to sar-
copenia, muscle wasting in uraemic patients appears to be the
hallmark of the disease and its aetiology is multifactorial with
hormonal, immunologic and myocellular changes, metabolic
acidosis, reduced protein intake and physical inactivity.
Uraemic sarcopenia presents a high probability for morbidity
and mortality and consequently a high priority for muscle
wasting prevention and treatment in these patients. Perhaps,
the use of the term ‘uraemic sarcopenia’ would provide recog-
nition by the renal community for this devastating problem.
The purpose of this review is to relate the findings of the
recent publications that describe abnormalities in uraemic
skeletal muscle to the possible pathogenesis of muscle wasting
and its consequences in patients with CKD.

Keywords: muscle wasting, pathophysiology, sarcopenia,
uraemia

INTRODUCTION

Skeletal muscle abnormalities in chronic kidney disease
(CKD) have been described over half a century ago under the
loose term uraemic myopathy [1]. The early literature reported
two patterns of muscle weakness in dialysis patients; one

affecting predominately distal muscles and associated with
neuropathy and the other affecting predominantly proximal
muscles [2, 3]. A recent report has suggested that uraemic my-
opathy is common with an overall prevalence of ∼50% in dia-
lysis patients [4]. However, in general, physical examination,
electromyographical studies and muscle enzymes are normal
in these patients. A more recent research has documented
reduced muscle force, selective structural changes and signifi-
cant muscle wasting in the presence of normal skeletal muscle
physiology [5, 6]. Although the term uraemic myopathy raised
awareness of the problem, it did not fully explain the patho-
physiology of the disease.

It is important to emphasize that both uraemia and sarco-
penia are progressive diseases. Uraemia is a clinical syndrome
associated with fluid, metabolic abnormalities, electrolyte and
hormone imbalances, which develop in parallel with deterior-
ation of renal function. Some of these abnormalities start
earlier in the course of the uraemia and others appear late.
However, by using the term uraemic sarcopenia, the progres-
sive and cumulative effect of the CKD on the skeletal muscles
is implied.

SKELETAL MUSCLE ABNORMALITIES IN CKD

Muscle weakness, defined as a failure to generate force [7], is
common in CKD patients. Several studies have confirmed
reduced muscle strength in these patients [6, 8, 9]; however,
only two studies analysed objectively the contractile properties
of skeletal muscle of dialysis patients. Berkelhammer et al. [10]
assessed the function of the adductor pollicis muscle in terms
of force and speed of relaxation and concluded that skeletal
muscle function is unaffected by uraemia, but provides a func-
tional measure of nutritional status in chronic renal failure. In
a more recent study, our group investigated the quadriceps
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femoris and adductor pollicis muscles force and contractile
properties in a group of dialysis patients. Objective measure-
ment of quadriceps force revealed unequivocal force reduction
in 71% of the patients (Figure 1), particularly, in malnourished
patients. We also demonstrated no evidence of impaired
neuromuscular transmission or impaired excitation–contrac-
tion coupling as demonstrated by percutaneous electrical
stimulation studies; however, skeletal muscle relaxation char-
acteristics were slowed in all patients particularly in the mal-
nourished group [6].

MUSCLE FATIGUE

Fatigue, defined as the failure to sustain force or power output
[7], is often reported by patients on dialysis. Two types of
fatigue are recognized based on an anatomical subdivision,
central and peripheral [7, 11].

In patients with CKD, the mechanisms responsible for the
perceived fatigue remain poorly understood. In theory, hor-
monal imbalances [12], malnutrition [10], ATP and glycogen
depletion [13], impaired oxygen transport due to anaemia,
metabolic acidosis, alterations in electrolytes [14], altered life
style [15] and muscle wasting and weakness due to muscle
fibres atrophy [16] could all lead to peripheral fatigue develop-
ment during exercise. However, there is little objective evi-
dence of impairment in peripheral muscle function itself that
contributes to fatigue in these patients. Many studies have

