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ABSTRACT

Since confounding obscures the real effect of the exposure, it is
important to adequately address confounding for making
valid causal inferences from observational data. Directed
acyclic graphs (DAGs) are visual representations of causal as-
sumptions that are increasingly used in modern epidemiology.
They can help to identify the presence of confounding for the
causal question at hand. This structured approach serves as a
visual aid in the scientific discussion by making underlying re-
lations explicit. This article explains the basic concepts of
DAGs and provides examples in the field of nephrology with
and without presence of confounding. Ultimately, these exam-
ples will show that DAGs can be preferable to the traditional
methods to identify sources of confounding, especially in
complex research questions.
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INTRODUCTION

Traditionally, the gold standard of investigating a causal rela-
tionship is an experiment. For example, to investigate the
effect of erythropoietin on blood pressure in patients with
chronic kidney disease (CKD), the ideal experiment would be
a randomized controlled trial. Randomization is especially im-
portant when investigating intended treatment effects to avoid
confounding by indication [1]. By randomly assigning
erythropoietin versus control treatment, we aim tomake groups
that are comparable with respect to their risk of developing

hypertension. Provided the study is of sufficient size, all other
factors influencing blood pressure will be more or less equally
distributed between erythropoietin and control groups and
therefore any difference in blood pressure at the end of the
study can be attributed to the erythropoietin.

However, most questions on causal mechanisms of disease
cannot be studied in randomized trials and we must rely on
results of observational studies [2]. For instance, it is unethical
to randomly expose people to cigarette smoke or lead exposure
to study their effect on kidney function, as negative effects can
be foreseen. Other determinants of interest, like sex, cannot be
assigned. But unlike well-performed randomized trials, obser-
vational studies often suffer from an inherent incomparability
between the exposed and the unexposed. For example, when
studying the effect of smoking on the risk of renal disease the
tendency of smokers having an unfavourable lifestyle, like high
alcohol or salt intake, could distort the comparison. If these
other factors are also causes of renal disease, the effect of the
exposure, in this case smoking, is easily confounded by the
effect of those other factors. This mixing of effects is better
known as confounding [3].

For making valid causal inferences from observational data,
it is important to adequately address confounding. However,
confounding is not always easy to recognize. In the traditional
definition, a confounder is a factor that is associated with the
exposure, with the outcome and it is not in the causal path
between the exposure and outcome [4]. Although this defin-
ition of a confounder is clear, we will show later that it may be
insufficient in practice. Causal diagrams called directed acyclic
graphs (DAGs) are increasingly used in modern epidemiology,
mainly due to the popularization of this technique by Sander
Greenland and, more recently, Miguel Hernan [5–9]. DAGs
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provide a structured way to present an overview of the causal
research question and its context. They serve as a visual re-
presentation of causal assumptions by making underlying rela-
tions explicit [8]. DAGs can therefore help to identify the
presence of confounding and ways to resolve it. This article
aims to introduce DAGs as a useful tool to present a causal re-
search question and to identify confounding.

First, the traditional definition of a confounder will be dis-
cussed. Then, the basic aspects of DAGs will be explained
using several examples with and without presence of con-
founding. In addition, we will discuss how DAGs can be used
to determine the most efficient way to deal with the identified
confounding. For educational purposes, the DAGs in this
article are used as simple examples and are assumed to re-
present the truth.

TRADITIONAL DEFINITION
OF CONFOUNDING

Example 1. We are assessing the causal relationship
between CKD and mortality. Is confounding by age
present?

Traditionally, a confounder is defined by three criteria.
First, it must have an association with the outcome, meaning
that it should be a risk factor for the outcome. Second, it must
be associated with the exposure. Last, it must not be in the
causal path from exposure to outcome, thus not be a conse-
quence of the exposure [4]. Using these criteria, age classifies
as a confounder in the relationship between CKD and

mortality. In the general population, people with CKD are on
average older than people without CKD. Among elderly sub-
jects, the risk of mortality is also higher. Therefore, if we
would just compare mortality risk in patients with CKD to pa-
tients without CKD, we would indirectly compare old with
young people. Age is associated with the exposure CKD, a risk
factor for the outcome but not a consequence of the exposure.
As identified with the traditional method, the effect of CKD
on mortality is mixed with the effect of age and confounding
by age is present. Usually we would want to remove this con-
founding effect of age, and in order to do so we must first have
identified potential confounding. We will show that DAGs
provide an extension and more formalized way of the trad-
itional method to identify confounding.

DAGS

A DAG is a directed acyclic graph (Figure 1). A graph is called
directed if all variables in the graph are connected by arrows.
Arrows in DAGs represent direct causal effects of one factor
on another, either protective or harmful [9]. A cause is a factor
that produces an effect on another factor. The causal nature of
such a factor is inferred from the fact that the effect is no more
observed when the factor in question is (hypothetically)
removed. Causes are seldom sufficient or necessary, especially
in a multifactorial disease such as CKD. An arrow reflects a
causal pathway: one factor causes the other and not the other
way around. The arrows and their direction are based on a
priori knowledge. A path in a DAG is a sequence of arrows
connecting the exposure and outcome studied, irrespective of
the direction of the arrows. A directed path is a sequence of
arrows in which every arrow points in the same direction. The
graphs are acyclic because causes always precede their effects,
i.e. the future cannot cause the past. In DAGs, this means that
no directed path can form a closed loop [8]. Thus one can
never start from one factor, follow the direction of the arrows
and then end up at the same factor [9]. To increase the read-
ability of a DAG, it is therefore good practice to insert a chron-
ology, with causes left from their effects. For clarity and
explanatory purposes, we indicate the research question at
hand with a question mark above the arrow from exposure to
outcome.

CONFOUNDING IN DAGS

Figure 1a shows the general structure of confounding in a
DAG and Figure 1b shows the DAG of the first example, in
which confounding by age was identified in the causal rela-
tionship between CKD and mortality. The arrows are drawn
based on a priori knowledge. In this case, age is a cause of both
CKD and mortality. Therefore, the arrows point away from
age towards CKD as well as towards mortality. Age is thus a
common cause of CKD and mortality. The presence of a
common cause in a DAG is equivalent to the presence of con-
founding. The DAG in Figure 1b indicates two paths from
CKD to mortality. One path leads directly from CKD to

F IGURE 1 : A graphical presentation of confounding in DAGs. (a)
The structure of confounding in DAGs. Since age is a common cause
of CKD and mortality, confounding is present when we want to
assess the causal relationship between the exposure CKD and the
outcome mortality (b). The backdoor path from CKD via age to mor-
tality can be blocked by conditioning on age, as depicted by a box
around age in (c). Similarly, ethnicity is a common cause of obesity
and decline in kidney function (d). The backdoor path from obesity
via ethnicity to decline in kidney function can be blocked by condi-
tioning on ethnicity. If ethnicity is not measured or not properly mea-
sured, residual confounding remains present.
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mortality, representing the effect of CKD on mortality, which
is the research question at hand. There is, however, another
path from CKD to mortality, via their common cause age. In
DAG terms, this path is called a backdoor path because it
starts with an arrowhead towards CKD, the exposure. Thus,
the presence of a common cause or backdoor path in a DAG
identifies the presence of confounding. A DAG represents an
overview of all causes in the causal mechanism under study.
When a DAG contains all relevant variables and their causal
relationships, that is the exposure, outcome and their context,
the presence of ‘confounding’ in general can be identified.
This is inherently different from the traditional three criteria
approach, in which every factor is judged as a ‘confounder’
separately. Therefore, in DAGs we do not speak of ‘confoun-
ders’ but only of ‘confounding’.

HOW TO DEAL WITH CONFOUNDING
AND ITS REPRESENTATION IN DAGS

Since confounding obscures the real effect of an exposure, the
effect of confounding should be removed as much as possible.
In the analysis phase, this can be done by means of restriction,
stratification and subsequent pooling, or by adjusting in multi-
variable regression analysis. For instance in the previous
example, the relationship between CKD and mortality could
be assessed in different age categories separately. In these sep-
arate groups with the same age, confounding by age cannot be
present. All methods accomplish the same: they allow the esti-
mation of the causal effect of the exposure on the outcome in
the absence of confounding effects. In DAG terms, adjusting
for confounding by means of restriction, stratification or mul-
tivariable analysis is called conditioning. In a DAG, condition-
ing on a factor is often depicted by a box around this factor,
which is a graphic indication that the backdoor path from the
exposure to the outcome that went through the common cause
is blocked. Since this backdoor path is blocked, the confound-
ing has been removed. An example of this is shown in
Figure 1c. In the remainder of this article, the terms ‘adjusting
for’ and ‘conditioning on’ a factor are used interchangeably to
indicate that this factor is included in the analysis in order to
reduce confounding.

RESIDUAL CONFOUNDING

Example 2. We are assessing the causal relationship
between obesity and decline in kidney function. Is
confounding by ethnicity present?