examined exercise capacity relying on measures of VO2 max
[17, 18] or voluntary contractions lifting loads. Few studies
have examined the electrophysiological response of muscle
during fatiguing activity. Berkelhammer et al. [10] examined
the frequency, force and relaxation characteristics of adductor
pollicis on the stimulation of the ulnar nerve in patients with
chronic renal failure and were able to show no abnormality, al-
though the 10–100 Hz force ratio was increased and relaxation
characteristics slower in a group of malnourished patients. In a
more recent study, our group reported that the fatiguability of
dialysis patients muscle is the same as in normal subjects.
Fatigue of adductor pollicis during electrically evoked contrac-
tions was similarly demonstrated in both patient and control
groups, the changes in physiological parameters measured
(force, excitation and relaxation characteristics) were similar
in both the groups [5] and frequency dependence of force gen-
eration, 20:50 Hz tetanic force ratio and relaxation characteris-
tics were not significantly different between the patient and
control groups. However, subdividing the patients by nutri-
tional status using the Subjective Global Assessment question-
naire revealed greater fatigue at 10 Hz in the malnourished
compared with the well-nourished group [5]. Although these
findings have been attributed to ‘malnutrition’, more recent
evidence documented that muscle abnormalities in uraemia
can occur despite adequate nutritional intake and feeding does
not improve the abnormalities. Instead, there are complex me-
chanisms that stimulate loss of skeletal muscle which will be
discussed in this review.

MUSCLE BIOPSY STUDIES

The earliest histological studies of the skeletal muscles of
haemodialysis patients were at variance reporting electromyo-
graphical and morphological abnormalities with or without
neuropathic changes [16, 19]. However, there is firm evidence
that the most common abnormalities in uraemia are Type II
fibre atrophy, small cross-sectional area (CSA) and type
grouping [20, 21]. Recently, we found Type II fibre CSA (um2)
of uraemic patients to be smaller than that of healthy controls
(3883 + 557 versus 5213 + 1288) and also found a suggestion
that Type I fibres CSA (um2) are smaller (4011 + 458 versus
4627 + 1112) in the uraemic patients compared with the
healthy controls. Considering the subtypes of Type II fibres,
we found greater atrophy of Type IIB fibres (Type X using the
myosin heavy chain-based classification) than of Type IIA
fibres (2335 + 473 versus 3533 + 956) and a significantly
smaller Type IIB fibre area (2335 + 473 versus 4346 + 1496) in
the malnourished uraemic patients compared with the well-
nourished patients [5].

Electron microscopy studies showed no significant struc-
tural abnormalities in the mitochondria of dialysis patients.
However, the glycogen content was increased possibly reflect-
ing reduced physical activity, and lipfuscin increased possibly
due to muscle atrophy [19, 22]. However, the mitochondrial
enzymes (cytochrome c oxidase, succinate reduction of cyto-
chrome, palmitate oxidation and citrate synthase) were low in
the quadriceps muscle biopsy of dialysis patients compared

F IGURE 1 : Reproduced with permission from Fahal et al. [6]. Force
(N) of maximum voluntary isometric contractions of quadriceps in
all dialysis patients and controls. Shaded area represents the normal
range of 84 males (aged 6–63 years) and 61 females (aged 5–46 years)
from Edwards et al. [11].
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with normal controls and chronic fatigue patients [5]. A more
recent study using muscle biopsies of patients with CKD has
also reported a decrease in muscle mitochondrial oxidative
enzymes (muscle cytochrome c oxidase activity and citrate
synthase) and a decrease in the synthesis of muscle contractile
mixed muscle proteins, myosin heavy chain and mitochon-
drial proteins. The synthetic rates of muscle proteins and ac-
tivity of mitochondrial enzymes were negatively correlated to
the severity of renal failure [23]. In another study, the same
group demonstrated an age-related selective decline in the syn-
thesis rate of the muscle proteins myosin heavy chain [24] and
a similar decline in the rate of muscle mitochondrial protein
synthesis with ageing, which was associated with a decline in
skeletal muscle oxidative capacity and mitochondrial function
[25]. The mechanism by which uraemia contributes to the de-
crease in the synthetic rate of several muscle proteins is
complex and will be discussed in the following sections.

MUSCLE PROTEIN WASTING

Muscle wasting is common [26] and is progressive in patients
with CKD [27]. The decrease in muscle mass involves both a
decrease in muscle fibre size (atrophy) and number (hypopla-
sia). This is attributed to muscle protein wasting and its multi-
factorial aetiology with hormonal, immunologic and
myocellular changes, inflammation, metabolic acidosis,
reduced protein intake, physical inactivity, excess angiotensin
II, abnormalities in insulin/insulin-like growth factor I (IGF-
I), myostatin expression and reduction in satellite cells func-
tion (Figure 2). Most of these stimulate the ATP-dependent
ubiquitin-proteasome system (UPS), which has been identified
as the most important pathway for muscle wasting. The poten-
tial intracellular signalling processes involved in uraemic
muscle wasting are depicted in Figure 3 and although certain
regulatory pathways are emphasized other mechanisms are
probably involved as well.