Suppose the aim is to study the causal relationship between
obesity and decline in kidney function. It has been shown that
black patients have a faster decline in kidney function and pro-
gression to end-stage renal disease [10]. Also, obesity rates are
higher in African American patients than in white patients
[11]. Ethnicity could therefore be regarded as a cause of
decline in kidney function and a cause of obesity. Therefore, in
the DAG in Figure 1d the arrows point away from ethnicity
towards obesity and decline in kidney function. Ethnicity is
thus a common cause of obesity and decline in kidney func-
tion and a backdoor path from obesity via ethnicity to decline
in kidney function is identified. We conclude that confound-
ing is present and we should condition on ethnicity to remove
confounding. It is, however, possible to identify confounding
in a DAG that is impossible to adjust for. For instance, it could
be that physicians did not record ethnicity, and ethnicity is
thus unavailable in the data analyses. The investigator cannot
adjust for a factor that is not measured. Similarly, it is possible
that adjustments are only partly successful in controlling for
confounding. For example, even if ethnicity was recorded and
adjusted for in the analyses, some residual confounding can
remain present. The reason for this is that self-reported or
physician-reported race does not always completely represent
the racial background of an individual. When confounding is
unknown, unmeasured or even partially measured and ad-
justed for, residual confounding will remain present. This is
also the problem with confounding by indication. A physi-
cian’s treatment decision is based on many factors, including
the physician’s preference and estimation of the patient’s
outcome, and it is almost impossible to completely measure
all these factors. Randomized controlled trials are therefore
the best way to avoid confounding by indication [1, 12].

NO CONFOUNDING: MEDIATION

Example 3. We are assessing the causal relationship
between ethnicity and decline in kidney function. Is
confounding by obesity present?

Suppose this time we want to study the causal relationship
between ethnicity and decline in kidney function and want to
determine if confounding by obesity is present. In the DAG,
ethnicity is the exposure and decline in kidney function the
outcome. Again the arrow from ethnicity to obesity is drawn,
because obesity rates are higher in African American patients
than in white patients. Furthermore, a higher body mass index
is associated with a faster decline in kidney function [13], so
an arrow from obesity to decline in kidney function can be
drawn. The DAG in Figure 2a shows that obesity is not a
common cause of ethnicity and decline in kidney function and
we can conclude that there is no confounding by obesity. The
path from ethnicity via obesity to decline in kidney function is

F IGURE 2 : No confounding: mediation. The path from the expos-
ure to outcome via mediator (a) is not a backdoor path, because it
does not start with an arrowhead towards the exposure. Therefore, no
confounding by obesity is present in the causal relation between
ethnicity and decline in kidney function (b).
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not a backdoor path, as the first arrow points away from the
exposure ethnicity. Obesity is not a cause of ethnicity, but eth-
nicity can be regarded as a cause of obesity. Obesity is there-
fore in the causal pathway between ethnicity and decline in
kidney function. Part of the effect of ethnicity on the decline
in kidney function is via obesity, thus the effect of ethnicity is
mediated by obesity. This is also captured in the last part of
the traditional definition of a confounder: it should not be in
the causal path between exposure and outcome. If we would
adjust for obesity (sometimes called ‘overadjustment’) [4],
thereby comparing black with white patients within the same
level of obesity, we would take away the effect of obesity on the
decline of kidney function. Then part of the effect of ethnicity
that is mediated through obesity is not accounted for and the
total effect of ethnicity on decline of kidney function would be
underestimated. Of course, these decisions on modelling
depend on the research question being asked. We are inter-
ested in the total causal effect of ethnicity on decline of kidney
function and therefore do not adjust for obesity, because there
is no confounding by obesity. If one wants to know why ethni-
city has an effect on decline of kidney function, we could de-
liberately adjust for obesity to see which part of the effect of
ethnicity is mediated by obesity or perform more advanced
mediation analysis [14, 15]. Importantly, the interpretation of
results should be consistent with the performed analyses and a
DAG can be a useful tool in this process. In our specific
example, the DAG shows that obesity is a mediator and there-
fore there is no confounding by obesity present in the causal
relationship between ethnicity and decline in kidney function.
This is in contrast to the previous example, in which con-
founding by ethnicity was identified in the causal relationship
between obesity and decline in kidney function.

NO CONFOUNDING: COMMON EFFECT

Example 4. Assessing the causal effect of lead poisoning
on developing polycystic kidney disease. Is confounding
by glomerular filtration rate (GFR) present?