Similar to sarcopenia, the loss of muscle mass (wasting) in
CKD patients appears to be multifactorial and the different
mechanisms contributing to uraemic sarcopenia are reviewed
below.

MYOGENIC PROGENITOR AND
SATELLITE CELLS

Satellite cells are skeletal muscle-specific stem cells known for
their robust myogenic potential and self-renewal properties.
They are located between the basal lamina and sarcolemma of
muscle fibres [28, 29]. After muscle injury, satellite cells are ac-
tivated and express the MyoD and myogenin transcription
factors leading to proliferation and formation of myoblasts,
and then differentiate, forming new muscle fibres to repair
injured muscle [30]. Transplantation of a single muscle fibre,
with resident satellite cells intact, is sufficient not only to
support significant regeneration of the host limb muscle but
also to replenish the satellite cell pool [31].

Wang et al. [32] reported decreased MyoD protein and
myogenin expression with impaired regeneration of injured
muscle in mice with CKD. These abnormalities suggested that
satellite cells function is impaired in CKD; however, the abnor-
malities were corrected in the muscle by resistance exercise.
Recently, the same group reported a new mechanism for
CKD-induced muscle atrophy linking impaired satellite cell
function to decreased IGF-1R signalling leading to reducing
satellite cell proliferation and differentiation [33].

INFLAMMATION

Low-grade inflammation is common in CKD even in early
stages as evident from increased circulating levels of inflamma-
tory markers (CRP and interleukin-6—‘IL-6’, and tumour ne-
crosis factor-alpha- ‘TNF-α’). Recent evidence suggests that
inflammation is an important cause of muscle wasting in pa-
tients with CKD [34–36]. Further research has shown that
muscle mass in dialysis patients is inversely correlated to circu-
lating levels of IL-6 and CRP [37]. There are several mechan-
isms for the role of inflammation in muscle wasting. TNF-α
enhances muscle wasting via induction of the NFκβ pathway
[38] and treatment with TNF-α attenuates insulin-stimulated
protein synthesis [39] and inhibits myocyte differentiation
through NFκβ activation, causing muscle wasting [40]. Zhang
et al. [41] uncovered a new role for an acute phase reactant
protein. Infusion of angotensin II increases hepatic production
of IL-6 and SAA acting synergistically to impair insulin/IGF-1
signalling, thus promoting muscle proteolysis. Cheung et al.
showed that infusion of cytokines (TNF-α, IL-6, IL-1β, inter-
feron-γ) enhanced muscle protein degradation via the NFκβ
pathway, whereas neutralization of these factors by genetic or
pharmacological approaches attenuates muscle wasting [42].
Inflammation also leads to muscle wasting through the activa-
tion of the UPS. This system is thought to be the major cause
of muscle wasting in CKD and will be discussed in the follow-
ing section.

ATP-DEPENDENT UPS

Regulation of muscle protein balance in uraemia is complex
and involves several mechanisms [42]. The ATP-dependent
ubiquitin-proteasome proteolysis is singled out as the major
cause of increased skeletal muscle degradation in CKD [43].
Inflammation and metabolic acidosis play a major role in acti-
vating the UPS. Inflammation activates the UPS leading to
cleavage of a characteristic 14 kDa actin fragment in the
soluble fragment of muscle which is the hallmark of increased
muscle proteolysis in CKD [44]. Metabolic acidosis, which is
common among CKD patients, can similarly induce UPS up-
regulation and increased branch amino acid oxidation in skel-
etal muscle [45]. Boivin et al. observed increased caspase-3 ac-
tivity in the skeletal muscle of dialysis patients leading to
increased generation of 14 kDa actin as well as ubiquitinized
C-terminal actin fragment. The same group also noted that
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F IGURE 2 : Possible aetiology of uraemic sarcopenia.

F IGURE 3 : Potential intracellular signalling processes involved in uraemic muscle wasting (sarcopenia). Although certain regulatorypathways
are emphasized other mechanisms are probably involved as well.
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the skeletal muscle of dialysis patients exhibited augmented
apoptosis [46].

METABOLIC ACIDOSIS

Metabolic acidosis is prevalent among CKD patients, particu-
larly those in stage 4 [47]. It promotes muscle protein wasting
and protein-energy wasting (PEW) [48] by increasing protein
degradation [49] and reducing protein synthesis [50]. As a
result, maintenance of muscle mass is impaired in CKD pa-
tients with altered protein turnover rates, Type II fibre atrophy
manifested clinically in muscle wasting [51]. Muscle protein
degradation and excessive oxidation of branched-chain amino
acids in skeletal muscle [52] are achieved through up-regula-
tion of the ubiquitin-proteasome pathway [42].

Stein et al. [53] randomly assigned 200 peritoneal dialysis
patients with metabolic acidosis to treatment with a dialysate
solution of 35 mmol/L lactate or to a dialysate of 40 mmol/L
lactate. After 1 year, both the groups of patients had higher
serum bicarbonate, had gained weight and had an increase in
mid-arm muscle circumference compatible with an increase in
muscle mass. Pickering et al. [54] found that a small increase
of the serum bicarbonate level in CAPD patients leads to a
down-regulation of proteolysis via the UPS in muscle and also
found an increase in plasma branched-chain amino acids con-
sistent with a decrease in their degradation. A recent study
from our group using sodium bicarbonate supplementation in
patients with pre-dialysis CKD reported a slower decline in
renal function as well as increase in dietary protein intake and
reduction in normalized protein nitrogen appearance, reflect-
ing a lower protein breakdown leading to an increment in the
lean body mass as assessed by mid-arm muscle circumference
[55]. Other studies of bicarbonate supplementation were also
associated with the reduction of protein degradation in both
peritoneal [50, 56] and haemodialysis [57] patients as well as
in elderly pre- end-stage renal disease (ESRD) patients [58].
Correction of acidosis may, therefore, help to preserve muscle
mass and improve the health of patients with CKD.

CHANGES IN VITAMIN D

Vitamin D status is positively associated with muscle strength
[59], physical performance [60] and inversely associated with
the risk of falling [61] and it also plays an important role in
other metabolic pathways, such as immune regulation, inflam-
mation, insulin resistance, hypertension, thrombosis and the
proliferation and differentiation of several cells including skel-
etal muscle [62]. Vitamin D supplementation has shown to
improve tests of muscle function [63], reduce falls [64], and
possibly impact on muscle fibre composition and morphology
in vitamin D-deficient older adults [65]. In addition, the iden-
tification of the vitamin D receptor on muscle cells [66] has
provided further support for a direct effect of vitamin D on
muscle tissue.

As in individuals with normal renal function and vitamin
D deficiency [67], patients with CKD have prolongation of the

relaxation phases of muscle contraction, independent of
serum calcium, parathyroid hormone or serum phosphorus
levels [6, 9]. These observations suggested a possible role for
vitamin D in the myopathy of CKD and early clinical descrip-
tions recognized a potential association between vitamin D
and muscle in CKD patients [68]. In addition, muscle biopsies
in adults with profound vitamin D deficiency have shown pre-
dominantly Type II fibre atrophy and enlarged interfibrillar
spaces and infiltration of fat, fibrosis and glycogen granules
[69]. These morphological features are not dissimilar from
those found in patients with CKD with Type II muscle fibre
atrophy, lipofuscin and glycogen deposition [2, 5].

CHANGES IN THE ANGIOTENSIN I I

The reninangiotensin system is activated in many catabolic
conditions including CKD leading to down-regulation of
phospho-Akt and activation of caspase-3 in skeletal muscle,
resulting in actin cleavage, an important component of muscle
proteolysis and to increased apoptosis [70]. Brink et al. [71]
demonstrated that infusion of angiotensin II in the rat pro-
duced increased muscle proteolysis and decreased circulating
and skeletal muscle IGF-1 leading to a marked reduction in
body weight. While the administration of losartan, an angio-
tensin II Type 1 receptor blocker, inhibits canonical trans-
forming growth factor-β (TGF-β) signalling activity and
promotes muscle remodelling in mouse models of Marfan
syndrome and dystrophin-deficient Duchenne muscular dys-
trophy [72]. Increased TGF-β signalling is among the mechan-
isms of the skeletal muscle wasting [73]. It is a known
inhibitor of skeletal muscle regeneration and remodelling, im-
paired myocyte differentiation [74], inhibits satellite cell acti-
vation, [73, 75] and leads to the formation of fibrotic tissue in
response to skeletal muscle injury [75]. Furthermore, treat-
ment with losartan after infliction of muscle injury also im-
proved regeneration in normal adult murine skeletal muscle
by reducing fibrotic tissue formation [76]. Another study de-
monstrated that losartan facilitated the remodelling of sarco-
penic skeletal muscle after injury and protected it from disuse
atrophy during immobilization in an ageing mouse model
[77].