Before we knew that polycystic kidney disease (PKD) was a
genetic disorder, we could have hypothesized that lead poison-
ing could cause PKD. Of course now we know that these two
are not causally related, but in reality also sometimes without

knowing it we study a causal relationship that at a later stage
turns out to be absent. In this case, the question is whether
confounding by glomerular filtration rate (GFR) is present. A
valid question it seems, since a priori knowledge shows that
GFR is associated with both lead poisoning and PKD and not
in the causal path between lead poisoning and PKD. By
drawing a DAG, the causal assumptions about the underlying
relations are being made explicit. In this case, lead poisoning is
a cause of renal failure, affecting GFR. GFR is thus an effect of
lead poisoning and the arrow points from lead poisoning, our
exposure, to GFR. PKD is also a cause of renal failure. Again,
the arrow is drawn from PKD to GFR. The resulting DAG is
depicted in Figure 3a. There is no backdoor path via GFR,
because GFR is not a common cause of lead poisoning and
PKD. The DAG therefore shows that GFR does not cause con-
founding. The traditional definition would also not identify
GFR as a confounder, because although GFR is associated
with the outcome, GFR is not a risk factor for or cause of
PKD. In contrast, the DAG clearly shows that GFR is a
common effect of lead poisoning and PKD. In DAG terms, a
common effect is called a collider, because two arrowheads
collide at this factor. A collider blocks a path. So, before we
knew about genetics, what would have happened if we wanted
to investigate the causal relationship between lead poisoning
and PKD and would we falsely adjust for GFR? In the extreme
case, imagine that lead poisoning and PKD are the only two
causes of kidney disease. If we only conduct our study in pa-
tients with a low GFR, then absence of lead poisoning would
perfectly predict the presence of PKD, because otherwise the
patient would not have had a low GFR. In addition, the absence
of PKD would perfectly predict the presence of lead poisoning.
So restricting our study to only those patients with a low GFR
leads to an inverse association between lead poisoning and
PKD. We would have concluded that lead poisoning has a pro-
tective effect on PKD, although we know now that PKD is a
genetic disorder and there is actually no causal effect. This de-
monstrates that adjusting for a variable that is a common effect
of the exposure and outcome —a collider—can introduce erro-
neous results. In DAG terms, conditioning on a collider opens a
path. This bias is called collider-stratification bias and is exten-
sively discussed in the literature [16, 17]. Collider-stratification
bias is an example of selection bias, which will be discussed and
explained in DAGs in a separate paper. We refer to Box 1 for a
more technical overview of confounding in DAGs.

USE OF DAGS TO IDENTIFY A MINIMUM
SET OF FACTORS TO ELIMINATE
CONFOUNDING

So far, the traditional approach identified the same sources of
confounding as with the DAG approach. So how do DAGs
improve on the traditional approach? In the traditional ap-
proach, the three criteria are applied for each ‘potential con-
founder’ separately. In DAGs, all assumptions on all factors
and their relationships in a causal mechanism are made expli-
cit in order to identify confounding in general. As a conse-
quence, DAGs allow the investigator to oversee all information

F IGURE 3 : No confounding: collider. A collider is a common effect
(a). GFR is a common effect of lead poisoning and polycystic kidney
disease (b). The path from lead poisoning to polycystic kidney disease
via GFR is not a backdoor path, it is blocked by collider GFR. There-
fore, no confounding by GFR is present in the causal relationship
between lead poisoning and polycystic kidney disease.
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needed to judge whether conditioning on a certain factor
might introduce collider-stratification bias, something that is
not possible in the traditional three criteria approach which
only focuses on a single factor. Furthermore, because DAGs
provide an overview of the causal relationships, they allow the
investigator to identify a minimum but sufficient set of factors
to adjust for in the analysis to remove confounding [19]. For il-
lustration, let us go back to the first simple example in which
the relationship between CKD and mortality was confounded
by age. This DAG could be extended as presented in Figure 4a.
In this example, the effect of age on mortality is caused
through two mechanisms, i.e. a higher incidence of cancer and
dementia in the elderly. In the traditional definition of a con-
founder, we would probably conclude that we should adjust
for age, cancer and dementia, because all three are associated
with the exposure, are risk factors for the outcome and are not
in the causal path between CKD and mortality. However, the
DAG shows that it is sufficient to only adjust for age to elimin-
ate the confounding, because the backdoor path is blocked by
adjusting for the common cause age. Note, this is only true in
this simplified example in which we assume that cancer and
dementia do not directly affect the presence of CKD. It can be
argued that cancer also causes CKD, which could be a valid as-
sumption for renal cancer or other types of cancer that will be
treated with nephrotoxic chemotherapy. Then, an arrow should
also be drawn from cancer to CKD, as depicted in Figure 4b. In
that case, two backdoor paths would be identified: the first via
age and then cancer and dementia, as in Figure 4a, and the
second via common cause cancer. Although in Figure 4a it is
sufficient to adjust for age to block the backdoor paths and
eliminate confounding, in Figure 4b it is necessary to adjust for
two factors to eliminate confounding. The two backdoor paths
can be blocked by either adjusting for age and cancer, or by ad-
justing for cancer and dementia. The use of DAGs allows for
better insight in the assumed causal mechanisms and can aid in
the discussion and selection of factors to adjust for in order to
remove the confounding. Readers interested in examples of
more complex causal mechanisms can refer to articles of
Hernan or Shrier [9, 20]. DAGs can be drawn by hand, but