CHANGES IN APPETITE

Anorexia, defined as the loss of desire for food, is common
and complex in CKD. Disturbances in appetite-regulating hor-
mones, decreased ability to distinguish flavours, altered taste,
uraemia-related gastrointestinal symptoms [78], depression
[79], haemodynamic instability as a result of exposure to anti-
hypertensive medications or haemodialysis, and a sensation of
fullness during peritoneal dialysis are among the causes citied
in the literature.

Disturbances in appetite-regulating hormones such as
leptin, a potent appetite inhibitor [80], and ghrelin, an appetite
stimulant [81], have been reported in CKD. Leptin, a potential
mediator of inflammation-induced anorexia [82] is elevated in

F
U
L
L
R
E
V
IE

W

U r a e m i c s a r c o p e n i a 1659

D
ow

nloaded from
 https://academ

ic.oup.com
/ndt/article/29/9/1655/1864455 by guest on 10 April 2024



CKD patients [83] due to impaired renal clearance [84].
Reports on the total circulating ghrelin levels in CKD are in-
consistent [85, 86]. However, recent studies have shown that
only plasma des-acyl ghrelin levels were elevated in CKD pa-
tients and suggested that elevated des-acyl ghrelin levels could
be involved in the anorexia of CKD patients [87].

GENDER AND CHANGES IN SEX HORMONES

Experimental and clinical studies have shown gender differ-
ences in disease presentation and severity of symptoms. The
influence of sex hormones on muscle function has been previ-
ously investigated. Testosterone, an anabolic steroid, adminis-
tration is associated with an increase in muscle mass and
strength [88], while testosterone deficiency causes reduced
muscle mass. In men with CKD, testosterone deficiency is
common [89]. It is due to reduce prolactin clearance [90] and
uraemic inhibition of luteinizing hormone signalling at the
level of the Leydig cells [91].

Female with CKD are usually oligomenorrhoeic and oestro-
gen deficient at an early stage. Oestrogen is responsible for
changes in strength and investigations of force production
during the menstrual cycle in healthy women reported greater
force generation of the adductor pollicis [92] and the quadri-
ceps femoris muscle group [93] around ovulation when oes-
trogen levels are at their height. Phillips et al. [94] in another
study found that muscle weakness in women occurs at an
earlier age than in men, but strength is preserved by hormone
replacement therapy.

Male gender is associated with a more rapid rate of progres-
sion and a worse renal outcome in patients with chronic renal
disease [95, 96]. Inflammation-induced anorexia is more
severe among male rats, while progesterone injections de-
creased the severity of anorexia among female rats [97]. Ne-
phrectomized male rats develop anaemia and malnutrition,
whereas matched female rats are not significantly affected [98].
Moreover, a recent study suggests that sex may determine the
severity of symptoms, such as handgrip strength, among pa-
tients who report a poor appetite.

All of these observations suggest that gender and sex hor-
mones may contribute to the different symptomatology asso-
ciated with poor appetite in men and women and support the
hypothesis that uraemic men may be more susceptible than
women to inflammation-induced anorexia [99] and conse-
quently skeletal muscle abnormalities.

CHANGES IN GROWTH HORMONE

CKD is associated with growth hormone (GH) resistance
[100] and, in skeletal muscle, it is a potential cause of in-
creased protein catabolism and wasting. Several mechanisms
for GH resistance have been reported in CKD [101, 102]. The
resistance of the anabolic hormone IGF-1 to protein turnover
in skeletal muscles in CKD has been proposed as one of the
mechanisms leading to muscle wasting [103]. IGF bioactivity
has been found to be reduced in end-stage renal failure leading

to the reduction in free IGF-1 in proportion to renal failure
[104].

Studies have shown that recombinant human growth
hormone (rhGH) administered at pharmacologic doses
induces a net anabolic action and also improves food utiliza-
tion in uraemic animal models [105] and in patients with ad-
vanced CKD [106]. Anabolic effects of rhGH in haemodialysis
patients have also been noted on the muscle compartment,
with increases of up to 3–4 kg in lean body mass with short
and mid-term administration [107]. rhGH improves whole-
body protein homeostasis. It significantly reduces essential
amino acid and muscle loss in chronic haemodialysis patients
[108]. A 6-week administration of 50 µg rhGH in cachectic
haemodialysis patients has significantly improved the net
muscle protein balance [109] and increased lean body mass
and quality of life with no significant side effects [110].

CHANGES IN INSULIN

CKD is associated with insulin resistance from an early stage
[111] and even when the GFR is normal [112, 113]. Insulin re-
sistance correlated linearly with the decline in renal function
[114] and is established in almost all patients at ESRD [115].
Several explanations for the presence of insulin resistance in
CKD patients have been proposed, such as deficiency of
vitamin D, anaemia or putative uraemic toxins [116–118].

Insulin resistance in CKD patients has been related to the
development of uraemic myopathy and diabetic dialysis pa-
tients have a higher prevalence and more severe forms of
uraemic myopathy [119]. This is because insulin resistance de-
creases the use of glucose as an energy source [115], increases
hepatic gluconeogenesis not normally suppressible following
insulin release, reduces hepatic and/or skeletal muscle glucose
uptake and impairs intracellular glucose metabolism [116]. It
is strongly associated with increased muscle protein break-
down, primarily mediated by the ubiquitin-proteasome
pathway [44, 120]. Recently, the link between impaired
insulin/IGF-I signalling in muscle leading to a decrease in P-
Akt and muscle wasting was unrevealed under several condi-
tions, including excess angiotensin II, inflammation and CKD
with acidosis [45, 121] and results in activating two pathways
causing muscle protein wasting. First, there is activation of
caspase-3 that breaks down the complex protein structure of
muscle. Second, a low P-Akt decreases phosphorylation of the
forkhead transcription factor, which permits its translocation
into the nucleus, where it stimulates the expression of atrogin-
1/muscle atrophy F-box (MAFbx) and muscle ring finger 1
(MuRF1) [121]. It is important to emphasize that sarcopenia
is a progressive disease and the effects of insulin resistance is a
cumulative effect starting early in the course of the disease.

PROTEIN-ENERGY WASTING

PEW is not uncommon in patients with CKD. It is character-
ized by reduced circulating body protein, reduced body mass
and reduced muscle mass [58]. The aetiology of PEW in CKD
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is complex and includes inflammation, transient intercurrent
catabolic illnesses [122], nutrient losses into dialysate [123],
metabolic acidosis [124], resistance to insulin [125], GH [126]
and IGF-I [127], hyperglucagonemia [128], hyperparathyroid-
ism [129] and loss of blood into the haemodialyser, into faeces
or by blood drawing [130].

PHYSICAL INACTIVITY AND EXERCISE

The benefits of exercise in the general population are well
documented [131–134] as is the reduced physical activity in
dialysis and CKD patients [135, 136]. Recent research sug-
gested that CKD can induce muscle protein wasting and
muscle atrophy due to complex mechanisms including physic-
al inactivity and deconditioning [137]. Resistance training in
animal models has been shown to reduce muscle protein ca-
tabolism and improves the muscle wasting associated with
CKD, both by increasing the muscle size and strength [138–
140] and by reducing low-grade inflammation and increasing
IGF-I and IGF-II [141, 142].

CHANGES IN MYOSTATIN AND FOLLISTATIN

Myostatin and follistatin are members of the TGF-β family.
Myostatin levels are overexpressed in uraemic cachexia and
negatively impact on skeletal muscle mass and growth leading
to muscle atrophy through a complex signalling mechanism
which involves the activation of the canonical pathway of
Smad, mitogen-activated protein kinase pathway and inhib-
ition of Akt signalling [32,143]. Strategies to correct uraemic
sarcopenia may be mediated, at least, in part, by inhibition of
myostatin expression [144].