several computer-based approaches, such as DAGitty and dagR,
have been developed to identify the minimal sufficient adjust-
ment set [21, 22]. If drawn and discussed prior to data collec-
tion, DAGs may help identify the best and most parsimonious
set of factors to be measured and adjusted for. This will prevent
loss of statistical power and funds, but also avoids problems
such as collider-stratification bias and collinearity [18, 19, 23].

CONCLUSION

In the above examples, we demonstrated the use of DAGs as a
visual aid in identifying the presence of confounding. For

F IGURE 4 : Identification of a minimal set of factors to resolve con-
founding. In (a), the backdoor path from CKD to mortality can be
blocked by just conditioning on age, as depicted by the box around
age. However if we assume that cancer also causes CKD (b), the back-
door paths can only be closed by conditioning on two factors, either
age and cancer (as depicted) or cancer and dementia.

Box 1 DAG definitions

DAG: directed acyclic graph

• Directed: the factors in the graph are connected with
arrows, the arrows represent the direction of the causal
relationship

• Acyclic: no directed path can form a closed loop, as a
factor cannot cause itself

DAG definitions and identifying confounding [18]

• A ‘path’ is a sequence of arrows, irrespective of the dir-
ection of the arrows

• A ‘directed path’ is a sequence of arrows in which every
arrow points in the same direction, representing the
causal relationship.

• A ‘backdoor path’ is a sequence of arrows from expos-
ure to outcome that starts with an arrowhead towards
the exposure and ends with an arrowhead towards the
outcome (Figure 1a and b)

• Two factors are associated if they are connected by an
‘open path’

• A ‘collider’ is a common effect; a factor on which two
arrowheads collide (Figure 3a)

• A collider blocks a path

• A collider that has been conditioned on no longer
blocks a path; conditioning on a collider could therefore
introduce a form of selection bias and should be done
with caution. See also [16, 17]

• Any path that contains non-colliders is open, unless a
non-collider has been conditioned on, then it is blocked
(Figure 1c)

• ‘Blocked paths’ do not affect the direct causal relation-
ship between the exposure and the outcome

• ‘Confounding’ is identified by an open backdoor path

• The causal relationship between exposure and outcome
will be unconfounded if the only open paths from ex-
posure to outcome are directed paths from exposure to
outcome [18]
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explanatory purposes, the examples were relatively easy with
limited factors. Examples of more complex DAGs can be
found elsewhere [9, 20]. Especially in more complex situations,
DAGs can be preferable over the traditional definition of con-
founding as they allow to identify the presumed causal mech-
anism and thereby the possibility of collider-stratification bias
with certain adjustments, as well as a minimum set of factors
to adjust for to remove the unwanted confounding. These
attributes are derived from the fact that all relevant factors
and their causal relationships are depicted in DAGs in a
chronologic order, with the question of whether confounding
is present. As a result, relevant paths can be blocked whereas
others will not be unblocked, all to remove confounding
without inducing collider-stratification bias. In contrast, the
traditional three criteria approach is based on a case-by-case
judgement of whether a factor is a confounder, without any ac-
knowledgement of the context. The use of DAGs in identifying
confounding still relies on prior knowledge and assumed
causal effects. It does therefore not tell anything about the
truth of your assumptions. It may well be possible that differ-
ent physicians have different beliefs on which factor causes the
other and this may result in different choices regarding factors
to adjust for. DAGs can aid in this discussion among physi-
cians and researchers by providing a visual representation to
discuss causal research questions by making the underlying as-
sumptions about causal mechanisms explicit.
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