Follistatin, a regulatory glycoprotein, previously known as
FSH-suppressing protein is a potent myostatin antagonist and
experimental evidence has shown that overexpression of follis-
tatin induces a dramatic increase in muscle mass [145, 146].
However, the mechanisms involved in the follistatin effect are
relatively unknown and Gilson et al. [147] have recently
shown that satellite cell proliferation significantly contributes
to the follistatin-induced muscle growth and probably

increased protein synthesis. The same authors also reported
that activin is as well a crucial player in the regulation of
muscle mass.

In a recent publication, Miyamoto et al. [148] reported that
follistatin levels were not affected in patients with CKD, except
in wasted and inflamed patients when it is negatively asso-
ciated with muscle strength and bone mineral density. The
authors speculated in line with the above-reported experimen-
tal evidence that follistatin is activated to counter regulate the
effects of myostatin and activin in uraemia. Strategies to in-
crease the skeletal muscle size and strength through myostatin
inhibition by follistatin would represent a potential therapeutic
approach to muscle atrophy in uraemia and other conditions.

IMPLICATIONS OF URAEMIC SARCOPENIA

Sarcopenia is a powerful predictor of morbidity and mortality
in dialysis patients. Several studies suggested that a larger body
size in maintenance dialysis patients has survival advantages
[148–155] and poor survival in dialysis patients with a low
body size [156, 157] and reduced serum creatinine [158].
However this phenomenon of the reverse epidemiology of
obesity is not unique to the dialysis population. Patients with
chronic heart failure [159], elderly patients [160] and patients
with malignancy [161] or AIDS [162] also exhibit a risk factor
reversal and all share a degree of muscle wasting.

Several studies investigated whether lean body mass or fat
mass confers this survival advantage. Kalantar-Zadeh et al.
[163] reported that low baseline body fat percentage and fat
loss over time are independently associated with higher mor-
tality in maintenance dialysis patients even after adjustment
for demographics and surrogates of muscle mass and inflam-
mation. Noori et al. [164] also reported that higher fat mass in
both sexes and higher lean body mass in women appear to be
protective, and in a different study the same group reported
that the mid-arm muscle circumference is a surrogate of larger
lean body mass and an independent predictor of better mental
health and greater survival in dialysis patients [165]. Other
recent studies have suggested that higher lean body mass, but
not fat mass, is associated with greater survival in CKD pa-
tients [166].

Muscle wasting is a devastating complication because it
leads to decreased quality of life, increases cardiovascular com-
plications and increases morbidity and mortality associated
with CKD [167]. Importantly, low exercise capacity as a conse-
quence of muscle wasting is also a powerful, independent pre-
dictor of mortality in patients with CKD [168].

CONCLUSIONS

As in sarcopenia, uraemic muscle wasting is complex
(Figure 2), progressive and its pathogenesis is similar
(Table 1). Older persons are particularly susceptible to renal
failure and this accelerates the physiological muscle wasting in
this patient group. This devastating complication not only
promotes a sedentary lifestyle and decreased quality of living,

Table 1. Aetiology of muscle wasting in sarcopenia and CKD

Sarcopenia CKD

• Increase in proinflammatory
cytokines

• Increase in proinflammatory
cytokines

• Decreased protein intake • Muscle protein imbalance
• Decline in exercise • Inactivity
• Decrease sex hormones • Decrease sex hormones
• Decreased Growth hormone • Growth hormone resistance
• Decreased insulin • Insulin resistance
• Decrease vitamin D • Vitamin D abnormalities
• Decline in satellite cells • Decline in satellite cells

• Metabolic acidosis
• Angiotensin II
• PEW
• Myostatin overexpression
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but also increases cardiovascular complications, morbidity and
mortality.

Despite this excessive risk of muscle wasting, CKD patients
are treated with much less intensity, suggesting that clinicians
have concentrated on complications in patients with ESRD,
when pathology is already too advanced or irreversible. Con-
sidering the impact of muscle wasting on the well-being of pa-
tients with CKD and the healthcare system in general, it makes
logical sense to study patients with mild-to-moderate renal
impairment at a stage when the skeletal muscle complications
may still be reversible and to identify and introduce therapeu-
tics strategies to maintain skeletal muscle homeostasis and
repair at a time which may lead to a meaningful preventive re-
sponse. Perhaps, the use of the term uraemic sarcopenia would
provide recognition by the renal community for this devastat-
ing problem.
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